Worksheet 3: Products

Definition. The **direct product** of the groups (G_1, \star_1) and (G_2, \star_2) is the group

$$G_1 \times G_2 = \{ (x, y) \mid x \in G_1, y \in G_2 \}$$

where the binary operation is $(x, y) \star (z, w) = (x \star_1 z, y \star_2 w)$. The groups G_1 and G_2 are called the **factors** of G.

- 1. Practice with direct product groups.
 - (a) List the elements of the group $\mathbb{Z}_2 \times \mathbb{Z}_2$, and then list the subgroup $\langle (x, y) \rangle$ generated by each element $(x, y) \in \mathbb{Z}_2 \times \mathbb{Z}_2$. What is the order of every element in $\mathbb{Z}_2 \times \mathbb{Z}_2$? Is $\mathbb{Z}_2 \times \mathbb{Z}_2$ cyclic?

The elements are:

$$\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}.$$

The subgroup generated by each element is (the binary operation is adding coordinatewise mod 2):

- $\langle (0,0) \rangle = \{ (0,0) \}$
- $\langle (0,1) \rangle = \{ (0,0), (0,1) \}$
- $\langle (1,0) \rangle = \{ (0,0), (1,0) \}$
- $\langle (1,1) \rangle = \{ (0,0), (1,1) \}$

Because the order of any element is the size of the subgroup generated by that element, we just count the number of elements in each set above to find that:

- o(0,0) = 1
- o(0,1) = 2
- o(1,0) = 2
- o(1,1) = 2

This group is **not cyclic** because there is no element (x, y) such that $\langle (x, y) \rangle = \mathbb{Z}_2 \times \mathbb{Z}_2$ (equivalently, there is no element (x, y) with $o(x, y) = 4 = |\mathbb{Z}_2 \times \mathbb{Z}_2|$).

(b) List the elements of the group $\mathbb{Z}_2 \times \mathbb{Z}_3$, and then list the subgroup $\langle (x, y) \rangle$ generated by each element $(x, y) \in \mathbb{Z}_2 \times \mathbb{Z}_3$. What is the order of every element in $\mathbb{Z}_2 \times \mathbb{Z}_3$? Is $\mathbb{Z}_2 \times \mathbb{Z}_3$ cyclic?

The elements are:

$$\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)\}.$$

The subgroup generated by each element is (the binary operation is adding mod 2 on the first coordinate and mod 3 on the second):

- $\langle (0,0) \rangle = \{ (0,0) \}$
- $\langle (0,1) \rangle = \{ (0,0), (0,1), (0,2) \}$
- $\langle (0,2) \rangle = \{ (0,0), (0,1), (0,2) \}$
- $\langle (1,0) \rangle = \{ (0,0), (1,0) \}$
- $\langle (1,1) \rangle = \{(0,0), (1,1), (0,2), (1,0), (0,1), (1,2)\}$

• $\langle (1,2) \rangle = \{ (0,0), (1,2), (0,1), (1,0), (0,2), (1,1) \}$

Because the order of any element is the size of the subgroup generated by that element, we just count the number of elements in each set above to find that:

- o(0,0) = 1
- o(0,1) = 3
- o(0,2) = 3
- o(1,0) = 2
- o(1,1) = 6
- o(1,2) = 6

This group is **cyclic** because $\langle (1,1) \rangle = \mathbb{Z}_2 \times \mathbb{Z}_3$ (equivalently, there exists an element (x, y) with $o(x, y) = 6 = |\mathbb{Z}_2 \times \mathbb{Z}_3|$).

- (c) We could analogously define $G_1 \times G_2 \times \cdots \times G_k$ for k groups, instead of 2.
 - i. List the elements of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$. The elements are:

$$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 = \{(0,0,0), (0,0,1), (0,0,2), (0,1,0), (0,1,1), (0,1,2), (1,0,0), (0,0,1),$$

$$(1,0,1), (1,0,2), (1,1,0), (1,1,1), (1,1,2)$$
.

- ii. In general, if each group G_i has n_i elements, how many elements does the group $G = G_1 \times \cdots \times G_k$ have? Because $G = \{(a_1, a_2, \dots, a_k) \mid a_i \in G_i\}$ and there are $|G_i|$ choices for each coordinate a_i , the group G has $|G| = n_1 n_2 \dots n_k = |G_1||G_2| \dots |G_k|$ elements.
- 2. Let's prove some things:
 - (a) If $G = G_1 \times G_2$, prove that G is abelian if and only if each factor is abelian. Homework!
 - (b) If $G = G_1 \times G_2$, and $x \in G_1$ and $y \in G_2$ have finite order, prove that

$$o(x, y) = \operatorname{lcm}(o(x), o(y)),$$

where lcm means least common multiple.

