FEBRUARY 27 NOTES

1. SECTION 4: POWERS OF AN ELEMENT, CYCLIC GROUPS

Definition 1.1. Let G be a group and « € G. If there exists a positive integer n such that z" = e,
then z is said to have finite order and the order of x is o(z), the minimal positive integer n such
that 2" = e.

If no such n exists, z is said to have infinite order and we write o(z) = co.

Example 1.2. For any group G, e! = e, so o(e) = 1.
Definition 1.3. Let G be a group and « € G. The set generated by x is the set
() ={z"|neZy={ .. a2z Y eur a3 .}

Definition 1.4. A group G is called a cyclic group if there exists an element x € G such that
G = (x). In this case, we say that = generates G.

Example 1.5. Z3 = (1) = {0,1,2} so Z3 is cyclic generated by 1
It is also generated by 2: (2) = {0,2,1} = Zs.

In order for a group to be cyclic, there must be an element whose order is equal to the total
number of elements in G.

Theorem 1.6. Let G be a group and x € G such that o(z) = n. Then,

(x) = {e,x, 2%, ... 2"
In particular, (z) has n elements. If o(z) = oo, then (x> ={...2 227 e 2,2 ...} and for any
i # 7, ' # 27, soin particular, (x) has infinitely many elements.

Proof. Let S = {e,z,22,..., 2" '}. We have S C (z) by definition, so we must show that (z) C S.
Let ™ be any element of (z). By the division algorithm, we can find ¢, € Z with 0 < r <n
such that
m=ng+r
which means

ljm — an—&—r

= (")
= e92"  Dbecause the order of x was n

=ex”

=z
So, any power of z has z™ = 2" for some r € {0,1,2,...,n — 1}, which implies 2™ € S.

Next, suppose that 0( ) is infinite. Suppose for contradiction that z*, 27 are two powers of x
with ¢ 7é j such that z! = z7. Either i > j or j > i; suppose without loss of generality that i > j.
Multiplying both sides by 277, we find z'z =7 = :Uja: I or 277 = e. Because i > j, i —j > 0, so
this says there is some positive power of x that equals the identity. This contradicts the fact that
the order of x is infinite.

Therefore, we must have 2% # 27 and therefore (z) has infinitely many elements. O

Corollary 1.7. Suppose G is a group with n elements. Then, G is cyclic if and only if there is an

element = € G with o(z) = n.
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Proof. By definition, if G is cyclic, then G = (z) for some x € G. By the previous proposition, (x)
has o(x) elements, so this implies that o(x) = n.

Conversely, suppose there is an element = € G such that o(x) = n. Then, (x) C G, but each set
has n elements, so in fact (z) = G and G is cyclic. O

First, some reminders from previous classes:

Definition 1.8. Suppose n,m € Z are two integers, not both 0. The greatest common divisor
of n and m, ged(n,m) is the largest positive integer d such that d | n and d | m.

Theorem 1.9. If d = ged(n, m), then there exist integers a and b such that
an +bm =d.

Example 1.10. For instance, ged(3,5) = 1, and we can write 1 = 2(3) — 1(5).
Or, ged(6,16) = 2, and we can write 2 = 3(6) — 16.

Theorem 1.11. Suppose n,m,k € Z. If gcd(n,m) =1 and m divides nk, then m divides k.

Proof. Because ged(n,m) = 1, we know we can find integers a,b € Z such that an + bm = 1, and
multiplying everything by k, this says ank 4+ bmk = k. Because m divides nk, it divides ank, and
m divides bmk, so therefore m divides ank + bmk. Therefore, m divides k. ]

We’ll use these arithmetic properties to prove facts about orders of elements.

Theorem 1.12. Suppose G is a group and x € G. Then:
(1) o(x) = o(z™"),
(2) if o(x) =n and ™ = e, then n divides m, and

(3) if o(x) = n, then o(z™) = gcd(?z,m)‘

Before we prove this, let’s do an example: rephrasing this for an additive group, this says: if

o(x) = n = minimal positive integer such that nx = 0, then o(mz) = m.

