
SEPTEMBER 7 NOTES

1. 1.2: Dihedral groups

Last time, we introduced the dihedral group of symmetries to the regular n-gon. If we denote
by s the symmetry flipping the shape over through the axis of symmetry through vertex 1, and
then denote by r the rotation clockwise by 2π/n radians, we showed that the dihedral group has
2n elements, given by:

1, r, r2, . . . , rn−1 (the n rotations, including 1 = doing nothing), s, sr, sr2, . . . , srn−1 (the symme-
tries by first flipping the shape over and then rotating).

You should convince yourself of the following properties:

(1) 1, r, r2, . . . , rn−1 are all distinct and rn = 1, so |r| = n
(2) |s| = 2
(3) s ̸= ri for any i, and further sri ̸= srj for i ̸= j with 0 ≤ i, j ≤ n− 1
(4) rs = sr−1 = srn−1

(5) ris = srn−i for all 0 ≤ i ≤ n

By (3), we may write each element of the dihedral group uniquely as skri for k ∈ {0, 1} and
i ∈ {0, . . . , n}:

D2n = {1, r, . . . , rn−1, s, sr, . . . , srn−1}
and by (4) and (5) we can determine the product of any two elements in D2n.

In general, writing all of the elements of G in terms of powers of a fixed subset (in this case, r
and s) is a way to present G in terms of generators and relations. We will come back to this in the
future but introduce it here.

Definition 1.1. A subset S of a group G such that every element of G can be written as a finite
product of elements in S and their inverses is called a set of generators for G. We will say that
S generates G and write G = ⟨S⟩.

Any equations in G that the elements in S satisfy are called relations.
If G is generated by a subset S and there is a collection of relations R1, . . . , Rm (where each Ri

is an equation involving only elements of S and the identity element) such that any other relation
in S can be deduced from these, we write

G = ⟨S | R1, . . . , Rm⟩

and call this a presentation of G.

Example 1.2. The set S = {1} generates Z, and there are no relations in S, so a presentation of
Z is just Z = ⟨1⟩.

Example 1.3. The set S = {r, s} generates D2n, and every relation can be derived from the
relations rn = 1, s2 = 1, rs = sr−1 (exercise!) so a presentation for the dihedral group is

D2n = ⟨r, s | rn = s2 = 1, rs = sr−1⟩.

2. 1.3: The symmetric group

In this section, we will define the symmetric group. This is a permutation group, i.e. a collection
of all ‘rearrangements’ of a given set. Usually, we take our set to be {1, 2, . . . , n}, but we can define
a group of permutations on any set.
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Definition 2.1. Let Ω be a non-empty set. A permutation σ of Ω is a bijection from Ω to itself,
i.e. σ : Ω → Ω that is both injective and surjective. If a ∈ Ω, we think of σ as a permutation by
sending a to σ(a).

Definition 2.2. Let Ω be any non-empty set, and let SΩ be the set of all bijections from Ω to
itself. This is a group with binary operation function composition ◦:

• Composition is associative;
• There is an identity function 1 : Ω → Ω given by 1(a) = a for all a ∈ Ω;
• For any function σ ∈ SΩ, σ is bijective, so has a bijective inverse function σ−1 ∈ SΩ such
that σ ◦ σ−1 = σ−1 ◦ σ = 1.

This group SΩ is called the symmetric group on the set Ω.
If Ω = {1, 2, . . . , n}, then we denote SΩ by Sn.

We start with a basic fact.

Proposition 2.3. |Sn| = n!.

Proof. The elements of Sn are bijective functions (i.e. exact matchings) of the set {1, 2, . . . , n} with
itself. To determine such a bijection σ, we need to know σ(1), σ(2), . . . , σ(n). Because σ(1) can be
any element in {1, 2, . . . , n}, we have n choices for σ(1), and then σ(2) can be any element other
than σ(1), so we have n−1 choices for σ(2), and then σ(3) can be anything other than σ(1) or σ(2)
so we have n− 2 choices....continue this logic and we conclude we have n(n− 1)(n− 2) . . . 2 · 1 = n!
choices for σ. □

How do we denote elements of Sn? One method is called two-line notation, where we write the
elements of {1, . . . , n} and below each element i write σ(i), i.e. the permutation in S3 of {1, 2, 3}
that switches 1 and 2 and keeps 3 where it is would be written as:(

1 2 3

2 1 3

)
.

We can write all elements of S3 this way:

S3 =

(
1 2 3

1 2 3

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3

2 1 3

)
,

(
1 2 3

2 3 1

)
,

(
1 2 3

3 1 2

)
,

(
1 2 3

3 2 1

)
.

This is quite cumbersome, so Dummit and Foote use what is known as cycle notation. Here, we
imagine what the permutation does to each element moving things in a collection of cycles. In the
example above, we know 1 7→ 2, and then 2 7→ 1, so we have a cycle 1 7→ 2 7→ 1. Because 3 doesn’t
move, it is in its own cycle. We denote each cycle as strings of numbers in parentheses: (12)(3)
where a closed parenthesis means the cycle goes back to the first element.

