
FEBRUARY 27 NOTES

1. Section 4: Powers of an element, cyclic groups

Definition 1.1. Let G be a group and x ∈ G. If there exists a positive integer n such that xn = e,
then x is said to have finite order and the order of x is o(x), the minimal positive integer n such
that xn = e.

If no such n exists, x is said to have infinite order and we write o(x) = ∞.

Example 1.2. For any group G, e1 = e, so o(e) = 1.

Definition 1.3. Let G be a group and x ∈ G. The set generated by x is the set

⟨x⟩ = {xn | n ∈ Z} = {. . . , x−2, x−1, e, x, x2, x3, . . . }.

Definition 1.4. A group G is called a cyclic group if there exists an element x ∈ G such that
G = ⟨x⟩. In this case, we say that x generates G.

Example 1.5. Z3 = ⟨1⟩ = {0, 1, 2} so Z3 is cyclic generated by 1.
It is also generated by 2: ⟨2⟩ = {0, 2, 1} = Z3.

In order for a group to be cyclic, there must be an element whose order is equal to the total
number of elements in G.

Theorem 1.6. Let G be a group and x ∈ G such that o(x) = n. Then,

⟨x⟩ = {e, x, x2, . . . , xn−1}.
In particular, ⟨x⟩ has n elements. If o(x) = ∞, then ⟨x⟩ = {. . . x−2, x−1, e, x, x2, . . . } and for any
i ̸= j, xi ̸= xj, so in particular, ⟨x⟩ has infinitely many elements.

Proof. Let S = {e, x, x2, . . . , xn−1}. We have S ⊂ ⟨x⟩ by definition, so we must show that ⟨x⟩ ⊂ S.
Let xm be any element of ⟨x⟩. By the division algorithm, we can find q, r ∈ Z with 0 ≤ r < n

such that
m = nq + r

which means

xm = xnq+r

= (xn)qxr

= eqxr because the order of x was n

= exr

= xr.

So, any power of x has xm = xr for some r ∈ {0, 1, 2, . . . , n− 1}, which implies xm ∈ S.
Next, suppose that o(x) is infinite. Suppose for contradiction that xi, xj are two powers of x

with i ̸= j such that xi = xj . Either i > j or j > i; suppose without loss of generality that i > j.
Multiplying both sides by x−j , we find xix−j = xjx−j , or xi−j = e. Because i > j, i − j > 0, so
this says there is some positive power of x that equals the identity. This contradicts the fact that
the order of x is infinite.

Therefore, we must have xi ̸= xj and therefore ⟨x⟩ has infinitely many elements. □

Corollary 1.7. Suppose G is a group with n elements. Then, G is cyclic if and only if there is an
element x ∈ G with o(x) = n.
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Proof. By definition, if G is cyclic, then G = ⟨x⟩ for some x ∈ G. By the previous proposition, ⟨x⟩
has o(x) elements, so this implies that o(x) = n.

Conversely, suppose there is an element x ∈ G such that o(x) = n. Then, ⟨x⟩ ⊂ G, but each set
has n elements, so in fact ⟨x⟩ = G and G is cyclic. □

First, some reminders from previous classes:

Definition 1.8. Suppose n,m ∈ Z are two integers, not both 0. The greatest common divisor
of n and m, gcd(n,m) is the largest positive integer d such that d | n and d | m.

Theorem 1.9. If d = gcd(n,m), then there exist integers a and b such that

an+ bm = d.

Example 1.10. For instance, gcd(3, 5) = 1, and we can write 1 = 2(3)− 1(5).
Or, gcd(6, 16) = 2, and we can write 2 = 3(6)− 16.

Theorem 1.11. Suppose n,m, k ∈ Z. If gcd(n,m) = 1 and m divides nk, then m divides k.

Proof. Because gcd(n,m) = 1, we know we can find integers a, b ∈ Z such that an + bm = 1, and
multiplying everything by k, this says ank + bmk = k. Because m divides nk, it divides ank, and
m divides bmk, so therefore m divides ank + bmk. Therefore, m divides k. □

We’ll use these arithmetic properties to prove facts about orders of elements.

Theorem 1.12. Suppose G is a group and x ∈ G. Then:

(1) o(x) = o(x−1),
(2) if o(x) = n and xm = e, then n divides m, and
(3) if o(x) = n, then o(xm) = n

gcd(n,m) .

Before we prove this, let’s do an example: rephrasing this for an additive group, this says: if
o(x) = n = minimal positive integer such that nx = 0, then o(mx) = n

gcd(n,m) .

