
SEPTEMBER 14 NOTES

1. 1.7: Group actions

From last time:

Definition 1.1. Let A be a set. An action of a group G on a set A is a map G×A → A, written
as (g, a) 7→ g · a, such that:

(1) for all g1, g2 ∈ G and a ∈ A, g1 · (g2 · a) = (g1g2) · a, and
(2) for all a ∈ A, 1 · a = a.

In this case, we say the group G acts on A.

Example 1.2. Later in the course, we will often have a group G act on itself. The most common
examples are the left regular action of G acting on G by g · a = ga for all g, a ∈ G and
conjugation: G acting on itself by g · a = gag−1 for all g, a ∈ G. You will explore these more in
your homework, and we will use groups acting on themselves to prove many results (e.g. Lagrange’s
Theorem, the class equation, Sylow’s Theorems, ... ).

We will come back to actions later today.

2. 2.1: Subgroups

Definition 2.1. A subgroup of a group G is a subset H ⊂ G such that:

(1) H is nonempty,
(2) H is closed under products, i.e. x, y ∈ H implies xy ∈ H, and
(3) H is closed under inverses, i.e. x ∈ H implies x−1 ∈ H.

If H is a subgroup of G, we denote this by H ≤ G. If H is a proper subgroup (meaning H ̸= G),
we denote this by H < G.

Subgroups of G are in fact just subsets of G that are groups with the binary operation of G:
this is associative because it is in G, contains at least one element x and by (3) contains x−1, so
contains the identity 1 = xx−1 by (2), and contains the inverse of every element by (3).

Example 2.2. Z ≤ Q and Q ≤ R because the sum of any two integers (resp. rational numbers) is
an integer (resp. rational number) and the additive inverse of any integer (resp. rational number)
is an integer (resp. rational number).

Example 2.3. Let G = D2n and let H = {1, r, r2, . . . , rn−1}. Because the product of any two
rotations is again a rotation, and the inverse of any rotation is a rotation, H is a subgroup of G.

If instead H = {1, s, sr, . . . , srn−1}, then H is not a subgroup, because (s)(sr) = r /∈ H.

Example 2.4. The set of even integers is a subgroup of Z: the sum and additive inverse of an
even number is again even.

Example 2.5. If G is a group and x ∈ G is any element, the subgroup generated by x is the
set

⟨x⟩ = {xn | n ∈ Z} = {. . . , x−1, 1, x, x2, . . . }.
This is indeed a subgroup: the product of two powers of x is again a power of x and the inverse

of a power of x is again a power of x.
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Proposition 2.6. A subset H of a group G is a subgroup if and only if H ̸= ∅ and for all x, y ∈ H,
xy−1 ∈ H.

Proof. If H is a subgroup of G, then these properties hold by requirements (1), (2), (3) to be a
subgroup.

Now suppose H ̸= ∅ and for all x, y ∈ H, xy−1 ∈ H. We must show H satisfies requirements
(1),(2),(3). (1) holds by assumption. To show (3), assume x ∈ H is any element. If y = x, we know
xx−1 = 1 ∈ H so the identity is in H, and therefore 1x−1 ∈ H, so x−1 ∈ H. Finally, to show (2),
note that we just showed for any element z ∈ H, z−1 ∈ H, so if x, y ∈ H, then x, y−1 ∈ H, and
therefore x(y−1)−1 = xy ∈ H. Therefore, H is a subgroup. □

Proposition 2.7. If G is a finite group, then H is a subgroup if and only if H is nonempty and
H is closed under products.

Proof. If H is a subgroup, it is nonempty and closed under products by definition.
For the converse, we must show that H nonempty and closed under products implies it is closed

under inverses. Let x ∈ H be any element. Because G is finite, there are only finitely many distinct
elements x, x2, x3, . . . so there must exist a, b ∈ Z+ with b > a such that xa = xb, i.e. 1 = xb−a

(which proves 1 ∈ H). Therefore, xxb−a−1 = 1 so x−1 = xb−a−1. In particular, xb−a−1 ∈ H so
x−1 ∈ H. □

On your homework, you will prove many of the subsets we have already encountered are sub-
groups:

Example 2.8. If ϕ : G → H is a homomorphism, then kerϕ is a subgroup of G and imϕ is a
subgroup of H.

We will introduce several more subgroups in the next section.

3. 2.2: Centralizers, normalizers, stabilizers, and kernels

In what follows, G will denote a group and A will denote a nonempty set.

