Worksheet 3: Products

Definition. The direct product of the groups $\left(G_{1}, \star_{1}\right)$ and $\left(G_{2}, \star_{2}\right)$ is the group

$$
G_{1} \times G_{2}=\left\{(x, y) \mid x \in G_{1}, y \in G_{2}\right\}
$$

where the binary operation is $(x, y) \star(z, w)=\left(x \star_{1} z, y \star_{2} w\right)$.
The groups G_{1} and G_{2} are called the factors of G.

1. Practice with direct product groups.
(a) List the elements of the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and then list the subgroup $\langle(x, y)\rangle$ generated by each element $(x, y) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. What is the order of every element in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$? Is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ cyclic?
The elements are:

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2}=\{(0,0),(0,1),(1,0),(1,1)\}
$$

The subgroup generated by each element is (the binary operation is adding coordinatewise $\bmod 2)$:

- $\langle(0,0)\rangle=\{(0,0)\}$
- $\langle(0,1)\rangle=\{(0,0),(0,1)\}$
- $\langle(1,0)\rangle=\{(0,0),(1,0)\}$
- $\langle(1,1)\rangle=\{(0,0),(1,1)\}$

Because the order of any element is the size of the subgroup generated by that element, we just count the number of elements in each set above to find that:

- $o(0,0)=1$
- $o(0,1)=2$
- $o(1,0)=2$
- $o(1,1)=2$

This group is not cyclic because there is no element (x, y) such that $\langle(x, y)\rangle=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ (equivalently, there is no element (x, y) with $o(x, y)=4=\left|\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right|$).
(b) List the elements of the group $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$, and then list the subgroup $\langle(x, y)\rangle$ generated by each element $(x, y) \in \mathbb{Z}_{2} \times \mathbb{Z}_{3}$. What is the order of every element in $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$? Is $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ cyclic?
The elements are:

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{3}=\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\} .
$$

The subgroup generated by each element is (the binary operation is adding mod 2 on the first coordinate and $\bmod 3$ on the second):

- $\langle(0,0)\rangle=\{(0,0)\}$
- $\langle(0,1)\rangle=\{(0,0),(0,1),(0,2)\}$
- $\langle(0,2)\rangle=\{(0,0),(0,1),(0,2)\}$
- $\langle(1,0)\rangle=\{(0,0),(1,0)\}$
- $\langle(1,1)\rangle=\{(0,0),(1,1),(0,2),(1,0),(0,1),(1,2)\}$
- $\langle(1,2)\rangle=\{(0,0),(1,2),(0,1),(1,0),(0,2),(1,1)\}$

Because the order of any element is the size of the subgroup generated by that element, we just count the number of elements in each set above to find that:

- $o(0,0)=1$
- $o(0,1)=3$
- $o(0,2)=3$
- $o(1,0)=2$
- $o(1,1)=6$
- $o(1,2)=6$

This group is cyclic because $\langle(1,1)\rangle=\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ (equivalently, there exists an element (x, y) with $\left.o(x, y)=6=\left|\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right|\right)$.
(c) We could analogously define $G_{1} \times G_{2} \times \cdots \times G_{k}$ for k groups, instead of 2 .
i. List the elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$.

The elements are:

$$
\begin{aligned}
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}= & \{(0,0,0),(0,0,1),(0,0,2),(0,1,0),(0,1,1),(0,1,2),(1,0,0) \\
& (1,0,1),(1,0,2),(1,1,0),(1,1,1),(1,1,2)\}
\end{aligned}
$$

ii. In general, if each group G_{i} has n_{i} elements, how many elements does the group $G=G_{1} \times \cdots \times G_{k}$ have?
Because $G=\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid a_{i} \in G_{i}\right\}$ and there are $\left|G_{i}\right|$ choices for each coordinate a_{i}, the group G has $|G|=n_{1} n_{2} \ldots n_{k}=\left|G_{1}\right|\left|G_{2}\right| \ldots\left|G_{k}\right|$ elements.
2. Let's prove some things:
(a) If $G=G_{1} \times G_{2}$, prove that G is abelian if and only if each factor is abelian.