Example 1.13. In Z6, o(1) = 6. We can use this to determine o(m) for all other m ∈ Z6: for any
m, m = m · 1, so

o(m) =
6

gcd(6,m)

which gives us:

o(2) =
6

gcd(6, 2)
=

6

2
= 3, o(3) =

6

gcd(6, 3)
=

6

3
= 2,

o(4) =
6

gcd(6, 4)
=

6

2
= 3, o(5) =

6

gcd(6, 5)
=

6

1
= 6.

and these numbers give us the size of the set generated by each element:

⟨1⟩ = {0, 1, 2, 3, 4, 5}

⟨2⟩ = {0, 2, 4}

⟨3⟩ = {0, 3}

⟨4⟩ = {0, 4, 2}

⟨5⟩ = {0, 5, 4, 3, 2, 1}.

Now, let’s prove the theorem:
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Proof. Part (1) is on your homework!
For part (2), suppose o(x) = n and xm = e. Using the division algorithm, we can writem = nq+r

for some 0 ≤ r < n, so

e = xm = xnq+r

= (xn)qxr

= eqxr because the order of x was n

= exr

= xr.

Therefore, xr = e, but r < n and n was defined to be the smallest positive integer such that xn = e.
Therefore, we must have r = 0, which says m = nq and therefore n divides m.

For part (3), let assume xn = e and let d = gcd(n,m). Because n/d ∈ Z, we know

(xm)n/d = xmn/d = (xn)m/d = em/d = e.

This says xm has order at most n/d because n/d is a positive integer such that (xm)n/d = e, i.e.
o(x) ≤ n/d. Suppose now that o(x) = k. We know already k ≤ n/d. Then, because xmk = e, the
previous part says n divides mk, which means n/d divides (m/d)k. Because gcd(n/d,m/d) = 1,
by the previous properties of gcd’s, this says that n/d must divide k. Therefore, n/d ≤ k. Because
k ≤ n/d and n/d ≤ k, we can conclude that k = n/d so o(x) = n/ gcd(n,m) as desired. □

2. Section 5: Subgroups

Finally, we define the notion of subgroup.

Definition 2.1. Let H be a subset of a group (G, ⋆). We say H is closed under ⋆ if, for any
a, b ∈ H, a ⋆ b ∈ H.

We say H is closed under inverses if, for any a ∈ H, a−1 (which exists in G because G is a
group!) also satisfies a−1 ∈ H.

Example 2.2. The set GL2(R) ⊂ (M2(R),+) is not closed under + because the sum of two
invertible matrices does not have to be invertible: I,−I ∈ GL2(R), but I+−I = 0 and 0 /∈ GL2(R).

The set Z+ ⊂ (Q+,×) is not closed under inverses. We know 2 ∈ Z+, but 2−1 = 1/2 and
1/2 /∈ Z+.

This leads us to the definition of subgroup:

Definition 2.3. A subgroup H of a group G is a subset H ⊂ G such that:

(1) H is nonempty, which we usually check as: e ∈ H (where e ∈ G is the identity of G),
(2) H is closed under the binary operation ⋆ in G, and
(3) H is closed under inverses.

Note the first property says e ∈ H so H has an identity, and the second says H has an associative
binary operation (because ⋆ on G is associative by definition), and the third says every element of
H has an inverse. So, we see that subgroups are groups and an alternative way of phrasing the
definition is: a subgroup H is a subset of G that is also a group (with the same binary operation).

Example 2.4. Z is a subgroup of (Q,+).
Proof: (1) 0 is the identity of Q, and 0 ∈ Z, so Z contains the identity.
(2) Z is closed under ⋆ because the sum of any two integers is still an integer.
(3) Z is closed under inverses because the inverse of an integer n is −n, which is still an integer.
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Example 2.5. For any x ∈ G and any group G, ⟨x⟩ is a subgroup of G.
Proof: let H = ⟨x⟩. We know e = x0 ∈ H so (1) is true. We know H is closed under ⋆ because

the elements of H are of the form xa, xb, and xa ⋆ xb = xa+b ∈ H, so (2) is true. Finally, any
element of H is of the form xn, and (xn)−1 = x−n ∈ H, so (3) is true.

Definition 2.6. For any group G, the center of G is the set

Z(G) = {x ∈ G | xy = yx for all y ∈ G}.
In words, the center of G is the set of elements that commute with every other element of G.

Example 2.7. Z(G) is a subgroup of G. Homework!
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