
SEPTEMBER 12 NOTES

1. 1.6: Homomorphisms and Isomorphisms

A fundamental notion in abstract mathematics is the idea of a morphism, which is an allowed
type of function in a category (collection) of objects that preserves whatever additional structure
we have on these objects. For example, you’ve already seen linear transformations as the allowed
functions from Rn to Rm in linear algebra, where the objects you’re looking at are vectors, lines, or
linear subspaces. The linear transformations are the functions that take linear subspaces to other
linear subspaces.

Here, we will introduce morphisms of groups, which will ‘preserve’ the structure of a group.

Definition 1.1. Let (G, ⋆G) and (H, ⋆H) be groups. A homomorphism ϕ : G → H is a function
such that

ϕ(a ⋆G b) = ϕ(a) ⋆H ϕ(b)

for all a, b ∈ G.
The homomorphism ϕ is called an isomorphism if it is a bijection (i.e. injective and surjective).

In this case, we say G and H are isomorphic and write G ∼= H.

Example 1.2. The function ϕ : R → R+ given by ϕ(x) = ex is a homomorphism and an
isomorphism.

Let’s prove this. To show it is a homomorphism, since the binary operation on R is + and the
binary operation on R+ is ×, we must show ϕ(x+ y) = ϕ(x)× ϕ(y). But this is true:

ϕ(x+ y) = ex+y = exey = ϕ(x)× ϕ(y).

To show it is an isomorphism, we must show it is injective and surjective. To see injectivity,
suppose ϕ(x) = ϕ(y), so ex = ey. Taking the natural log of both sides, we see that x = y so ϕ is
injective. To see surjectivity, let z ∈ R+ be any element in the codomain. Then, if x = ln(z), then
x ∈ R and we have ϕ(x) = eln z = z, so ϕ is surjective. Therefore, ϕ is an isomorphism.

By definition, a homomorphism of groups preserves the binary operation, but it also ‘preserves’
the identity and inverse elements as in the following proposition.

Proposition 1.3. If ϕ : G → H is a homomorphism, then:

(1) ϕ(1G) = 1H , where 1G and 1H are the identities in G and H, and
(2) for any x ∈ G, ϕ(x−1) = ϕ(x)−1.

Proof. We first prove (1). Because 1G1G = 1G, we have

ϕ(1G1G) = ϕ(1G)

and by the homomorphism condition, we may write the left side as

ϕ(1G)ϕ(1G) = ϕ(1G).

Using the cancellation law that we have already proven, using that the right side is equal to ϕ(1G)1H ,
we obtain

ϕ(1G) = 1H .

(Alternatively, one could prove this without the cancellation law by multiplying both sides on the
right or left by the inverse of ϕ(1G). )
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Now, we prove (2). Because we already know inverses are unique, it suffices to show that
ϕ(x)ϕ(x−1) = ϕ(x−1)ϕ(x) = 1H as this will show ϕ(x−1) satisfies the inverse property for the
element ϕ(x).

But, using the homomorphism condition, we may write ϕ(x)ϕ(x−1) = ϕ(xx−1) = ϕ(1G), and by
(1), we have ϕ(1G) = 1H . Therefore, ϕ(x)ϕ(x−1) = 1H . By a similar argument for ϕ(x−1)ϕ(x), we
conclude ϕ(x)−1 = ϕ(x−1). □

Typically, it is difficult to prove that two groups are isomorphic as you must actually construction
an isomorphism between them. However, it is usually easier to prove that two groups are not
isomorphic. For example:

Proposition 1.4. If ϕ : G → H is an isomorphism, then:

(1) |G| = |H|,
(2) G is abelian if and only if H is abelian, and
(3) for all x ∈ G, ord(x) = ord(ϕ(x)).

Proof. Exercise! □

Note that these are not sufficient to prove that two groups are isomorphic. They are mostly
used to prove that groups cannot be isomorphic.

Example 1.5. Z and R are not isomorphic since |Z| ≠ |R∥.
Z6 and S3 are not isomorphic since Z6 is abelian but S3 is not.
D8 and Q8 are not isomorphic since D8 has two elements of order 4 but Q8 has 6.

Some vocabulary:

Definition 1.6. The kernel of a homomorphism ϕ : G → H is the set

kerϕ = {g ∈ G | ϕ(g) = 1H}.
The image of a homomorphism ϕ : G → H is the set

imϕ = {ϕ(g) | g ∈ G}.

Example 1.7. Let ϕ : Z → Z3 be the map ϕ(n) = n (mod 3). We leave it as an exercise to show
ϕ is a homomorphism. What is the kernel of ϕ? What is the image?

By definition, kerϕ = {n ∈ Z | ϕ(n) = 0} is the set of integers such that n = 0 (mod 3). This is
precisely the multiples of 3, i.e.

kerϕ = {. . . ,−6,−3, 0, 3, 6, 9, . . . }.
The image of ϕ is the set of possible outputs of ϕ. The function is surjective and imϕ = Z3.

2. 1.7: Group actions

Now, we come to a section that you may or may not have seen before. We aim to generalize one
thing we saw for dihedral groups, symmetric groups, and matrix groups: they all act on certain
objects. For instance, the dihedral group ‘acts’ on an n-gon by moving it to a new position. The
symmetric group ‘acts’ on n cards by permuting them into a new order. Matrix groups act on
vector spaces Fn by moving the vectors to new places. We now make the idea of a group action
precise.

