MARCH 12 NOTES

1. Section 5: Subgroups

Before the exam, we defined the notion of subgroup.
Definition 1.1. A subgroup H of a group G is a subset $H \subset G$ such that:
(1) H is nonempty, which we usually check as: $e \in H$ (where $e \in G$ is the identity of G),
(2) H is closed under the binary operation \star in G, and
(3) H is closed under inverses.

Today, we will classify subgroups of cyclic groups.
First, remember that we showed:
Proposition 1.2. For any group G and any $x \in G,\langle x\rangle$ is a subgroup of G.
In fact, if G is cyclic, these are all of the possible subgroups.
Theorem 1.3. Let G be a cyclic group and x a generator of G, so $G=\langle x\rangle$. If H is any subgroup of G, then $H=\left\langle x^{m}\right\rangle$ for some $m \geq 0$. In particular, every subgroup of G is cyclic.
Proof. Let $H \subset G$. If $H=\{e\}$, then $H=\langle e\rangle=\left\langle x^{0}\right\rangle$. Now, suppose $H \neq\{e\}$, so H contains some element $x^{k} \in G$ for $k \neq 0$. Because H is closed under inverses, we may assume that $k>0$ (if H contained x^{-k}, it must also contain x^{+k}). Let m be the smallest positive power of x that appears in H. We will show that $H=\left\langle x^{m}\right\rangle$.

First, because H is a subgroup and $x^{m} \in H$, any power of x^{m} must also be in H. This follows because H is closed under multiplication and inverses. Therefore, $\left\langle x^{m}\right\rangle \subset H$. Now, suppose $x^{n} \in H$ for some $n \in \mathbb{Z}$. By the division algorithm, we may write $n=m q+r$ for some $0 \leq r<m$. Because $x^{n} \in H$ and $x^{m} \in H$, we know $\left(x^{m}\right)^{-q}=x^{-m q} \in H$, so $x^{n} x^{-m q} \in H$ because H is closed under multiplication. But, $x^{n} x^{-m q}=x^{n-m q}=x^{r} \in H$, and $0 \leq r<m$. Because m was the smallest positive power of x that appeared in H and $r<0$, this is only possible if $r=0$. Therefore, $n=m q$ and hence $x^{n}=\left(x^{m}\right)^{q} \in\left\langle x^{m}\right\rangle$. Therefore, $H \subset\left\langle x^{m}\right\rangle$. This proves that $H=\left\langle x^{m}\right\rangle$.
Example 1.4. List all subgroups of \mathbb{Z}_{4}.
By the previous theorem, since $\mathbb{Z}_{4}=\langle 1\rangle$, every subgroup is of the form $\langle m\rangle$ for some $m \in \mathbb{Z}_{4}$. Listing these, we find all of the subgroups:

$$
\langle 0\rangle=\{0\}, \quad\langle 1\rangle=\{0,1,2,3\}=\langle 3\rangle, \quad\langle 2\rangle=\{0,2\} .
$$

In the previous example, we see that 1 and 3 generate the same subgroup. We can make this precise for any n :
Theorem 1.5. If $G=\langle x\rangle$ is cyclic with $|G|=n$, then the distinct subgroups are

$$
\left\{\left\langle x^{d}\right\rangle \mid d \text { is a divisor of } n\right\} .
$$

If d is a divisor of $n,\left\langle x^{d}\right\rangle=\left\langle x^{k}\right\rangle$ is and only if $\operatorname{gcd}(k, n)=d$.
Proof. Let H be a subgroup of G. If $H=\langle e\rangle$, then $H=\left\langle x^{n}\right\rangle$ and n is a divisor of n, so the statement holds. Now, assume $H \neq\langle e\rangle$. By the proof of the previous theorem, $H=\left\langle x^{d}\right\rangle$ where d is the smallest positive power of x in H. We want to show that d divides n. By the division algorithm, we can write $n=q d+r$ for some $0 \leq r<d$. Because $x^{n}=e$, we know $x^{n} \in H$, and
because $x^{d} \in H, x^{q d} \in H$. Therefore, $x^{n} x^{-q d}=x^{r} \in H$, but $r<d$ and d was the smallest positive power of x appearing in H. Therefore, $r=0$, so $n=q d$ which implies that d divides n.

This shows that every subgroup $H \subset G$ is of the form $\left\langle x^{d}\right\rangle$ where d is a divisor of n.
By the results on order, if $H=\left\langle x^{k}\right\rangle$ for any $k \in \mathbb{Z},|H|=o\left(x^{k}\right)=\frac{n}{\operatorname{gcd}(k, n)}$. If d is a divisor of n, this proves that $|H|=\frac{n}{d}$, which implies that any two distinct divisors of n correspond to distinct subgroups of G (because they have different sizes).

Now, let d be a divisor of n. Assume $d=\operatorname{gcd}(k, n)$, so d divides k, i.e. $k=m d$ for some integer m. Then, $x^{k}=x^{m d}=\left(x^{d}\right)^{m}$, so $x^{k} \in\left\langle x^{d}\right\rangle$ and hence $\left\langle x^{k}\right\rangle \subset\left\langle x^{d}\right\rangle$. But, by the formula for order, $\left\langle x^{k}\right\rangle$ has $\frac{n}{d}$ elements, and so does $\left\langle x^{d}\right\rangle$, so we must have $\left\langle x^{k}\right\rangle=\left\langle x^{d}\right\rangle$.

Similarly, suppose $\left\langle x^{k}\right\rangle=\left\langle x^{d}\right\rangle$. Then, these sets must have the same size, so $\left.\frac{n}{\operatorname{gcd}(k, n}\right)=\frac{n}{\operatorname{gcd}(d, n)}=\frac{n}{d}$, so $\operatorname{gcd}(k, n)=d$. Therefore, we have shown $\operatorname{gcd}(k, n)=d$ if and only if $\left\langle x^{k}\right\rangle=\left\langle x^{d}\right\rangle$.

Revisiting the previous example, we can now list all subgroups of \mathbb{Z}_{n} for any n. The theorem tells us that they are just all possible subgroups $\langle d\rangle$ for d some divisor of n.

Example 1.6. What are the subgroups of \mathbb{Z}_{4} ? Because the divisors of 4 are $1,2,4$, the subgroups are:

$$
\langle 1\rangle=\{0,1,2,3\} ; \quad\langle 2\rangle=\{0,2\} ; \quad\langle 4\rangle=\langle 0\rangle=\{0\} .
$$

Example 1.7. What are the subgroups of \mathbb{Z}_{12} ? The divisors of 12 are $1,2,3,4,6,12$, so we have one subgroup for each divisor:

$$
\begin{array}{cl}
\langle 1\rangle=\mathbb{Z}_{12}, \quad\langle 2\rangle=\{0,2,4,6,8,10\}, & \langle 3\rangle=\{0,3,6,9\}, \\
\langle 4\rangle=\{0,4,8\}, \quad\langle 6\rangle=\{0,6\}, & \langle 12\rangle=\{0\} .
\end{array}
$$