Example 1.13. In Zg, o(1) = 6. We can use this to determine o(m) for all other m € Zg: for any
m, m=m-1, so

o(m) — L
~ ged(6,m)
which gives us:
6 6 6 6
o2 =6y 2> O = a6 3>
6 6 6 6
oMW=cden 2> O= a6 1

and these numbers give us the size of the set generated by each element:
(1) =40,1,2,3,4,5}
(2) = {0,2,4}
(3) ={0,3}
(4) = {0,4,2}
(5) ={0,5,4,3,2,1}.

Now, let’s prove the theorem:
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Proof. Part (1) is on your homework!
For part (2), suppose o(z) = n and 2™ = e. Using the division algorithm, we can write m = ng+r
for some 0 < r < n, so

e = g™ = g"tr

— (xn)qxr

r

=elx because the order of x was n

=ex"

=z
Therefore, 2™ = e, but r < n and n was defined to be the smallest positive integer such that " = e.
Therefore, we must have r = 0, which says m = ng and therefore n divides m.

For part (3), let assume z" = e and let d = ged(n, m). Because n/d € Z, we know

(J:m)n/d _ xmn/d _ (mn)m/d _ em/d —e.

This says 2™ has order at most n/d because n/d is a positive integer such that (z™)"¢ = e, i.e.
o(z) < n/d. Suppose now that o(z) = k. We know already k < n/d. Then, because 2™ = e, the
previous part says n divides mk, which means n/d divides (m/d)k. Because ged(n/d,m/d) = 1,
by the previous properties of ged’s, this says that n/d must divide k. Therefore, n/d < k. Because
k <n/d and n/d < k, we can conclude that k = n/d so o(z) = n/ ged(n,m) as desired. O

2. SECTION 5: SUBGROUPS

Finally, we define the notion of subgroup.

Definition 2.1. Let H be a subset of a group (G,*). We say H is closed under « if, for any
a,be H,axbe H.

We say H is closed under inverses if, for any a € H, a~! (which exists in G because G is a
group!) also satisfies a™! € H.

Example 2.2. The set GL2(R) C (M2(R),+) is not closed under + because the sum of two
invertible matrices does not have to be invertible: I, —I € GL2(R), but I+—1 = 0 and 0 ¢ GL2(R).

The set ZT C (Q*, x) is not closed under inverses. We know 2 € Z*, but 27! = 1/2 and
1/2¢7Z%.

This leads us to the definition of subgroup:

Definition 2.3. A subgroup H of a group G is a subset H C G such that:

(1) H is nonempty, which we usually check as: e € H (where e € G is the identity of G),
(2) H is closed under the binary operation x in G, and
(3) H is closed under inverses.

Note the first property says e € H so H has an identity, and the second says H has an associative
binary operation (because x on G is associative by definition), and the third says every element of
H has an inverse. So, we see that subgroups are groups and an alternative way of phrasing the
definition is: a subgroup H is a subset of G that is also a group (with the same binary operation).

Example 2.4. Z is a subgroup of (Q,+).
Proof: (1) 0 is the identity of Q, and 0 € Z, so Z contains the identity.
(2) Z is closed under x because the sum of any two integers is still an integer.
(3) Z is closed under inverses because the inverse of an integer n is —n, which is still an integer.
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Example 2.5. For any z € G and any group G, (z) is a subgroup of G.

Proof: let H = (). We know e = 2° € H so (1) is true. We know H is closed under % because
the elements of H are of the form z% 2° and 2% x 2* = 2z%t® € H, so (2) is true. Finally, any
element of H is of the form 2", and (2")™! = 27" € H, so (3) is true.

Definition 2.6. For any group G, the center of G is the set
Z(G)={z e G |zy =yx for ally € G}.
In words, the center of G is the set of elements that commute with every other element of G.

Example 2.7. Z(G) is a subgroup of G. Homework!
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