## FEBRUARY 20 NOTES

## 1. Section 4: Powers of an element, cyclic groups

Notational reminder from last time: it gets cumbersome to write $\star$ all the time; e.g. $x \star y$ can be tedious to write over and over again. So, when dealing with abstract groups, we will denote the operation by $x \star y=x y$. We will also write powers of a given element by $x^{n}$, where:

$$
\begin{aligned}
x^{1} & =x \\
x^{2} & =x \star x \\
x^{3} & =x \star(x \star x)
\end{aligned}
$$

and so on.
So, whenever you see the notation $x y$ in this class, it always means $x \star y$, where $\star$ is whatever the binary operation is. When we know the operation, we may choose to change notation. For example, if the operation is + , we will write $x+y$ instead of $x y$. For powers, instead of writing $x^{2}$, which means $x \star x$, we would write $2 x$ because $x+x=2 x$.

Definition 1.1. Let $G$ be a group and $x \in G$. The powers of $x$ are defined as:
(1) $x^{0}=e$
(2) positive powers: $x^{n}=x \star x \star \cdots \star x$ ( $n x$ 's)
(3) negative powers: $x^{-n}=x^{-1} \star x^{-1} \star \cdots \star x^{-1}\left(n x^{-1}\right.$, s)

As above, we may use different notation in additive groups. For example, in $G=\mathbb{Z}$ with $\star=+$, the 'power' of $x$ is not the power in the usual sense; the $n$th power is

$$
x \star x \star \cdots \star x
$$

( $n x$ 's) which is more commonly written as

$$
n x=x+x+\cdots+x .
$$

Powers behave as we expect:
Definition 1.2. Suppose $G$ is a group, $x \in G$, and $n, m \in \mathbb{Z}$. Then:
(1) $x^{n} x^{m}=x^{n+m}$
(2) $\left(x^{n}\right)^{-1}=x^{-n}$
(3) $\left(x^{n}\right)^{m}=x^{n m}$.

Proof. We prove only the first one and leave (2) and (3) as exercises. To prove (1), we use cases. Suppose $n=0$. By definition of the identity, because $x^{0}=e$, we know

$$
x^{n} x^{0}=x^{n} e=x^{n}
$$

and because $n=n+0$, we have

$$
x^{n} x^{0}=x^{n+0} .
$$

A similar argument holds if $m=0$.
Next, suppose $n, m>0$. Then, by definition,

$$
x^{n} x^{m}=(x \star \cdots \star x) \star(x \star \cdots \star x)
$$

where the first set of parentheses holds $n x$ s and the second has $m$. Using associativity, as the right side has a total of $n+m x \mathrm{~s}$, this is

$$
x^{n} x^{m}=x \star \cdots \star x \star x \star \cdots \star x=x^{n+m} .
$$

Replacing $x$ with $x^{-1}$, a similar argument holds if $n, m<0$.
Next, suppose $n>0$ and $m<0$. If $|n| \geq|m|$, write $n=k+|m|$ where $k \geq 0$ and $k=n+m$. Then, we know (from what we've already proven) $x^{n}=x^{k} x^{|m|}$, so

$$
\begin{aligned}
x^{n} x^{m} & =x^{k} x^{|m|} x^{m} \\
& =x^{k} \star(x \star \cdots \star x) \star\left(x^{-1} \star \cdots \star x^{-1}\right) \text { where there are } m \quad x \mathrm{~s} \text { and } m \quad x^{-1} \mathrm{~S} \\
& =x^{k} \star e \text { because each } x \text { will cancel with each } x^{-1} \\
& =x^{k}=x^{n+m} .
\end{aligned}
$$

If $|n| \leq|m|$, write $m=-n-k$ where $k \geq 0$ and $-k=n+m$. Then, $x^{m}=x^{-n} x^{-k}$, and as above, we can write:

$$
\begin{aligned}
x^{n} x^{m} & =x^{n} x^{-n-k}=x^{n} x^{-n} x^{-k} \\
& =(x \star \cdots \star x) \star\left(x^{-1} \star \cdots \star x^{-1}\right) \star x^{-k} \text { where there are } n \quad x \mathrm{~s} \text { and } n \quad x^{-1} \mathrm{~S} \\
& =e \star x^{-k} \text { because each } x \text { will cancel with each } x^{-1} \\
& =x^{-k}=x^{n+m} .
\end{aligned}
$$

A similar argument holds if $n<0$ and $m>0$.
Definition 1.3. Let $G$ be a group and $x \in G$. If there exists a positive integer $n$ such that $x^{n}=e$, then $x$ is said to have finite order and the order of $x$ is $o(x)$, the minimal positive integer $n$ such that $x^{n}=e$.

