Worksheet 3: Products

Definition. The direct product of the groups (G_1, \star_1) and (G_2, \star_2) is the group

$$G_1 \times G_2 = \{ (x, y) \mid x \in G_1, y \in G_2 \}$$

where the binary operation is $(x, y) \star (z, w) = (x \star_1 z, y \star_2 w)$. The groups G_1 and G_2 are called the **factors** of G.

- 1. Practice with direct product groups.
 - (a) List the elements of the group $\mathbb{Z}_2 \times \mathbb{Z}_2$, and then list the subgroup $\langle (x, y) \rangle$ generated by each element $(x, y) \in \mathbb{Z}_2 \times \mathbb{Z}_2$. What is the order of every element in $\mathbb{Z}_2 \times \mathbb{Z}_2$? Is $\mathbb{Z}_2 \times \mathbb{Z}_2$ cyclic?
 - (b) List the elements of the group $\mathbb{Z}_2 \times \mathbb{Z}_3$, and then list the subgroup $\langle (x, y) \rangle$ generated by each elements $(x, y) \in \mathbb{Z}_2 \times \mathbb{Z}_3$. What is the order of every element in $\mathbb{Z}_2 \times \mathbb{Z}_3$? Is $\mathbb{Z}_2 \times \mathbb{Z}_3$ cyclic?
 - (c) We could analogously define $G_1 \times G_2 \times \cdots \times G_k$ for k groups, instead of 2.
 - i. List the elements of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$.
 - ii. In general, if each group G_i has n_i elements, how many elements does the group $G = G_1 \times \cdots \times G_k$ have?
- 2. Let's prove some things:
 - (a) If $G = G_1 \times G_2$, prove that G is abelian if and only if each factor is abelian.
 - (b) If $G = G_1 \times G_2$, and $x \in G_1$ and $y \in G_2$ have finite order, prove that

$$o(x, y) = \operatorname{lcm}(o(x), o(y)),$$

where lcm means least common multiple.

Then, check that this theorem gives you the same answer for the orders of the elements in $\mathbb{Z}_2 \times \mathbb{Z}_2$ and $\mathbb{Z}_2 \times \mathbb{Z}_3$ in Problem 1.

- (c) If $G = G_1 \times G_2$, and G_1 and G_2 are cyclic groups of finite order, prove that G is cyclic if and only if $|G_1|$ and $|G_2|$ are relatively prime.
- (d) Generalize (a), (b), and (c) to direct products $G_1 \times G_2 \times \cdots \times G_k$.
- 3. Some applications of the theorems:
 - (a) Prove that $G = D_3 \times \mathbb{Z}_4$ is not abelian.
 - (b) Prove that $G = \mathbb{Z}_3 \times \mathbb{Z}_8$ is cyclic, and find an element $(x, y) \in G$ that is a generator.
 - (c) Find the order of $(2,3,4) \in \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_9$.
 - (d) Is $G = \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_9$ cyclic?
 - (e) Is Is $G = \mathbb{Z}_9 \times \mathbb{Z}_{17} \times \mathbb{Z}_{200}$ cyclic?
 - (f) Find an abelian group G with 12 elements where every element has order at most 6.
 - (g) Find a non-abelian group G with 12 elements where every element has order at most 6.
 - (h) Find an abelian group G with 24 elements where every element has order at most 6.
 - (i) Find a non-abelian group G with 24 elements where every element has order at most 6.