FEBRUARY 27 NOTES

1. Section 4: Powers of an element, cyclic groups

Definition 1.1. Let G be a group and $x \in G$. If there exists a positive integer n such that $x^{n}=e$, then x is said to have finite order and the order of x is $o(x)$, the minimal positive integer n such that $x^{n}=e$.

If no such n exists, x is said to have infinite order and we write $o(x)=\infty$.
Example 1.2. For any group $G, e^{1}=e$, so $o(e)=1$.
Definition 1.3. Let G be a group and $x \in G$. The set generated by x is the set

$$
\langle x\rangle=\left\{x^{n} \mid n \in \mathbb{Z}\right\}=\left\{\ldots, x^{-2}, x^{-1}, e, x, x^{2}, x^{3}, \ldots\right\} .
$$

Definition 1.4. A group G is called a cyclic group if there exists an element $x \in G$ such that $G=\langle x\rangle$. In this case, we say that x generates G.
Example 1.5. $\mathbb{Z}_{3}=\langle 1\rangle=\{0,1,2\}$ so \mathbb{Z}_{3} is cyclic generated by 1 .
It is also generated by 2 : $\langle 2\rangle=\{0,2,1\}=\mathbb{Z}_{3}$.
In order for a group to be cyclic, there must be an element whose order is equal to the total number of elements in G.

Theorem 1.6. Let G be a group and $x \in G$ such that $o(x)=n$. Then,

$$
\langle x\rangle=\left\{e, x, x^{2}, \ldots, x^{n-1}\right\} .
$$

In particular, $\langle x\rangle$ has n elements. If $o(x)=\infty$, then $\langle x\rangle=\left\{\ldots x^{-2}, x^{-1}, e, x, x^{2}, \ldots\right\}$ and for any $i \neq j, x^{i} \neq x^{j}$, so in particular, $\langle x\rangle$ has infinitely many elements.
Proof. Let $S=\left\{e, x, x^{2}, \ldots, x^{n-1}\right\}$. We have $S \subset\langle x\rangle$ by definition, so we must show that $\langle x\rangle \subset S$.
Let x^{m} be any element of $\langle x\rangle$. By the division algorithm, we can find $q, r \in \mathbb{Z}$ with $0 \leq r<n$ such that

$$
m=n q+r
$$

which means

$$
\begin{aligned}
x^{m} & =x^{n q+r} \\
& =\left(x^{n}\right)^{q} x^{r} \\
& =e^{q} x^{r} \quad \text { because the order of } x \text { was } n \\
& =e x^{r} \\
& =x^{r} .
\end{aligned}
$$

So, any power of x has $x^{m}=x^{r}$ for some $r \in\{0,1,2, \ldots, n-1\}$, which implies $x^{m} \in S$.
Next, suppose that $o(x)$ is infinite. Suppose for contradiction that x^{i}, x^{j} are two powers of x with $i \neq j$ such that $x^{i}=x^{j}$. Either $i>j$ or $j>i$; suppose without loss of generality that $i>j$. Multiplying both sides by x^{-j}, we find $x^{i} x^{-j}=x^{j} x^{-j}$, or $x^{i-j}=e$. Because $i>j, i-j>0$, so this says there is some positive power of x that equals the identity. This contradicts the fact that the order of x is infinite.

Therefore, we must have $x^{i} \neq x^{j}$ and therefore $\langle x\rangle$ has infinitely many elements.
Corollary 1.7. Suppose G is a group with n elements. Then, G is cyclic if and only if there is an element $x \in G$ with $o(x)=n$.

Proof. By definition, if G is cyclic, then $G=\langle x\rangle$ for some $x \in G$. By the previous proposition, $\langle x\rangle$ has $o(x)$ elements, so this implies that $o(x)=n$.

Conversely, suppose there is an element $x \in G$ such that $o(x)=n$. Then, $\langle x\rangle \subset G$, but each set has n elements, so in fact $\langle x\rangle=G$ and G is cyclic.

First, some reminders from previous classes:
Definition 1.8. Suppose $n, m \in \mathbb{Z}$ are two integers, not both 0 . The greatest common divisor of n and $m, \operatorname{gcd}(n, m)$ is the largest positive integer d such that $d \mid n$ and $d \mid m$.

Theorem 1.9. If $d=\operatorname{gcd}(n, m)$, then there exist integers a and b such that

$$
a n+b m=d .
$$

Example 1.10. For instance, $\operatorname{gcd}(3,5)=1$, and we can write $1=2(3)-1(5)$.
Or, $\operatorname{gcd}(6,16)=2$, and we can write $2=3(6)-16$.
Theorem 1.11. Suppose $n, m, k \in \mathbb{Z}$. If $\operatorname{gcd}(n, m)=1$ and m divides $n k$, then m divides k.
Proof. Because $\operatorname{gcd}(n, m)=1$, we know we can find integers $a, b \in \mathbb{Z}$ such that $a n+b m=1$, and multiplying everything by k, this says $a n k+b m k=k$. Because m divides $n k$, it divides $a n k$, and m divides $b m k$, so therefore m divides $a n k+b m k$. Therefore, m divides k.

We'll use these arithmetic properties to prove facts about orders of elements.
Theorem 1.12. Suppose G is a group and $x \in G$. Then:
(1) $o(x)=o\left(x^{-1}\right)$,
(2) if $o(x)=n$ and $x^{m}=e$, then n divides m, and
(3) if $o(x)=n$, then $o\left(x^{m}\right)=\frac{n}{\operatorname{gcd}(n, m)}$.

Before we prove this, let's do an example: rephrasing this for an additive group, this says: if $o(x)=n=$ minimal positive integer such that $n x=0$, then $o(m x)=\frac{n}{\operatorname{gcd}(n, m)}$.

