MARCH 14 NOTES

1. Section 6: Direct Products

Definition 1.1. Suppose $\left(G_{1}, \star_{1}\right)$ and $\left(G_{2}, \star_{2}\right)$ are groups. The direct product of G_{1} and G_{2} is the group

$$
G_{1} \times G_{2}=\left\{(a, b) \mid a \in G_{1}, b \in G_{2}\right\}
$$

where the binary operation is $(a, b) \star(c, d)=\left(a \star_{1} c, b \star_{2} d\right)$.
This is a group: the binary operation is associative since \star_{1} and \star_{2} are. There is an identity $\left(e_{1}, e_{2}\right)$, where e_{i} is the identity in G_{i}, because $(a, b) \star\left(e_{1}, e_{2}\right)=\left(a \star_{1} e_{1}, b \star_{2} e_{2}\right)=(a, b)$. Finally, there are inverses: $(a, b)^{-1}=\left(a^{-1}, b^{-1}\right)$ because $(a, b) \star\left(a^{-1}, b^{-1}\right)=\left(a \star_{1} a^{-1}, b \star_{2} b^{-1}\right)=\left(e_{1}, e_{2}\right)$.

Example 1.2. List the elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Is this group cyclic?
The elements are $(0,0),(0,1),(1,0),(1,1)$. This group is not cyclic because each element has order $\leq 2: o(0,0)=1$ because $(0,0)$ is the identity; $o(0,1)=2$ because $(0,1)+(0,1)=(0,0)$; similarly $o(1,0)=2$ and $o(1,1)=2$. Because each element has order 2 , none of the elements can generate the whole group, so the group is not cyclic.

Example 1.3. List the elements of $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$. Is this group cyclic?
The elements are $(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)$. This group is cyclic because it can be generated by $(1,1)$:
$1 \cdot(1,1)=(1,1), \quad 2 \cdot(1,1)=(0,2), \quad 3 \cdot(1,1)=(1,0), \quad 4 \cdot(1,1)=(0,1), \quad 5 \cdot(1,1)=(1,2), \quad 6 \cdot(1,1)=(0,0)$
so $o(1,1)=6$ and $\langle(1,1)\rangle=\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.
Theorem 1.4. Let $G=G_{1} \times G_{2}$. If $g_{1} \in G_{1}, g_{2} \in G_{2}$ and $o\left(g_{1}\right)=n_{1}$ and $o\left(g_{2}\right)=n_{2}$, then $o\left(\left(g_{1}, g_{2}\right)\right)=\operatorname{lcm}\left(n_{1}, n_{2}\right)$.

Proof. Suppose $n=o\left(g_{1}, g_{2}\right)$ so $\left(g_{1}, g_{2}\right)^{n}=\left(e_{1}, e_{2}\right)$. Then, $\left(g_{1}^{n}, g_{2}^{n}\right)=\left(e_{1}, e_{2}\right)$ so $n_{1}=o\left(g_{1}\right) \mid n$ and $n_{2}=o\left(g_{2}\right) \mid n$, so $\operatorname{lcm} n_{1} n_{2} \mid n$. Conversely, if $m=\operatorname{lcm}\left(n_{1}, n_{2}\right)$, then $m=k_{1} n_{1}$ and $m=k_{2} n_{2}$ for some k_{1}, k_{2} and therefore $\left(g_{1}, g_{2}\right)^{m}=\left(g_{1}^{m}, g_{2}^{m}\right)=\left(g_{1}^{k_{1} n_{1}}, g_{2}^{k_{2} n_{2}}\right)=\left(e_{1}, e_{2}\right)$, so $n \leq \operatorname{lcm}\left(n_{1}, n_{2}\right)$. Therefore, we must have $n=\operatorname{lcm}\left(n_{1}, n_{2}\right)$.
Corollary 1.5. If $G=G_{1} \times G_{2}$ is a product of cyclic groups with $\left|G_{1}\right|=n_{1}$ and $\left|G_{2}\right|=n_{2}$, then G is cyclic if and only if $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$.

Proof. Recall that G is cyclic if and only if there exists an element of G with $o(g)=|G|=n_{1} n_{2}$. For $g=\left(g_{1}, g_{2}\right) \in G, o(g)=\operatorname{lcm}\left(o\left(g_{1}\right), o\left(g_{2}\right)\right)$. If G is cyclic, then there exists an element $\left(g_{1}, g_{2}\right) \in G$ that generates G and $o\left(g_{1}, g_{2}\right)=|G|=n_{1} n_{2}$. This implies that every element of G can be written as $\left(g_{1}, g_{2}\right)^{n}$ for some n, so in particular every element of G_{1} can be written as a power of g_{1} and every element of G_{2} can be written as a power of g_{2}. Therefore, g_{1} generates G_{1} and g_{2} generates G_{2}, so $o\left(g_{1}\right)=n_{1}$ and $o\left(g_{2}\right)=n_{2}$. Therefore, $n_{1} n_{2}=o\left(g_{1}, g_{2}\right)=\operatorname{lcm}\left(o\left(g_{1}\right), o\left(g_{2}\right)\right)=\operatorname{lcm}\left(n_{1}, n_{2}\right)$, which happens if and only if $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$.

For the converse, if $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, let g_{1} be a generator of G_{1} and g_{2} be a generator of G_{2}. Then, $o\left(g_{1}\right)=n_{1}$ and $o\left(g_{2}\right)=n_{2}$, so $o\left(g_{1}, g_{2}\right)=\operatorname{lcm}\left(o\left(g_{1}\right), o\left(g_{2}\right)\right)=\operatorname{lcm}\left(n_{1}, n_{2}\right)=n_{1} n_{2}$, so $\left(g_{1}, g_{2}\right) \in G$ is an element of order $n_{1} n_{2}=|G|$, and therefore G is cyclic.

We can construct direct products of more groups (e.g. $G_{1} \times G_{2} \times G_{3} \times \ldots$) and these theorems will still hold. In general:

Definition 1.6. Suppose $\left(G_{1}, \star_{1}\right),\left(G_{2}, \star_{2}\right), \ldots,\left(G_{k}, \star_{k}\right)$ are groups. The direct product of these groups is the group

$$
G_{1} \times G_{2} \times \cdots \times G_{k}=\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right) \mid a_{i} \in G_{i}\right\}
$$

where the binary operation is $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \star\left(b_{1}, b_{2}, \ldots, b_{k}\right)=\left(a_{1} \star_{1} b_{1}, a_{2} \star_{2} b_{2}, \ldots, a_{k} \star_{k} b_{k}\right)$.
Theorem 1.7. Let $G=G_{1} \times G_{2} \times \cdots \times G_{k}$. If $g_{i} \in G_{i}$ has o $\left(g_{i}\right)=n_{i}$ for each i, then $o\left(\left(g_{1}, g_{2}, \ldots, g_{k}\right)\right)=\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{k}\right)$.
Corollary 1.8. If $G=G_{1} \times G_{2} \times \cdots \times G_{k}$ is a product of cyclic groups with $\left|G_{i}\right|=n_{i}$, then G is cyclic if and only if $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for all $i \neq j$.

