
MARCH 12 NOTES

1. Section 5: Subgroups

Before the exam, we defined the notion of subgroup.

Definition 1.1. A subgroup H of a group G is a subset H ⊂ G such that:

(1) H is nonempty, which we usually check as: e ∈ H (where e ∈ G is the identity of G),
(2) H is closed under the binary operation ⋆ in G, and
(3) H is closed under inverses.

Today, we will classify subgroups of cyclic groups.
First, remember that we showed:

Proposition 1.2. For any group G and any x ∈ G, ⟨x⟩ is a subgroup of G.

In fact, if G is cyclic, these are all of the possible subgroups.

Theorem 1.3. Let G be a cyclic group and x a generator of G, so G = ⟨x⟩. If H is any subgroup
of G, then H = ⟨xm⟩ for some m ≥ 0. In particular, every subgroup of G is cyclic.

Proof. Let H ⊂ G. If H = {e}, then H = ⟨e⟩ = ⟨x0⟩. Now, suppose H ̸= {e}, so H contains some
element xk ∈ G for k ̸= 0. Because H is closed under inverses, we may assume that k > 0 (if H
contained x−k, it must also contain x+k). Let m be the smallest positive power of x that appears
in H. We will show that H = ⟨xm⟩.

First, because H is a subgroup and xm ∈ H, any power of xm must also be in H. This follows
because H is closed under multiplication and inverses. Therefore, ⟨xm⟩ ⊂ H. Now, suppose xn ∈ H
for some n ∈ Z. By the division algorithm, we may write n = mq+ r for some 0 ≤ r < m. Because
xn ∈ H and xm ∈ H, we know (xm)−q = x−mq ∈ H, so xnx−mq ∈ H because H is closed under
multiplication. But, xnx−mq = xn−mq = xr ∈ H, and 0 ≤ r < m. Because m was the smallest
positive power of x that appeared in H and r < 0, this is only possible if r = 0. Therefore, n = mq
and hence xn = (xm)q ∈ ⟨xm⟩. Therefore, H ⊂ ⟨xm⟩. This proves that H = ⟨xm⟩. □

Example 1.4. List all subgroups of Z4.
By the previous theorem, since Z4 = ⟨1⟩, every subgroup is of the form ⟨m⟩ for some m ∈ Z4.

Listing these, we find all of the subgroups:

⟨0⟩ = {0}, ⟨1⟩ = {0, 1, 2, 3} = ⟨3⟩, ⟨2⟩ = {0, 2}.

In the previous example, we see that 1 and 3 generate the same subgroup. We can make this
precise for any n:

Theorem 1.5. If G = ⟨x⟩ is cyclic with |G| = n, then the distinct subgroups are

{⟨xd⟩ | d is a divisor of n}.
If d is a divisor of n, ⟨xd⟩ = ⟨xk⟩ is and only if gcd(k, n) = d.

Proof. Let H be a subgroup of G. If H = ⟨e⟩, then H = ⟨xn⟩ and n is a divisor of n, so the
statement holds. Now, assume H ̸= ⟨e⟩. By the proof of the previous theorem, H = ⟨xd⟩ where
d is the smallest positive power of x in H. We want to show that d divides n. By the division
algorithm, we can write n = qd + r for some 0 ≤ r < d. Because xn = e, we know xn ∈ H, and
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because xd ∈ H, xqd ∈ H. Therefore, xnx−qd = xr ∈ H, but r < d and d was the smallest positive
power of x appearing in H. Therefore, r = 0, so n = qd which implies that d divides n.

This shows that every subgroup H ⊂ G is of the form ⟨xd⟩ where d is a divisor of n.
By the results on order, if H = ⟨xk⟩ for any k ∈ Z, |H| = o(xk) = n

gcd(k,n) . If d is a divisor of n,

this proves that |H| = n
d , which implies that any two distinct divisors of n correspond to distinct

subgroups of G (because they have different sizes).
Now, let d be a divisor of n. Assume d = gcd(k, n), so d divides k, i.e. k = md for some integer

m. Then, xk = xmd = (xd)m, so xk ∈ ⟨xd⟩ and hence ⟨xk⟩ ⊂ ⟨xd⟩. But, by the formula for order,
⟨xk⟩ has n

d elements, and so does ⟨xd⟩, so we must have ⟨xk⟩ = ⟨xd⟩.
Similarly, suppose ⟨xk⟩ = ⟨xd⟩. Then, these sets must have the same size, so n

gcd(k,n) =
n

gcd(d,n) =
n
d ,

so gcd(k, n) = d. Therefore, we have shown gcd(k, n) = d if and only if ⟨xk⟩ = ⟨xd⟩. □

Revisiting the previous example, we can now list all subgroups of Zn for any n. The theorem
tells us that they are just all possible subgroups ⟨d⟩ for d some divisor of n.

Example 1.6. What are the subgroups of Z4? Because the divisors of 4 are 1, 2, 4, the subgroups
are:

⟨1⟩ = {0, 1, 2, 3}; ⟨2⟩ = {0, 2}; ⟨4⟩ = ⟨0⟩ = {0}.

Example 1.7. What are the subgroups of Z12? The divisors of 12 are 1, 2, 3, 4, 6, 12, so we have
one subgroup for each divisor:

⟨1⟩ = Z12, ⟨2⟩ = {0, 2, 4, 6, 8, 10}, ⟨3⟩ = {0, 3, 6, 9},
⟨4⟩ = {0, 4, 8}, ⟨6⟩ = {0, 6}, ⟨12⟩ = {0}.
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