Math 411 Homework 4

Due March 17, 2024 to Gradescope (by midnight)

1. Problem 5.4: For each group below, how many subgroups does it have? What are they?
(a) \mathbb{Z}_{18}
(b) \mathbb{Z}_{35}
(c) \mathbb{Z}_{36}
2. Problem 5.5: Find all of the subgroups of Q (the quaternion group). Show that Q is an example of a nonabelian group with the property that all its proper subgroups are cyclic.
3. Problem 5.7: Let $G=\langle x\rangle$ be cyclic of order n. Show that x^{m} is a generator of G if and only if $\operatorname{gcd}(m, n)=1$.
4. Problem 5.19: Let $G=\langle x\rangle$ be an infinite cyclic group. Prove that all of the distinct subgroups of G are $\langle e\rangle,\langle x\rangle$, $\left\langle x^{2}\right\rangle,\left\langle x^{3}\right\rangle, \ldots$ In other words, prove that every subgroup of G is one of these, and no two of them are the same.
5. Problem 5.20: Let G be a finite group with no subgroups other than $\{e\}$ or G itself. Prove that either $G=\{e\}$ or G is a cyclic group of prime order. (Hint: if $G \neq\{e\}$, then there is some $x \in G$ such that $\langle x\rangle \subset G \ldots$)
6. Problem 6.1: Calculate the order of the element.
(a) $(4,9) \in \mathbb{Z}_{18} \times \mathbb{Z}_{18}$
(b) $(7,5) \in \mathbb{Z}_{12} \times \mathbb{Z}_{8}$
(c) $(8,6,4) \in \mathbb{Z}_{18} \times \mathbb{Z}_{9} \times \mathbb{Z}_{8}$
(d) $(8,6,4) \in \mathbb{Z}_{9} \times \mathbb{Z}_{17} \times \mathbb{Z}_{10}$
7. Problem 6.2: Which of the following groups are cyclic?
(a) $\mathbb{Z}_{12} \times \mathbb{Z}_{9}$
(b) $\mathbb{Z}_{10} \times \mathbb{Z}_{85}$
(c) $\mathbb{Z}_{4} \times \mathbb{Z}_{25} \times \mathbb{Z}_{6}$
(d) $\mathbb{Z}_{22} \times \mathbb{Z}_{21} \times \mathbb{Z}_{65}$
8. Problem 6.6: If $G=G_{1} \times G_{2} \times \cdots \times G_{n}$, prove that G is abelian if and only if each factor is abelian.
9. Problem 6.7: Construct a nonabelian group of order 16, and one of order 24.
10. Problem 6.8: Construct a group of order 81 with the property that every element except the identity has order 3.
