Worksheet 3: Products

Definition. The direct product of the groups $\left(G_{1}, \star_{1}\right)$ and $\left(G_{2}, \star_{2}\right)$ is the group

$$
G_{1} \times G_{2}=\left\{(x, y) \mid x \in G_{1}, y \in G_{2}\right\}
$$

where the binary operation is $(x, y) \star(z, w)=\left(x \star_{1} z, y \star_{2} w\right)$.
The groups G_{1} and G_{2} are called the factors of G.

1. Practice with direct product groups.
(a) List the elements of the group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and then list the subgroup $\langle(x, y)\rangle$ generated by each element $(x, y) \in \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. What is the order of every element in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$? Is $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ cyclic?
(b) List the elements of the group $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$, and then list the subgroup $\langle(x, y)\rangle$ generated by each elements $(x, y) \in \mathbb{Z}_{2} \times \mathbb{Z}_{3}$. What is the order of every element in $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$? Is $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ cyclic?
(c) We could analogously define $G_{1} \times G_{2} \times \cdots \times G_{k}$ for k groups, instead of 2 .
i. List the elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$.
ii. In general, if each group G_{i} has n_{i} elements, how many elements does the group $G=G_{1} \times \cdots \times G_{k}$ have?
2. Let's prove some things:
(a) If $G=G_{1} \times G_{2}$, prove that G is abelian if and only if each factor is abelian.
(b) If $G=G_{1} \times G_{2}$, and $x \in G_{1}$ and $y \in G_{2}$ have finite order, prove that

$$
o(x, y)=\operatorname{lcm}(o(x), o(y)),
$$

where lcm means least common multiple.
Then, check that this theorem gives you the same answer for the orders of the elements in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ in Problem 1 .
(c) If $G=G_{1} \times G_{2}$, and G_{1} and G_{2} are cyclic groups of finite order, prove that G is cyclic if and only if $\left|G_{1}\right|$ and $\left|G_{2}\right|$ are relatively prime.
(d) Generalize (a), (b), and (c) to direct products $G_{1} \times G_{2} \times \cdots \times G_{k}$.
3. Some applications of the theorems:
(a) Prove that $G=D_{3} \times \mathbb{Z}_{4}$ is not abelian.
(b) Prove that $G=\mathbb{Z}_{3} \times \mathbb{Z}_{8}$ is cyclic, and find an element $(x, y) \in G$ that is a generator.
(c) Find the order of $(2,3,4) \in \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$.
(d) Is $G=\mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9}$ cyclic?
(e) Is Is $G=\mathbb{Z}_{9} \times \mathbb{Z}_{17} \times \mathbb{Z}_{200}$ cyclic?
(f) Find an abelian group G with 12 elements where every element has order at most 6 .
(g) Find a non-abelian group G with 12 elements where every element has order at most 6.
(h) Find an abelian group G with 24 elements where every element has order at most 6 .
(i) Find a non-abelian group G with 24 elements where every element has order at most 6.

