FEBRUARY 15 NOTES

Last time, we proved many things about groups. Today, we will consider several examples of groups.

First, some notation: it gets cumbersome to write \star all the time; e.g. $x \star y$ can be tedious to write over and over again. So, when dealing with abstract groups, we will denote the operation by $x \star y=x y$. We will also write powers of a given element by x^{n}, where:

$$
\begin{aligned}
x^{1} & =x \\
x^{2} & =x \star x \\
x^{3} & =x \star(x \star x)
\end{aligned}
$$

and so on.
So, whenever you see the notation $x y$ in this class, it always means $x \star y$, where \star is whatever the binary operation is. When we know the operation, we may choose to change notation. For example, if the operation is + , we will write $x+y$ instead of $x y$. For powers, instead of writing x^{2}, which means $x \star x$, we would write $2 x$ because $x+x=2 x$.

Now, to define a few more groups:

The Quaternions.

The first group we will define is the quaternions. Let

$$
Q=\{1,-1, i,-i, j,-j, k,-k\}
$$

and define the binary operation to be multiplication, which we assume to be associative, where:

- For any $x \in Q, 1 x=x 1=x$, and
- for any $x \in Q,(-1) x=x(-1)=-x$, and
- for any $x, y \in Q,(-x) y=x(-y)=-(x y)$, and
- $i^{2}=j^{2}=k^{2}=-1$, and
- $i j=k, j k=i$, and $k i=j$.

From here, we can determine every other possible product. For instance, starting with $j k=i$, we could multiply both sides by j to get $j^{2} k=j i$, and then use that $j^{2}=-1$ to get $j i=-k$.

We'll start out today by filling in the multiplication table for the quaternions:

$*$	1	-1	i	-i	j	-j	k	-k
1	1	-1	i	-i	j	-j	k	-k
-1	-1	1	-i	i	-j	j	-k	k
i	i	-i	-1	1	k	-k	-j	j
-i	-i	i	1	-1	-k	k	j	-j
j	j	-j	-k	k	-1	1	i	-i
-j	-j	j	k	-k	1	-1	-i	i
k	k	-k	j	-j	-i	i	1	-1
-k	-k	k	-j	j	i	-i	-1	1

Some questions to answer from the table? What is the inverse of every element in Q ? Is the operation commutative? We'll discuss Q much more in the future!

For the rest of the day, we will introduce a very important group in the form of a worksheet. (If you're reading the notes, please see Worksheet 2!)