Definition 3.1. If A is a subset of G, the centralizer CG(A) is the set

CG(A) = {g ∈ G | gag−1 = a for all a ∈ A}.
Equivalently,

CG(A) = {g ∈ G | ga = ag for all a ∈ A}.
In other words, the centralizer of A is the set of elements of G that commute with every element
of A.

Proposition 3.2. For any nonempty subset A of G, CG(A) is a subgroup of G.

Proof. First, note that CG(A) ̸= ∅ because 1 ∈ CG(A). To prove it is a subgroup, we must then show
that if x, y ∈ CG(A), then x−1 and xy ∈ CG(A). Suppose x ∈ CG(A), so for all a ∈ A, xax−1 = a.
Multiplying on the left by x−1 and the right by x, we obtain a = x−1ax, or a = x−1a(x−1)−1. This
holds for any a ∈ A, and therefore x−1 ∈ CG(A) so the centralizer is closed under inverses.

Now suppose x, y ∈ CG(A), so for all a ∈ A, xax−1 = a and yay−1 = a. We compute:

(xy)a(xy)−1 = (xy)a(y−1x−1)

= x(yay−1)x−1

= xax−1

= a

which proves that xy ∈ CG(A) so the centralizer is closed under products. Therefore, CG(A) is a
subgroup of G. □
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Remark 3.3. If A = {a} is a single element of G, we denote CG(A) by CG(a). Because powers of
a commute with each other, ⟨a⟩ ⊂ CG(a), i.e. a

n ∈ CG(a) for all n ∈ Z.

Example 3.4. If G is abelian, then for any nonempty subset A of G, CG(A) = G (every element
of G commutes with any element of A, by definition).

Definition 3.5. The center of a group G is the set Z(G) of elements

Z(G) = {g ∈ G | gx = xg for all x ∈ G}.

The center is the set of elements that commute with all elements of G.

By definition, Z(G) = CG(G) so it is a subgroup of G. In general, for any A subset of G,
Z(G) ⊂ CA(G).

Definition 3.6. If g ∈ G is an element of a group and A is a nonempty subset of G, then
gAg−1 = {gag−1 | a ∈ A}. The normalizer of A in G is the set

NG(A) = {g ∈ G | gAg−1 = A}.

If you have seen normal subgroups before, this may look familiar.
Note that if g ∈ CG(A), then gag−1 = a for all a ∈ A, so gAg−1 = A, which implies that

CG(A) ⊂ NG(A).

Proposition 3.7. CG(A) ≤ NG(A) and NG(A) ≤ G.

Proof. Exercise. □

Example 3.8. Let G = D8. Then, Z(G) = {1, r2}. We show this by demonstrating that these
elements commute with all elements of D8, and by exhibiting an example to show that no other
elements commute with everything.

Write D8 = {1, r, r2, r3, s, sr, sr2, sr3}. Recall that rks = sr4−k.
First, 1 ∈ Z(G) by definition. Also, r2 ∈ Z(G) because r2rj = r2+j = rjr2 for any j ∈ Z, and

r2srj = sr4−2rj = sr2rj = srjr2 for any j ∈ Z.
Now, r, r3 ̸= Z(G) because sr ̸= rs = sr3, and sr3 ̸= r3s = sr. Also, s ̸= Z(G) again because

sr ̸= rs. Similarly, srj ̸= Z(G) because srjr = srj+1 ̸= rsrj = sr3+j . Therefore, no other elements
of D8 can be in the center so Z(D8) = {1, r2}.

Tying this back in to group actions, we have the following additional subgroups.

Definition 3.9. If G is a group acting on a set A and a ∈ A is any element, the stabilizer of a is
the set

Ga = {g ∈ G | g · a = a}.

Proposition 3.10. For any a ∈ A, Ga is a subgroup of G.

Proof. Exercise. □

Definition 3.11. If G is a group acting on a set A the kernel of the action is the set

{g ∈ G | g · a = a for all a ∈ A}.

Proposition 3.12. The kernel of a group action is a subgroup of G.

Proof. Exercise. □

Every example in the first half of this section is a special case of kernel or stabilizer.
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Example 3.13. Let S = P(G) be the set of all subsets of G. Then, G acts on S by conjugation:
for any B ⊂ G,

g ·B = gBg−1 ⊂ G.

Then, by definition, for a subset A of G, NG(A) = GA is the stabilizer of A under this action.
Next, for any A ⊂ G, we can consider NA(G) acting on A by conjugation: for g ∈ NA(G),

g · a = gag−1. (Because g ∈ NA(G), g · a is indeed an element of A.) Then, the centralizer of A,
CG(A), is exactly the kernel of this action.
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