Homework!
(b) If $G=G_{1} \times G_{2}$, and $x \in G_{1}$ and $y \in G_{2}$ have finite order, prove that

$$
o(x, y)=\operatorname{lcm}(o(x), o(y))
$$

where lcm means least common multiple.
Then, check that this theorem gives you the same answer for the orders of the elements in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ in Problem 1.
Suppose n is any positive integer such that $(x, y)^{n}=\left(e_{1}, e_{2}\right)$ (which is the identity element in G). This implies that $\left(x^{n}, y^{n}\right)=\left(e_{1}, e_{2}\right)$, or $x^{n}=e_{1}$ and $y^{n}=e_{2}$. Therefore, n must be a multiple of both $o(x)$ and $o(y)$. The smallest such positive integer is $\operatorname{lcm}(o(x), o(y))$, so $o(x, y) \leq \operatorname{lcm}(o(x), o(y))$. Futhermore, if $n=o(x, y)<\operatorname{lcm}(o(x), o(y))$, by definition, it is not a common multiple of both $o(x)$ and $o(y)$, so it is not possible that both $x^{n}=e_{1}$ and $y^{n}=e_{2}$. Therefore, we must have $n=o(x, y)=\operatorname{lcm}(o(x), o(y))$. This matches the orders from problem 1:
For $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, we have:

- $o(0,0)=1=\operatorname{lcm}(1,1)$
- $o(0,1)=2=\operatorname{lcm}(1,2)$
- $o(1,0)=2=\operatorname{lcm}(2,1)$
- $o(1,1)=2=\operatorname{lcm}(2,2)$
and for $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ we have:
- $o(0,0)=1=\operatorname{lcm}(1,1)$
- $o(0,1)=3=\operatorname{lcm}(1,3)$
- $o(0,2)=3=\operatorname{lcm}(1,3)$
- $o(1,0)=2=\operatorname{lcm}(2,1)$
- $o(1,1)=6=\operatorname{lcm}(2,3)$
- $o(1,2)=6=\operatorname{lcm}(3,2)$
(c) If $G=G_{1} \times G_{2}$, and G_{1} and G_{2} are cyclic groups of finite order, prove that G is cyclic if and only if $\left|G_{1}\right|$ and $\left|G_{2}\right|$ are relatively prime.
We use the following fact, which we proved earlier in the semester: a group G is cyclic if and only if there exists an element of G with order equal to $|G|$.
First, suppose G_{1} and G_{2} are cyclic groups with $\left|G_{1}\right|$ and $\left|G_{2}\right|$ relatively prime. Then, there exist $x \in G_{1}$ and $y \in G_{2}$ with $o(x)=\left|G_{1}\right|$ and $o(y)=\left|G_{2}\right|$, so by the previous problem,

$$
o(x, y)=\operatorname{lcm}(o(x), o(y))=\operatorname{lcm}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)
$$

Because $\left|G_{1}\right|$ and $\left|G_{2}\right|$ are relatively prime, their least common multiple is their product $\left|G_{1}\right|\left|G_{2}\right|=|G|$, so

$$
o(x, y)=\left|G_{1}\right|\left|G_{2}\right|=|G| .
$$

Therefore, the element (x, y) has order equal to $|G|$, so G is cyclic.
Now, suppose $|G|$ is cyclic. Then, there exists an element $(x, y) \in G$ such that $o(x, y)=|G|$. However, this means

$$
o(x, y)=\operatorname{lcm}(o(x), o(y))=|G|=\left|G_{1}\right|\left|G_{2}\right|
$$

Because $o(x) \leq\left|G_{1}\right|$ and $o(y) \leq\left|G_{2}\right|$, this is only possible if $o(x)=\left|G_{1}\right|$ and $o(y)=\left|G_{2}\right|$, so G_{1} and G_{2} are cyclic, and $\operatorname{lcm}(o(x), o(y))=\operatorname{lcm}\left(\left|G_{1}\right|,\left|G_{2}\right|\right)=\left|G_{1}\right|\left|G_{2}\right|$. This implies that $\left|G_{1}\right|$ and $\mid G_{2}$ are relatively prime.
(d) Generalize (a), (b), and (c) to direct products $G_{1} \times G_{2} \times \cdots \times G_{k}$.

The relevant theorems are: (and they can be proved either directly or by induction)
Theorem. Suppose $G=G_{1} \times G_{2} \times \cdots \times G_{k}$. Then, G is abelian if and only if each G_{i} is abelian.
Theorem. Suppose $G=G_{1} \times G_{2} \times \cdots \times G_{k}$ and $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in G$ such that $o\left(x_{i}\right)$ is finite for each x_{i}. Then,

$$
o\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{lcm}\left(o\left(x_{1}\right), o\left(x_{2}\right), \ldots, o\left(x_{n}\right)\right)
$$

Theorem. Suppose $G=G_{1} \times G_{2} \times \cdots \times G_{k}$ and each G_{i} is a finite group. Then, G is cyclic if and only if each G_{i} is cyclic and the orders $\left|G_{i}\right|$ are relatively prime.
3. Some applications of the theorems:
(a) Prove that $G=D_{3} \times \mathbb{Z}_{4}$ is not abelian.