If no such $n$ exists, $x$ is said to have infinite order and we write $o(x)=\infty$.
Example 1.4. For any group $G, e^{1}=e$, so $o(e)=1$.
Example 1.5. If $G=(\mathbb{Z},+)$, the order of an element $x$ is the minimal positive integer $n$ such that $n x=0$. This says $o(0)=1$ because $1 \cdot 0=0$, but $o(x)=\infty$ for every $x \neq 0$ because $n x \neq 0$ for any $n>0$.

Example 1.6. If $G=\left(\mathbb{Z}_{n},+_{n}\right)$, recalling that $+_{n}$ means addition mod $n$, then for every element $x \in \mathbb{Z}_{n}, n x=0$, so every element has order $\leq n$.

For instance, in $n=4$, then $\mathbb{Z}_{4}=\{0,1,2,3\}$. We can compute the orders and get: $o(0)=1$, $o(1)=4, o(2)=2$, and $o(3)=4$.

Definition 1.7. Let $G$ be a group and $x \in G$. The set generated by $x$ is the set

$$
\langle x\rangle=\left\{x^{n} \mid n \in \mathbb{Z}\right\}=\left\{\ldots, x^{-2}, x^{-1}, e, x, x^{2}, x^{3}, \ldots\right\} .
$$

Example 1.8. If $G=\mathbb{Z}_{4}$, what is $\langle x\rangle$ for any $x \in G$ ?

$$
\begin{gathered}
\langle 0\rangle=\{0\} \\
\langle 1\rangle=\{0,1,2,3\} \\
\langle 2\rangle=\{0,2\} \\
\langle 3\rangle=\{0,3,2,1\}
\end{gathered}
$$

Definition 1.9. A group $G$ is called a cyclic group if there exists an element $x \in G$ such that $G=\langle x\rangle$. In this case, we say that $x$ generates $G$.

Example 1.10. $\mathbb{Z}=\langle 1\rangle=\{\ldots,-2,-1,0,1,2, \ldots\}$ so $\mathbb{Z}$ is cyclic generated by 1 .
This doesn't mean that every element $x \in \mathbb{Z}$ generates $\mathbb{Z}$; for instance, $\langle 2\rangle=\{\ldots,-4,-2,0,2,4, \ldots\} \neq \mathbb{Z}$.
Example 1.11. $\mathbb{Z}_{3}=\langle 1\rangle=\{0,1,2\}$ so $\mathbb{Z}_{3}$ is cyclic generated by 1 .
It is also generated by 2 : $\langle 2\rangle=\{0,2,1\}=\mathbb{Z}_{3}$.
We observed a few things at the end of class; namely: in order for a group to be cyclic, there must be an element whose order is equal to the total number of elements in $G$. This is stated precisely in the following theorem, which we will prove next time.

Theorem 1.12. Let $G$ be a group and $x \in G$ such that $o(x)=n$. Then,

$$
\langle x\rangle=\left\{e, x, x^{2}, \ldots, x^{n-1}\right\} .
$$

In particular, $\langle x\rangle$ has $n$ elements. If $o(x)=\infty$, then $\langle x\rangle=\left\{\ldots x^{-2}, x^{-1}, e, x, x^{2}, \ldots\right\}$ and for any $i \neq j, x^{i} \neq x^{j}$, so in particular, $\langle x\rangle$ has infinitely many elements.

Example 1.13. Let $G$ be the group $D_{3}$ from last week's worksheet. Is $G$ cyclic?
The answer is no, for two reasons: first, you could compute the order of any element of $G$. The order of the identity is 1 , the order of any rotation is 3 (because, if you rotate 3 times clockwise or counterclockwise, you get back to the original configuration), and the order of any flip is 2 (because flipping over twice gets you back to the original configuration). Therefore, $G$ has no elements of order 6, so can't be cyclic.

Secondly, you could give an easier reason: cyclic groups must be abelian. Why? If $G$ is cyclic, then every element of $G$ is of the form $x^{n}$ for some integer $n$, and $x^{n} x^{m}=x^{n+m}=x^{m+n}=x^{m} x^{n}$. Because $D_{3}$ is not abelian, it cannot be cyclic.