Then, check that this theorem gives you the same answer for the orders of the elements in $\mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_3$ in Problem 1.

Suppose n is any positive integer such that $(x, y)^n = (e_1, e_2)$ (which is the identity element in G). This implies that $(x^n, y^n) = (e_1, e_2)$, or $x^n = e_1$ and $y^n = e_2$. Therefore, n must be a multiple of both o(x) and o(y). The smallest such positive integer is $\operatorname{lcm}(o(x), o(y))$, so $o(x, y) \leq \operatorname{lcm}(o(x), o(y))$. Furthermore, if $n = o(x, y) < \operatorname{lcm}(o(x), o(y))$, by definition, it is not a common multiple of both o(x) and o(y), so it is not possible that both $x^n = e_1$ and $y^n = e_2$. Therefore, we must have $n = o(x, y) = \operatorname{lcm}(o(x), o(y))$. This matches the orders from problem 1:

For $\mathbb{Z}_2 \times \mathbb{Z}_2$, we have:

- $o(0,0) = 1 = \operatorname{lcm}(1,1)$
- $o(0,1) = 2 = \operatorname{lcm}(1,2)$

- $o(1,0) = 2 = \operatorname{lcm}(2,1)$
- $o(1,1) = 2 = \operatorname{lcm}(2,2)$
- and for $\mathbb{Z}_2 \times \mathbb{Z}_3$ we have:
 - $o(0,0) = 1 = \operatorname{lcm}(1,1)$
 - $o(0,1) = 3 = \operatorname{lcm}(1,3)$
 - $o(0,2) = 3 = \operatorname{lcm}(1,3)$
 - $o(1,0) = 2 = \operatorname{lcm}(2,1)$
 - $o(1,1) = 6 = \operatorname{lcm}(2,3)$
 - $o(1,2) = 6 = \operatorname{lcm}(3,2)$
- (c) If $G = G_1 \times G_2$, and G_1 and G_2 are cyclic groups of finite order, prove that G is cyclic if and only if $|G_1|$ and $|G_2|$ are relatively prime.

We use the following fact, which we proved earlier in the semester: a group G is cyclic if and only if there exists an element of G with order equal to |G|.

First, suppose G_1 and G_2 are cyclic groups with $|G_1|$ and $|G_2|$ relatively prime. Then, there exist $x \in G_1$ and $y \in G_2$ with $o(x) = |G_1|$ and $o(y) = |G_2|$, so by the previous problem,

$$o(x, y) = \operatorname{lcm}(o(x), o(y)) = \operatorname{lcm}(|G_1|, |G_2|).$$

Because $|G_1|$ and $|G_2|$ are relatively prime, their least common multiple is their product $|G_1||G_2| = |G|$, so

$$o(x, y) = |G_1||G_2| = |G|.$$

Therefore, the element (x, y) has order equal to |G|, so G is cyclic.

Now, suppose |G| is cyclic. Then, there exists an element $(x, y) \in G$ such that o(x, y) = |G|. However, this means

$$o(x, y) = \operatorname{lcm}(o(x), o(y)) = |G| = |G_1||G_2|.$$

Because $o(x) \leq |G_1|$ and $o(y) \leq |G_2|$, this is only possible if $o(x) = |G_1|$ and $o(y) = |G_2|$, so G_1 and G_2 are cyclic, and $\operatorname{lcm}(o(x), o(y)) = \operatorname{lcm}(|G_1|, |G_2|) = |G_1||G_2|$. This implies that $|G_1|$ and $|G_2$ are relatively prime.

(d) Generalize (a), (b), and (c) to direct products $G_1 \times G_2 \times \cdots \times G_k$.

The relevant theorems are: (and they can be proved either directly or by induction) **Theorem.** Suppose $G = G_1 \times G_2 \times \cdots \times G_k$. Then, G is abelian if and only if each G_i is abelian.

