
FEBRUARY 20 NOTES

1. Section 4: Powers of an element, cyclic groups

Notational reminder from last time: it gets cumbersome to write ⋆ all the time; e.g. x ⋆ y can
be tedious to write over and over again. So, when dealing with abstract groups, we will denote the
operation by x ⋆ y = xy. We will also write powers of a given element by xn, where:

x1 = x

x2 = x ⋆ x

x3 = x ⋆ (x ⋆ x)

. . .

and so on.
So, whenever you see the notation xy in this class, it always means x ⋆ y, where ⋆ is whatever

the binary operation is. When we know the operation, we may choose to change notation. For
example, if the operation is +, we will write x+ y instead of xy. For powers, instead of writing x2,
which means x ⋆ x, we would write 2x because x+ x = 2x.

Definition 1.1. Let G be a group and x ∈ G. The powers of x are defined as:

(1) x0 = e
(2) positive powers: xn = x ⋆ x ⋆ · · · ⋆ x (n x’s)
(3) negative powers: x−n = x−1 ⋆ x−1 ⋆ · · · ⋆ x−1 (n x−1’s)

As above, we may use different notation in additive groups. For example, in G = Z with ⋆ = +,
the ‘power’ of x is not the power in the usual sense; the nth power is

x ⋆ x ⋆ · · · ⋆ x

(n x’s) which is more commonly written as

nx = x+ x+ · · ·+ x.

Powers behave as we expect:

Definition 1.2. Suppose G is a group, x ∈ G, and n,m ∈ Z. Then:
(1) xnxm = xn+m

(2) (xn)−1 = x−n

(3) (xn)m = xnm.

Proof. We prove only the first one and leave (2) and (3) as exercises. To prove (1), we use cases.
Suppose n = 0. By definition of the identity, because x0 = e, we know

xnx0 = xne = xn

and because n = n+ 0, we have

xnx0 = xn+0.

A similar argument holds if m = 0.
Next, suppose n,m > 0. Then, by definition,

xnxm = (x ⋆ · · · ⋆ x) ⋆ (x ⋆ · · · ⋆ x)
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where the first set of parentheses holds n xs and the second has m. Using associativity, as the right
side has a total of n+m xs, this is

xnxm = x ⋆ · · · ⋆ x ⋆ x ⋆ · · · ⋆ x = xn+m.

Replacing x with x−1, a similar argument holds if n,m < 0.
Next, suppose n > 0 and m < 0. If |n| ≥ |m|, write n = k + |m| where k ≥ 0 and k = n +m.

Then, we know (from what we’ve already proven) xn = xkx|m|, so

xnxm = xkx|m|xm

= xk ⋆ (x ⋆ · · · ⋆ x) ⋆ (x−1 ⋆ · · · ⋆ x−1) where there are m xs and m x−1s

= xk ⋆ e because each x will cancel with each x−1

= xk = xn+m.

If |n| ≤ |m|, write m = −n− k where k ≥ 0 and −k = n+m. Then, xm = x−nx−k, and as above,
we can write:

xnxm = xnx−n−k = xnx−nx−k

= (x ⋆ · · · ⋆ x) ⋆ (x−1 ⋆ · · · ⋆ x−1) ⋆ x−k where there are n xs and n x−1s

= e ⋆ x−k because each x will cancel with each x−1

= x−k = xn+m.

A similar argument holds if n < 0 and m > 0. □

Definition 1.3. Let G be a group and x ∈ G. If there exists a positive integer n such that xn = e,
then x is said to have finite order and the order of x is o(x), the minimal positive integer n such
that xn = e.

If no such n exists, x is said to have infinite order and we write o(x) = ∞.

Example 1.4. For any group G, e1 = e, so o(e) = 1.

Example 1.5. If G = (Z,+), the order of an element x is the minimal positive integer n such that
nx = 0. This says o(0) = 1 because 1 · 0 = 0, but o(x) = ∞ for every x ̸= 0 because nx ̸= 0 for any
n > 0.

Example 1.6. If G = (Zn,+n), recalling that +n means addition mod n, then for every element
x ∈ Zn, nx = 0, so every element has order ≤ n.

For instance, in n = 4, then Z4 = {0, 1, 2, 3}. We can compute the orders and get: o(0) = 1,
o(1) = 4, o(2) = 2, and o(3) = 4.

Definition 1.7. Let G be a group and x ∈ G. The set generated by x is the set

⟨x⟩ = {xn | n ∈ Z} = {. . . , x−2, x−1, e, x, x2, x3, . . . }.

Example 1.8. If G = Z4, what is ⟨x⟩ for any x ∈ G?

⟨0⟩ = {0}
⟨1⟩ = {0, 1, 2, 3}
⟨2⟩ = {0, 2}

⟨3⟩ = {0, 3, 2, 1}

Definition 1.9. A group G is called a cyclic group if there exists an element x ∈ G such that
G = ⟨x⟩. In this case, we say that x generates G.
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Example 1.10. Z = ⟨1⟩ = {. . . ,−2,−1, 0, 1, 2, . . . } so Z is cyclic generated by 1.
This doesn’t mean that every element x ∈ Z generates Z; for instance, ⟨2⟩ = {. . . ,−4,−2, 0, 2, 4, . . . } ≠ Z.

Example 1.11. Z3 = ⟨1⟩ = {0, 1, 2} so Z3 is cyclic generated by 1.
It is also generated by 2: ⟨2⟩ = {0, 2, 1} = Z3.

We observed a few things at the end of class; namely: in order for a group to be cyclic, there
must be an element whose order is equal to the total number of elements in G. This is stated
precisely in the following theorem, which we will prove next time.

Theorem 1.12. Let G be a group and x ∈ G such that o(x) = n. Then,

⟨x⟩ = {e, x, x2, . . . , xn−1}.
In particular, ⟨x⟩ has n elements. If o(x) = ∞, then ⟨x⟩ = {. . . x−2, x−1, e, x, x2, . . . } and for any
i ̸= j, xi ̸= xj, so in particular, ⟨x⟩ has infinitely many elements.

Example 1.13. Let G be the group D3 from last week’s worksheet. Is G cyclic?
The answer is no, for two reasons: first, you could compute the order of any element of G. The

order of the identity is 1, the order of any rotation is 3 (because, if you rotate 3 times clockwise or
counterclockwise, you get back to the original configuration), and the order of any flip is 2 (because
flipping over twice gets you back to the original configuration). Therefore, G has no elements of
order 6, so can’t be cyclic.

Secondly, you could give an easier reason: cyclic groups must be abelian. Why? If G is cyclic,
then every element of G is of the form xn for some integer n, and xnxm = xn+m = xm+n = xmxn.
Because D3 is not abelian, it cannot be cyclic.
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