Math 411 Practice Problems for Exam 1

Reminder: Exam 1 is on Tuesday, March 5, in class.

Here are several practice problems for the first exam. There are more problems here than will be on the actual exam. The actual exam will be 4-5 questions. Solutions will be posted later this week. All homework problems and worksheet problems should also be considered practice problems for the exam.

1. (Practice with definitions.)
(a) Define a group.
(b) Define an abelian group.
(c) Define a subgroup of a group G.
2. Which of the following are groups? If your answer is yes, prove it is a group, and if your answer is no, justify why not.
(a) $G=\mathbb{Z}$ with binary operation $a \star b=a b-2$
(b) $G=\mathbb{R}-\{0\}$ with binary operation $a \star b=a b /\left(a^{2}+b^{2}\right)$
(c) $G=\mathcal{P}(X)$ (the power set of a set X), $A \star B=A \cap B$.
3. For each of the following questions, determine if it is true or false. If it is true, provide a brief reason, and if it is false, provide a counterexample.
(a) Suppose G is a group and $a, b \in G$. If $a^{-1} b=e$, then $a=b$.
(b) If G is a finite group with n elements, then there is an element x in G such that $o(x)=n$.
(c) A subgroup of an abelian group is always abelian.
(d) If every proper subgroup of a group G is abelian, then G is abelian.
4. (a) Find the order and inverse of the element $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]$ in $\left(M_{2}(\mathbb{R}),+\right)$.
(b) Find the order and inverse of the element $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & 2\end{array}\right]$ in $\left(G L_{2}(\mathbb{R}), \cdot\right)$
(c) Find the order and inverse of the element r (rotation by 120 degrees clockwise) in the group D_{3} that was symmetries of the equilateral triangle.
(d) Find the order and inverse of the element 6 in the group \mathbb{Z}_{9}.
(e) Find $\langle x\rangle$ in the group $\left(\mathbb{Q}^{>0}, \times\right)$ where $x=\frac{1}{2}$.
(f) Find $\langle x\rangle$ in the group \mathbb{Z}_{10} where $x=3$.
5. For each of the following questions, give an example of a group or subgroup with the desired properties and briefly explain or show why your answer satisfies the given properties.
(a) A group with four elements with more than one subgroup with two elements.
(b) An abelian group that is not cyclic.
(c) An infinite non-abelian group.
6. Is the set of 2×2 matrices of the form $\left[\begin{array}{ll}a & 0 \\ c & d\end{array}\right], a, c, d \in \mathbb{R}, a d \neq 0$, a subgroup of $G L_{2}(\mathbb{R})$? If your answer is yes, prove that it is correct. If not, explain why not.
7. Let G be a finite group and let $x \in G$. Prove that the set $H=\left\{x^{n} \mid n \in \mathbb{Z}, n>0\right\}$ is a subgroup of G. Give a counterexample to show that this is not true if G is not finite.
8. If H is a subgroup of \mathbb{Z} that contains two elements $a, b \in H$ such that $\operatorname{gcd}(a, b)=1$, prove that $H=\mathbb{Z}$.
9. Let G be a group and $x, y \in G$. Assume that $x \neq e, o(y)=2$, and $y x y^{-1}=x^{2}$. Find $o(x)$ and prove your answer is correct.
10. Let G be a group and $g \in G$. Let $Z(g)=\{x \in G \mid g x=x g\}$. Is $Z(g)$ a subgroup of G ?
11. Let $G=(\mathbb{Q},+)$. Prove that G is not cyclic.