Definition 2.1. Let A be a set. An action of a group G on a set A is a map G×A → A, written
as (g, a) 7→ g · a, such that:

(1) for all g1, g2 ∈ G and a ∈ A, g1 · (g2 · a) = (g1g2) · a, and
(2) for all a ∈ A, 1 · a = a.

In this case, we say the group G acts on A.



SEPTEMBER 12 NOTES 3

Example 2.2. If A = Rn and G = GLn(R), then G acts on A by M · v = Mv for M ∈ GLn(R)
and v ∈ R. This satisfies the two properties:

M1 · (M2 · v) = M1 · (M2v) = M1(M2v) = (M1M2)v

and
I · v = Iv = v.

Example 2.3. If A = {1, 2, . . . , n}, the group SA = Sn acts on A by σ · a = σ(a).

We introduce some notation and observations for a group G acting on a set A below.
For each fixed g ∈ G, there is a map ϕg : A → A given by ϕg(a) = g · a.

Proposition 2.4. If G acts on a set A, for any g ∈ G, σg : A → A is permutation of A.

Proof. Recalling the definition of permutation, we must just show that σg is bijective. One way to
do this is to show that σg has an inverse. We claim that σg−1 is the inverse of σg. Indeed, for all
a ∈ A,

(σg−1 ◦ σg)(a) = σg−1(σg(a)) by definition of ◦
= g−1 · (g · a) by definition of σg, σg−1

= (g−1g) · a by property (1) of being an action

= 1 · a = a by property (2) of being an action

Therefore, σg−1 ◦ σg is the identity function. Similarly, one can show σg ◦ σg−1 is the identity, so σg
is bijective with inverse σg−1 and hence a permutation of A. □

Proposition 2.5. The map ϕ : G → SA given by g 7→ σg is a homomorphism.

Proof. By the previous proposition, σg is indeed a permutation of A, so this map is well-defined.
To show that it is a homomorphism, we must show

ϕ(g1g2) = ϕ(g1) ◦ ϕ(g2)
for any g1, g2 ∈ G. As these are functions on A, they are equal if they have the same value for all
a ∈ A. So, we compute:

ϕ(g1g2)(a) = σg1g2(a) by definition of ϕ

= (g1g2) · a by definition of σ

= g1 · (g2 · a) by property (1) of being an action

= σg1(σg2(a)) by definition of σ

= (σg1 ◦ σg2)(a) by definition of composition

= (ϕ(g1) ◦ ϕ(g2))(a) by definition of ϕ.

Therefore, ϕ is a homomorphism.
□

Definition 2.6. The homomorphism ϕ : G → SA is called the permutation representation
associated to the action of G on A.

In other words, we can ‘represent’ any action of G on A by permutations. We will make use of
this often!

More vocabulary:

Definition 2.7. If G is a group and A is a set, the trivial action of G on A is the action g ·a = a
for all g ∈ G. The associated permutation representation ϕ : G → SA is the trivial homomorphism
ϕ(g) = 1 for all g ∈ G.
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Definition 2.8. If G acts on a set B with permutation representation ϕ : G → SB such that
ϕg1 ̸= ϕg2 for all g1 ̸= g2 ∈ G, then the action is said to be faithful. In other words, a faithful
action is one such that ϕ is injective.

Definition 2.9. If G acts on a set B, the kernel of the action is the set {g ∈ G | g · b = b∀b ∈ B},
namely the elements of G which fix all elements of B.

Exercise 2.10. Show that the kernel of the action is precisely the kernel of the permutation
representation.

Example 2.11. Let us compute the permutation representation and the associated terminology
for the elements of D8.

Let A = {1, 2, 3, 4} be the vertices of a square, numbered clockwise. The elements of D8 act
on A by permuting the vertices. For example, r · 1 = 2, r · 2 = 3, r · 3 = 4, and r · 4 = 1. The
permutation representation is just the associated permutation 1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1, which
in cycle notation is just (1234). Therefore, ϕ(r) = σr = (1234).

By definition, s ∈ D8 was reflection across the axis of symmetry through the vertex labeled 1.
In this case, this is the axis connecting 1 and 3, so the action of s on A keeps 1 and 3 where they
are, but switches 2 and 4, so the permutation representation is ϕ(s) = σs = (24).

We could do this for all 8 elements of D4
1:

ϕ(1) = 1

ϕ(r) = (1234)

ϕ(r2) = (13)(24)

ϕ(r3) = (1432)

ϕ(s) = (24)

ϕ(sr) = (14)(23)

ϕ(sr2) = (13)

ϕ(sr3) = (12)(34)

. We see that the map ϕ : D8 → S4 is injective, so action is faithful, and the kernel is only the
identity element.

Example 2.12. Later in the course, we will often have a group G act on itself. The most common
examples are the left regular action of G acting on G by g · a = ga for all g, a ∈ G and
conjugation: G acting on itself by g · a = gag−1 for all g, a ∈ G. You will explore these more in
your homework!

1Note: here I follow the convention that sr means first do r, then do s.
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