MARCH 14 NOTES

1. Section 6: Direct Products

Definition 1.1. Suppose (G_1, \star_1) and (G_2, \star_2) are groups. The **direct product** of G_1 and G_2 is the group

$$G_1 \times G_2 = \{(a, b) \mid a \in G_1, b \in G_2\}$$

where the binary operation is $(a, b) \star (c, d) = (a \star_1 c, b \star_2 d)$.

This is a group: the binary operation is associative since \star_1 and \star_2 are. There is an identity (e_1, e_2) , where e_i is the identity in G_i , because $(a, b) \star (e_1, e_2) = (a \star_1 e_1, b \star_2 e_2) = (a, b)$. Finally, there are inverses: $(a, b)^{-1} = (a^{-1}, b^{-1})$ because $(a, b) \star (a^{-1}, b^{-1}) = (a \star_1 a^{-1}, b \star_2 b^{-1}) = (e_1, e_2)$.

Example 1.2. List the elements of $\mathbb{Z}_2 \times \mathbb{Z}_2$. Is this group cyclic?

The elements are (0,0), (0,1), (1,0), (1,1). This group is not cyclic because each element has order ≤ 2 : o(0,0) = 1 because (0,0) is the identity; o(0,1) = 2 because (0,1) + (0,1) = (0,0); similarly o(1,0) = 2 and o(1,1) = 2. Because each element has order 2, none of the elements can generate the whole group, so the group is not cyclic.

Example 1.3. List the elements of $\mathbb{Z}_2 \times \mathbb{Z}_3$. Is this group cyclic?

The elements are (0,0), (0,1), (0,2), (1,0), (1,1), (1,2). This group *is* cyclic because it can be generated by (1,1):

 $\begin{aligned} &1 \cdot (1,1) = (1,1), \quad 2 \cdot (1,1) = (0,2), \quad 3 \cdot (1,1) = (1,0), \quad 4 \cdot (1,1) = (0,1), \quad 5 \cdot (1,1) = (1,2), \quad 6 \cdot (1,1) = (0,0) \\ &\text{so } o(1,1) = 6 \text{ and } \langle (1,1) \rangle = \mathbb{Z}_2 \times \mathbb{Z}_3. \end{aligned}$

Theorem 1.4. Let $G = G_1 \times G_2$. If $g_1 \in G_1$, $g_2 \in G_2$ and $o(g_1) = n_1$ and $o(g_2) = n_2$, then $o((g_1, g_2)) = \operatorname{lcm}(n_1, n_2)$.

Proof. Suppose $n = o(g_1, g_2)$ so $(g_1, g_2)^n = (e_1, e_2)$. Then, $(g_1^n, g_2^n) = (e_1, e_2)$ so $n_1 = o(g_1) \mid n$ and $n_2 = o(g_2) \mid n$, so $\operatorname{lcm} n_1 n_2 \mid n$. Conversely, if $m = \operatorname{lcm} (n_1, n_2)$, then $m = k_1 n_1$ and $m = k_2 n_2$ for some k_1, k_2 and therefore $(g_1, g_2)^m = (g_1^m, g_2^m) = (g_1^{k_1 n_1}, g_2^{k_2 n_2}) = (e_1, e_2)$, so $n \leq \operatorname{lcm} (n_1, n_2)$. Therefore, we must have $n = \operatorname{lcm} (n_1, n_2)$.

Corollary 1.5. If $G = G_1 \times G_2$ is a product of cyclic groups with $|G_1| = n_1$ and $|G_2| = n_2$, then G is cyclic if and only if $gcd(n_1, n_2) = 1$.

Proof. Recall that G is cyclic if and only if there exists an element of G with $o(g) = |G| = n_1 n_2$. For $g = (g_1, g_2) \in G$, $o(g) = \operatorname{lcm}(o(g_1), o(g_2))$. If G is cyclic, then there exists an element $(g_1, g_2) \in G$ that generates G and $o(g_1, g_2) = |G| = n_1 n_2$. This implies that every element of G can be written as $(g_1, g_2)^n$ for some n, so in particular every element of G_1 can be written as a power of g_1 and every element of G_2 can be written as a power of g_2 . Therefore, g_1 generates G_1 and g_2 generates G_2 , so $o(g_1) = n_1$ and $o(g_2) = n_2$. Therefore, $n_1 n_2 = o(g_1, g_2) = \operatorname{lcm}(o(g_1), o(g_2)) = \operatorname{lcm}(n_1, n_2)$, which happens if and only if $\operatorname{gcd}(n_1, n_2) = 1$.

For the converse, if $gcd(n_1, n_2) = 1$, let g_1 be a generator of G_1 and g_2 be a generator of G_2 . Then, $o(g_1) = n_1$ and $o(g_2) = n_2$, so $o(g_1, g_2) = lcm(o(g_1), o(g_2)) = lcm(n_1, n_2) = n_1n_2$, so $(g_1, g_2) \in G$ is an element of order $n_1n_2 = |G|$, and therefore G is cyclic.

We can construct direct products of more groups (e.g. $G_1 \times G_2 \times G_3 \times ...$) and these theorems will still hold. In general:

Definition 1.6. Suppose $(G_1, \star_1), (G_2, \star_2), \ldots, (G_k, \star_k)$ are groups. The **direct product** of these groups is the group

$$G_1 \times G_2 \times \cdots \times G_k = \{(a_1, a_2, \dots, a_k) \mid a_i \in G_i\}$$

where the binary operation is $(a_1, a_2, ..., a_k) \star (b_1, b_2, ..., b_k) = (a_1 \star b_1, a_2 \star b_2, ..., a_k \star b_k).$

Theorem 1.7. Let $G = G_1 \times G_2 \times \cdots \times G_k$. If $g_i \in G_i$ has $o(g_i) = n_i$ for each i, then $o((g_1, g_2, \ldots, g_k)) = \operatorname{lcm}(n_1, n_2, \ldots, n_k)$.

Corollary 1.8. If $G = G_1 \times G_2 \times \cdots \times G_k$ is a product of cyclic groups with $|G_i| = n_i$, then G is cyclic if and only if $gcd(n_i, n_j) = 1$ for all $i \neq j$.