MARCH 12 NOTES

1. SECTION 5: SUBGROUPS
Before the exam, we defined the notion of subgroup.

Definition 1.1. A subgroup H of a group G is a subset H C G such that:

(1) H is nonempty, which we usually check as: e € H (where e € G is the identity of G),
(2) H is closed under the binary operation * in G, and
(3) H is closed under inverses.

Today, we will classify subgroups of cyclic groups.
First, remember that we showed:

Proposition 1.2. For any group G and any x € G, (x) is a subgroup of G.
In fact, if G is cyclic, these are all of the possible subgroups.

Theorem 1.3. Let G be a cyclic group and x a generator of G, so G = (z). If H is any subgroup
of G, then H = (™) for some m > 0. In particular, every subgroup of G is cyclic.

Proof. Let H C G. If H = {e}, then H = (e) = (2°). Now, suppose H # {e}, so H contains some
element 2* € G for k # 0. Because H is closed under inverses, we may assume that k > 0 (if H
contained z %, it must also contain :c+k). Let m be the smallest positive power of x that appears
in H. We will show that H = (™).

First, because H is a subgroup and ™ € H, any power of ™™ must also be in H. This follows
because H is closed under multiplication and inverses. Therefore, () C H. Now, suppose z" € H
for some n € Z. By the division algorithm, we may write n = mq + r for some 0 < r < m. Because
2" € H and 2™ € H, we know (") 9 = 2=™4 € H, so 2"x~"™1 € H because H is closed under
multiplication. But, 227 = 2" ™4 = " € H, and 0 < r < m. Because m was the smallest
positive power of x that appeared in H and r < 0, this is only possible if » = 0. Therefore, n = mgq
and hence 2™ = (2™)? € (™). Therefore, H C (z"). This proves that H = (z™). O

Example 1.4. List all subgroups of Zj.
By the previous theorem, since Z4 = (1), every subgroup is of the form (m) for some m € Zj.
Listing these, we find all of the subgroups:

<0> = {0}7 <1> = {0, L, 273} = <3>7 <2> = {0, 2}'

In the previous example, we see that 1 and 3 generate the same subgroup. We can make this
precise for any n:
Theorem 1.5. If G = (x) is cyclic with |G| = n, then the distinct subgroups are

{(z%) | d is a divisor of n}.

If d is a divisor of n, (x?) = (zF) is and only if gcd(k,n) = d.
Proof. Let H be a subgroup of G. If H = (e), then H = (z") and n is a divisor of n, so the
statement holds. Now, assume H # (e). By the proof of the previous theorem, H = (z¢) where
d is the smallest positive power of x in H. We want to show that d divides n. By the division

algorithm, we can write n = qd + r for some 0 < r < d. Because 2" = ¢, we know z" € H, and
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because z? € H, 294 € H. Therefore, 2"z~ % = 2" € H, but r < d and d was the smallest positive
power of x appearing in H. Therefore, r = 0, so n = ¢d which implies that d divides n.

This shows that every subgroup H C G is of the form (z?) where d is a divisor of n.

By the results on order, if H = (z*) for any k € Z, |H| = o(2*) = (i 1 d is a divisor of n,
this proves that |H| = %, which implies that any two distinct divisors of n correspond to distinct
subgroups of G (because they have different sizes).

Now, let d be a divisor of n. Assume d = ged(k,n), so d divides k, i.e. k = md for some integer
m. Then, 2% = 2™ = (29)™, so z* € (x?) and hence (z*) C (z?). But, by the formula for order,
(z*) has Z elements, and so does (z?), so we must have (z%) = (2%).

Similarly, suppose (z*) = (z?). Then, these sets must have the same size, so gch(Lk,n) = gcd?d’n) =17,

so ged(k,n) = d. Therefore, we have shown ged(k,n) = d if and only if (zF) = (29). O

Revisiting the previous example, we can now list all subgroups of Z,, for any n. The theorem
tells us that they are just all possible subgroups (d) for d some divisor of n.

Example 1.6. What are the subgroups of Z4? Because the divisors of 4 are 1, 2,4, the subgroups
are:

(1) =1{0,1,2,3);  (2) ={0,2}; (4) = (0) = {0}.

Example 1.7. What are the subgroups of Z127 The divisors of 12 are 1,2,3,4,6,12, so we have
one subgroup for each divisor:

(1) = Z12, (2)=140,2,4,6,8,10}, (3)={0,3,6,9},
<4> = {0,4, 8}7 <6> = {0,6}, <12> = {0}
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