We can formalize this process into an algorithm:

(1) Given a permutation, to start a new cycle, pick the smallest element a of {1, 2, . . . , n} that
has not yet appeared in a cycle. Begin a new cycle with a: (a

(2) Find b = σ(a). If b = a, close the cycle with a right parenthesis and go back to step 1. If
b ̸= a, continue the cycle: (ab

(3) Find c = σ(b). If c = a, close the cycle and return to step 1. If c ̸= 1, write c next to b:
(abc. Repeat until the cycle closes.

Example 2.4. Write the permutation(
1 2 3 4 5 6 7

4 3 5 1 7 6 2

)
in cycle notation.
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Let’s start with 1: we see 1 7→ 4, and then 4 7→ 1, so we have our first cycle (14). Then, we see
2 7→ 3, 3 7→ 5, 5 7→ 7, and 7 7→ 2, so we have our next cycle (2357). Then, we see 6 7→ 6, so we
obtain the cycle decomposition (14)(2357)(6).

By convention, we usually do not write the cycles of length 1, so we actually would write
the previous permutation as (14)(2357). In general, any numbers that do not appear in the
cycle notation are assumed to be fixed by σ. The algorithm will have you write cycles in a
prescribed order, but these disjoint cycles (cycles with no elements in common) commute (because
the permutation is moving elements in disjoint sets). Therefore, you can rearrange the order you
write them as desired.

Example 2.5. The elements of S3 in cycle notation (in the same order as above) are:

1, (23), (12), (123), (132), (13).

We compute the composition of elements in Sn using the cycle notation by working our way from
the right-most cycle to the left-most cycle. For example:

(12)(13) = (132)

because the right cycle says 1 7→ 3, and the left cycle doesn’t move 3, so we know the composition
sends 1 7→ 3; then, 3 7→ 1 in the first cycle and 1 7→ 2 in the second, so 3 7→ 2 in the composition;
finally, 2 is fixed by the right cycle and 2 7→ 1 by the left, so we know 2 7→ 1.

Similarly,

(13)(12) = (123).

This shows that (12)(13) ̸= (13)(12), and by considering these as permutations in Sn for any
n ≥ 3, we have proven the following:

Proposition 2.6. For n ≥ 3, Sn is not abelian.

On your homework, you will practice more with Sn: composing elements, computing orders of
elements, etc.

3. 1.4: Matrix Groups

To define matrices in general, we first need to define fields.

Definition 3.1. A field is a set F together with two binary operations + and × such that:

(1) (F,+) is an abelian group with identity 0 ∈ F ;
(2) denoting by F× = F − {0}, (F×,×) is an abelian group;
(3) + and × satisfy the distributive law: for any a, b, c ∈ F ,

a× (b+ c) = (a× b) + (a× c).

For now, the only fields that we will encounter are: Q, R, C, and Fp, where Fp = Zp for p a
prime number and + = + (mod p) and × = × (mod p). (You can go ahead and prove Fp is a field
on your own, or reference Section 0 of Dummit and Foote.)

Everything you learned about matrices in linear algebra can be done over arbitrary fields, not
just R. Given an n × n matrix A with entries in F , we compute the determinant by the same
formula as you would over R, using the appropriate + and × from the field F . Because F× is a
group, there is an identity element 1, and the identity matrix is still the matrix with 1’s along the
diagonal and 0’s elsewhere.

Furthermore, it is still true that A is invertible (meaning, there exists an n×n matrix A−1 with
AA−1 = A−1A = I) if and only if detA ̸= 0.

Thus, we define the matrix group:
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Definition 3.2. If F is a field, the general linear group GLn(F ) is the set of all n×n invertible
matrices with entries in F . It is a group with binary operation multiplication.

It is a *fun* exercise to compute the number of elements of GL2(Fp)!
On your homework, you will prove that if n ≥ 2, then GLn(F ) is never abelian.

4. 1.5: The Quaternion Group

Imagine the four complex numbers {1,−1, i,−i}. These form a group under multiplication
because the product of any two elements in this set is still in the set, multiplication is associative,
1 is in this set, and the multiplicative inverse of any element is in this set.

The quaternion group is a (non-abelian) generalization of this!

Definition 4.1. Let Q8 = {1,−1, i,−i, j,−j, k,−k} be the group with multiplication defined by:

1 · a = a · 1 = a for all a ∈ Q8 (so 1 will be the identity)

(−1) · (−1) = 1, (−1) · a = a · (−1) = −a for all a ∈ Q8

i2 = j2 = k2 = 1

ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j1

Note that we did not verify that this multiplication is associative. It is indeed true, but painful
to verify, so we will do it in the future in a better way. Some facts that you should be able to verify
now:

Proposition 4.2. (1) 1 is the identity element
(2) Q8 is not abelian
(3) ±i, j, k all have order 4
(4) The inverse of i, j, k is −i,−j,−k.

1This is just the ‘right hand rule’ for vector cross products, if you’d like to remember it this way.
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