By 2(a), G is not abelian because D_{3} is not abelian.
(b) Prove that $G=\mathbb{Z}_{3} \times \mathbb{Z}_{8}$ is cyclic, and find an element $(x, y) \in G$ that is a generator. By $2(\mathrm{c}), G$ is cyclic because 3 and 8 are relatively prime. A generator is an element (x, y) with $o(x, y)=|G|=3 \cdot 8=24$, and by $2(\mathrm{~b})$ this must be an element (x, y) with $x \in \mathbb{Z}_{3}$ of order 3 and $y \in \mathbb{Z}_{8}$ of order 8. Any element $(x, y) \in G$ with $o(x)=3$ and $o(y)=8$ will work, such as: $(1,1)$ or $(2,5)$ or $(1,7)$ or \ldots (more answers possible).
(c) Find the order of $(2,3,4) \in \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$. By $2(\mathrm{~b}), o(2,3,4)=\operatorname{lcm}(o(2), o(3), o(4))=\operatorname{lcm}(3,5,9)=45$.
(d) Is $G=\mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$ cyclic?

By 2(b) or its generalization, for any element $(x, y, z) \in G, o(x, y, z)=\operatorname{lcm}(o(x), o(y), o(z))$. Because $x \in \mathbb{Z}_{3}$, the possible orders of x are 1 or 3 . Because $y \in \mathbb{Z}_{5}$, the possible orders of y are 1 or 5 . Because $z \in \mathbb{Z}_{9}$, the possible orders of z are 1,3 , or 9 . Therefore, the possible orders of (x, y, z) are:

$$
o(x, y, z)=\operatorname{lcm}(o(x), o(y), o(z))
$$

where

- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(1,1,1)=1$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(1,1,3)=3$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(1,1,9)=9$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(1,5,1)=5$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(1,5,3)=15$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(1,5,9)=45$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(3,1,1)=3$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(3,1,3)=3$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(3,1,9)=9$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(3,5,1)=15$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(3,5,3)=15$
- $\operatorname{lcm}(o(x), o(y), o(z))=\operatorname{lcm}(3,5,9)=45$

None of these orders are equal to the size of G, which is $|G|=3 \cdot 5 \cdot 9=135$, so G cannot be cyclic.
(Alternatively, you can use the generalization of $2(\mathrm{c})$ that G is not cyclic because the orders of \mathbb{Z}_{3} and \mathbb{Z}_{9} are not relatively prime.)
(e) Is Is $G=\mathbb{Z}_{9} \times \mathbb{Z}_{17} \times \mathbb{Z}_{200}$ cyclic?

By 2(b)/its generalization, $o(1,1,1)=\operatorname{lcm}(o(1), o(1), o(1))=9 \cdot 17 \cdot 200=|G|$, so G has an element of order $|G|$, so G is cyclic.
(f) Find an abelian group G with 12 elements where every element has order at most 6 . The group $\mathbb{Z}_{2} \times \mathbb{Z}_{6}$ satisfies this. It is abelian by $2(\mathrm{a})$, and for any $(x, y) \in G$, $o(x, y)=\operatorname{lcm}(o(x), o(y))$, and $o(x)$ is 1 or 2 and $o(y)$ is $1,2,3$ or 6 , so the least common multiple is always at most 6 .
(g) Find a non-abelian group G with 12 elements where every element has order at most 6.

The group $\mathbb{Z}_{2} \times D_{3}$ satisfies this. It is not abelian by $2(\mathrm{a})$, and the orders of elements in \mathbb{Z}_{2} are 1 or 2 and the orders of elements in D_{3} are 1,2 or 3 , so the least common multiple of the order of an element in \mathbb{Z}_{2} and one in D_{3} is $1,2,3$, or 6 . Therefore, by $2(\mathrm{~b})$, every element has order at most 6 .
(h) Find an abelian group G with 24 elements where every element has order at most 6 . The group $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{6}$ satisfies this by the same reasoning as $3(\mathrm{f})$.
(i) Find a non-abelian group G with 24 elements where every element has order at most 6. Homework!