Example 1.13. In $\mathbb{Z}_{6}, o(1)=6$. We can use this to determine $o(m)$ for all other $m \in \mathbb{Z}_{6}$: for any $m, m=m \cdot 1$, so

$$
o(m)=\frac{6}{\operatorname{gcd}(6, m)}
$$

which gives us:

$$
\begin{aligned}
& o(2)=\frac{6}{\operatorname{gcd}(6,2)}=\frac{6}{2}=3, \quad o(3)=\frac{6}{\operatorname{gcd}(6,3)}=\frac{6}{3}=2, \\
& o(4)=\frac{6}{\operatorname{gcd}(6,4)}=\frac{6}{2}=3, \quad o(5)=\frac{6}{\operatorname{gcd}(6,5)}=\frac{6}{1}=6 .
\end{aligned}
$$

and these numbers give us the size of the set generated by each element:

$$
\begin{gathered}
\langle 1\rangle=\{0,1,2,3,4,5\} \\
\langle 2\rangle=\{0,2,4\} \\
\langle 3\rangle=\{0,3\} \\
\langle 4\rangle=\{0,4,2\} \\
\langle 5\rangle=\{0,5,4,3,2,1\} .
\end{gathered}
$$

Now, let's prove the theorem:

Proof. Part (1) is on your homework!
For part (2), suppose $o(x)=n$ and $x^{m}=e$. Using the division algorithm, we can write $m=n q+r$ for some $0 \leq r<n$, so

$$
\begin{aligned}
e=x^{m} & =x^{n q+r} \\
& =\left(x^{n}\right)^{q} x^{r} \\
& =e^{q} x^{r} \quad \text { because the order of } x \text { was } n \\
& =e x^{r} \\
& =x^{r} .
\end{aligned}
$$

Therefore, $x^{r}=e$, but $r<n$ and n was defined to be the smallest positive integer such that $x^{n}=e$. Therefore, we must have $r=0$, which says $m=n q$ and therefore n divides m.

For part (3), let assume $x^{n}=e$ and let $d=\operatorname{gcd}(n, m)$. Because $n / d \in \mathbb{Z}$, we know

$$
\left(x^{m}\right)^{n / d}=x^{m n / d}=\left(x^{n}\right)^{m / d}=e^{m / d}=e .
$$

This says x^{m} has order at most n / d because n / d is a positive integer such that $\left(x^{m}\right)^{n / d}=e$, i.e. $o(x) \leq n / d$. Suppose now that $o(x)=k$. We know already $k \leq n / d$. Then, because $x^{m k}=e$, the previous part says n divides $m k$, which means n / d divides $(m / d) k$. Because $\operatorname{gcd}(n / d, m / d)=1$, by the previous properties of gcd's, this says that n / d must divide k. Therefore, $n / d \leq k$. Because $k \leq n / d$ and $n / d \leq k$, we can conclude that $k=n / d$ so $o(x)=n / \operatorname{gcd}(n, m)$ as desired.

2. Section 5: Subgroups

Finally, we define the notion of subgroup.
Definition 2.1. Let H be a subset of a group (G, \star). We say H is closed under \star if, for any $a, b \in H, a \star b \in H$.

We say H is closed under inverses if, for any $a \in H, a^{-1}$ (which exists in G because G is a group!) also satisfies $a^{-1} \in H$.
Example 2.2. The set $G L_{2}(\mathbb{R}) \subset\left(M_{2}(\mathbb{R}),+\right)$ is not closed under + because the sum of two invertible matrices does not have to be invertible: $I,-I \in G L_{2}(\mathbb{R})$, but $I+-I=0$ and $0 \notin G L_{2}(\mathbb{R})$.

The set $\mathbb{Z}^{+} \subset\left(\mathbb{Q}^{+}, \times\right)$is not closed under inverses. We know $2 \in \mathbb{Z}^{+}$, but $2^{-1}=1 / 2$ and $1 / 2 \notin \mathbb{Z}^{+}$.

This leads us to the definition of subgroup:
Definition 2.3. A subgroup H of a group G is a subset $H \subset G$ such that:
(1) H is nonempty, which we usually check as: $e \in H$ (where $e \in G$ is the identity of G),
(2) H is closed under the binary operation \star in G, and
(3) H is closed under inverses.

Note the first property says $e \in H$ so H has an identity, and the second says H has an associative binary operation (because \star on G is associative by definition), and the third says every element of H has an inverse. So, we see that subgroups are groups and an alternative way of phrasing the definition is: a subgroup H is a subset of G that is also a group (with the same binary operation).
Example 2.4. \mathbb{Z} is a subgroup of $(\mathbb{Q},+)$.
Proof: (1) 0 is the identity of \mathbb{Q}, and $0 \in \mathbb{Z}$, so \mathbb{Z} contains the identity.
(2) \mathbb{Z} is closed under \star because the sum of any two integers is still an integer.
(3) \mathbb{Z} is closed under inverses because the inverse of an integer n is $-n$, which is still an integer.

Example 2.5. For any $x \in G$ and any group $G,\langle x\rangle$ is a subgroup of G.
Proof: let $H=\langle x\rangle$. We know $e=x^{0} \in H$ so (1) is true. We know H is closed under \star because the elements of H are of the form x^{a}, x^{b}, and $x^{a} \star x^{b}=x^{a+b} \in H$, so (2) is true. Finally, any element of H is of the form x^{n}, and $\left(x^{n}\right)^{-1}=x^{-n} \in H$, so (3) is true.

Definition 2.6. For any group G, the center of G is the set

$$
Z(G)=\{x \in G \mid x y=y x \text { for all } y \in G\} .
$$

In words, the center of G is the set of elements that commute with every other element of G.
Example 2.7. $Z(G)$ is a subgroup of G. Homework!