Theorem. Suppose $G = G_1 \times G_2 \times \cdots \times G_k$ and $(x_1, x_2, \ldots, x_k) \in G$ such that $o(x_i)$ is finite for each x_i . Then,

$$o(x_1, x_2, \dots, x_n) = \operatorname{lcm}(o(x_1), o(x_2), \dots, o(x_n)).$$

Theorem. Suppose $G = G_1 \times G_2 \times \cdots \times G_k$ and each G_i is a finite group. Then, G is cyclic if and only if each G_i is cyclic and the orders $|G_i|$ are relatively prime.

3. Some applications of the theorems:

- (a) Prove that G = D₃ × Z₄ is not abelian.
 By 2(a), G is not abelian because D₃ is not abelian.
- (b) Prove that $G = \mathbb{Z}_3 \times \mathbb{Z}_8$ is cyclic, and find an element $(x, y) \in G$ that is a generator. By 2(c), G is cyclic because 3 and 8 are relatively prime. A generator is an element (x, y) with $o(x, y) = |G| = 3 \cdot 8 = 24$, and by 2(b) this must be an element (x, y) with $x \in \mathbb{Z}_3$ of order 3 and $y \in \mathbb{Z}_8$ of order 8. Any element $(x, y) \in G$ with o(x) = 3 and o(y) = 8 will work, such as: (1, 1) or (2, 5) or (1, 7) or ... (more answers possible).
- (c) Find the order of $(2,3,4) \in \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_9$. By 2(b), $o(2,3,4) = \operatorname{lcm}(o(2), o(3), o(4)) = \operatorname{lcm}(3,5,9) = 45$.
- (d) Is $G = \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_9$ cyclic?

By 2(b) or its generalization, for any element $(x, y, z) \in G$, o(x, y, z) = lcm(o(x), o(y), o(z)). Because $x \in \mathbb{Z}_3$, the possible orders of x are 1 or 3. Because $y \in \mathbb{Z}_5$, the possible orders of y are 1 or 5. Because $z \in \mathbb{Z}_9$, the possible orders of z are 1, 3, or 9. Therefore, the possible orders of (x, y, z) are:

$$o(x, y, z) = \operatorname{lcm}(o(x), o(y), o(z))$$

where

- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(1, 1, 1) = 1$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(1, 1, 3) = 3$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(1, 1, 9) = 9$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(1, 5, 1) = 5$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(1, 5, 3) = 15$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(1, 5, 9) = 45$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(3, 1, 1) = 3$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(3, 1, 3) = 3$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(3, 1, 9) = 9$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(3, 5, 1) = 15$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(3, 5, 3) = 15$
- $\operatorname{lcm}(o(x), o(y), o(z)) = \operatorname{lcm}(3, 5, 9) = 45$

None of these orders are equal to the size of G, which is $|G| = 3 \cdot 5 \cdot 9 = 135$, so G cannot be cyclic.

(Alternatively, you can use the generalization of 2(c) that G is not cyclic because the orders of \mathbb{Z}_3 and \mathbb{Z}_9 are not relatively prime.)

- (e) Is Is $G = \mathbb{Z}_9 \times \mathbb{Z}_{17} \times \mathbb{Z}_{200}$ cyclic? By 2(b)/its generalization, $o(1, 1, 1) = \text{lcm}(o(1), o(1), o(1)) = 9 \cdot 17 \cdot 200 = |G|$, so G
 - By 2(6)/16 generalization, $\delta(1, 1, 1) = 16m(\delta(1), \delta(1), \delta(1)) = 9 \cdot 17 \cdot 200 = |G|$, so G has an element of order |G|, so G is cyclic.
- (f) Find an abelian group G with 12 elements where every element has order at most 6. The group $\mathbb{Z}_2 \times \mathbb{Z}_6$ satisfies this. It is abelian by 2(a), and for any $(x, y) \in G$, o(x, y) = lcm(o(x), o(y)), and o(x) is 1 or 2 and o(y) is 1, 2, 3 or 6, so the least common multiple is always at most 6.

(g) Find a non-abelian group G with 12 elements where every element has order at most 6.

The group $\mathbb{Z}_2 \times D_3$ satisfies this. It is not abelian by 2(a), and the orders of elements in \mathbb{Z}_2 are 1 or 2 and the orders of elements in D_3 are 1, 2 or 3, so the least common multiple of the order of an element in \mathbb{Z}_2 and one in D_3 is 1, 2, 3, or 6. Therefore, by 2(b), every element has order at most 6.

- (h) Find an abelian group G with 24 elements where every element has order at most 6. The group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_6$ satisfies this by the same reasoning as 3(f).
- (i) Find a non-abelian group G with 24 elements where every element has order at most 6.

Homework!