
SEPTEMBER 5 NOTES

1. 1.1: Introduction to groups: Basic axioms and examples

Definition 1.1. A binary operation ⋆ on a set G is a function ⋆ : G×G → G. We denote ⋆(a, b)
by a ⋆ b.

A binary operation is said to be associative if for all a, b ∈ G, a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.
If a, b ∈ G satisfy a ⋆ b = b ⋆ a, we say a and b commute. If this holds for every a, b ∈ G, we say

⋆ is commutative.

Example 1.2. (1) + and × are associative and commutative operations on Z, Q, R, or C.
(2) − is not associative nor commutative on Z, Q, R, or C.

Definition 1.3. If H ⊂ G and ⋆ is a binary operation on G such that the restriction of ⋆ is a binary
operation on H, i.e. for all a, b ∈ H, a ⋆ b ∈ H, then H is closed under ⋆. If ⋆ is an associative or
commutative operation on G, and H is closed under ⋆, then it is also associative or commutative
on H.

Definition 1.4. A group is a set G with binary operation ⋆ such that:

(1) ⋆ is associative;
(2) there exists an element e ∈ G, called the identity element, such that for all a ∈ G,

a ⋆ e = e ⋆ a = a;
(3) for each a ∈ G, there exists an element a−1 ∈ G called the inverse of a such that

a ⋆ a−1 = a−1 ⋆ a = e.

If ⋆ is commutative, we say that G is an abelian group.

Example 1.5. Z,Q,R,C are groups under + with e = 0 and a−1 = −a.
Q − {0} or Q+ are groups under × with e = 1 and a−1 = 1

a . Z − {0} is not a group under ×
because most elements do not have inverses. Q is not a group under × because 0 does not have an
inverse.

Let Zn = {0, 1, . . . , n− 1}. This is a group under + (mod n), addition modulo n.1

We prove some properties of the identity and inverse elements:

Proposition 1.6. Suppose G is a group with binary operation ⋆. Then:

(1) the identity e ∈ G is unique;
(2) for each a ∈ G, a−1 is unique;
(3) for each a ∈ G, (a−1)−1 = a;
(4) for a, b ∈ G, (a ⋆ b)−1 = b−1 ⋆ a−1.

Proof. We prove only (1) and (2). For (1), suppose e and e′ are two identity elements. Then,
e ⋆ e′ = e by the second group axiom, but e ⋆ e′ = e′ also by the second axiom. Therefore, e = e′ so
the identity is unique.

1Dummit and Foote calls this group Z/nZ.
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For (2), suppose b and c are two inverses of a. Let e ∈ G be the identity. By the third group
axiom, a ⋆ b = e and c ⋆ a = e. Therefore,

c = c ⋆ e by definition of e

= c ⋆ (a ⋆ b)

= (c ⋆ a) ⋆ b by associativity

= e ⋆ b

= b by definition of e

and hence b = c so the inverse is unique. □

For simplicity of notation, we will use the following as we proceed:

• If G is a group under some form of addition, we will write + for ⋆ and write e = 0, the
inverse of an element a by −a, and a+ a+ · · ·+ a (n a’s) will be written as na.

• If G is a group with any other binary operation ⋆ or a general abstract group, we will use
the notation implicit in multiplication for ⋆. To denote a ⋆ b, we will simply write ab. The
identity will be called 1, and the inverse of an element a will be a−1. To represent aa . . . a
(n a’s), we will use an. Similarly, a−1 . . . a−1 = a−n. We use the notation a0 = 1.

• We often will not write the binary operation with the set and it is assumed to be implicit.
In other words, there is only one natural choice of operation that makes the set a group
(for instance, if we just write G = Z, the binary operation is understood to be addition).

Now, let us prove additional properties.

Proposition 1.7. For a group G with a, b, c ∈ G, if ab = ac, then b = c. Similarly, if ac = bc,
then a = b.

Proof. These are known as the cancellation laws. We prove only the first one: suppose ab = ac.
Multiply both sides on the left by a−1, apply associativity and the inverse axiom and then the
identity axiom to conclude b = c. □

Definition 1.8. If G is a group and x ∈ G, we define the order of x to be the smallest positive
integer n such that xn = 1. We denote this by |x|. If no such integer exists, we say x has infinite
order.

Example 1.9. • For any group G, |x| = 1 if and only if x = 1.
• In Z, every nonzero element has infinite order.
• In Zn, every element has order at most n because nx = 0 (mod n).

Definition 1.10. For any finite group G = {g1 = 1, g2, . . . , gn}, the multiplication table of G is
the n× n matrix whose ijth entry is gigj .

2. 1.2: Dihedral groups

Given the notation in the previous section, we introduce an important example of a group in
this section.

Let n ∈ Z be a positive integer n ≥ 3. Let D2n be the set of symmetries of a regular n-gon. (A
symmetry is a rigid motion of the n-gon moving it so that it fits back in its original position.) This
will be called the dihedral group.

We may describe each symmetry by labeling the vertices of the n-gon 1, 2, . . . , n. Any symmetry
will be determined by the ending configuration, so we can decide to either flip the shape over
(reversing the orientation of the triple n− 1− 2) or keep it in its original orientation, and then we
may move the vertex labeled 1 to the original position of any other vertex 1, 2, . . . , n by a rotation of
some multiple of 2π/n radians. If we denote by s the symmetry flipping the shape over through the
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axis of symmetry through vertex 1, and then denote by r the rotation clockwise by 2π/n radians,
we have just shown that the dihedral group has 2n elements, given by:

1, r, r2, . . . , rn−1 (the n rotations, including 1 = doing nothing), s, sr, sr2, . . . , srn−1 (the symme-
tries by first flipping the shape over and then rotating).

You should convince yourself of the following properties:

(1) 1, r, r2, . . . , rn−1 are all distinct and rn = 1, so |r| = n
(2) |s| = 2
(3) s ̸= ri for any i, and further sri ̸= srj for i ̸= j with 0 ≤ i, j ≤ n− 1
(4) rs = sr−1 = srn−1

(5) ris = srn−i for all 0 ≤ i ≤ n

By (3), we may write each element of the dihedral group uniquely as skri for k ∈ {0, 1} and
i ∈ {0, . . . , n}:

D2n = {1, r, . . . , rn−1, s, sr, . . . , srn−1}
and by (4) and (5) we can determine the product of any two elements in D2n.
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