FEBRUARY 13 NOTES

1. Section 3: Fundamental Theorems About Groups

Today, we're going to prove several results about groups. Recall the definition of a group:

Definition 1.1. A group is a set G with a binary operation \star on G such that:

(1) (associativity) \star is associative, i.e. for every $x, y, z \in G$,

$$(x \star y) \star z = x \star (y \star z).$$

(2) (identity) there is an element $e \in G$ such that, for any $x \in G$,

$$x \star e = e \star x = x$$

The element $e \in G$ is called the **identity element** or **identity of** G. (3) (inverses) for each element $x \in G$, there is an element $y \in G$ such that

$$x \star y = y \star x = e$$

The element y is called the **inverse** of x and is denoted by $y = x^{-1}$ or y = -x, depending on the context.

There are several things that *follow* from this definition, i.e. several properties of groups that we can prove with just these three axioms.

Theorem 1.2. Suppose (G, \star) is a group. The identity element $e \in G$ is unique.

Before the proof, some commentary on uniqueness: when we say something like 'the identity is unique' we mean that there is only *one* element $e \in G$ satisfying the identity axiom. To prove a statement like this, we want to assume that there exist two elements satisfying the property, and then prove those elements are the same.

Proof. Suppose $e, e' \in G$ are two elements satisfying $e \star x = x \star e = x$ and $e' \star x = x \star e' = x$ for all $x \in G$. Using the first equation with x = e', we see that

$$e \star e' = e' \star e = e'$$

and from the second equation with x = e, we see that

$$e' \star e = e \star e' = e$$

and therefore $e = e \star e' = e'$ so e = e'.

Theorem 1.3. Suppose (G, \star) is a group and $x \in G$ is any element. Then, the inverse of x is unique.

Proof. Suppose $x \in G$ and there exists two elements y, y' such that $x \star y = y \star x = e$ and $x \star y' = y' \star x = e$. These equations imply that

$$x \star y = x \star y'.$$

Now, we'll algebraically manipulate this to conclude that y = y', first starring both sides with y on the left:

$$y \star (x \star y) = y \star (x \star y')$$

$$\implies (y \star x) \star y = (y \star x) \star y' \qquad \text{by associativity}$$

$$\implies e \star y = e \star y' \qquad \text{by the definition of inverse}$$

$$\implies y = y' \qquad \text{by definition of identity}$$

Therefore, y = y' so the inverse of x is unique.

Theorem 1.4. If (G, \star) is a group and $x \in G$, then $(x^{-1})^{-1} = x$. (In words: the inverse of x^{-1} is just x.)

Proof. The previous theorem tells us that inverses are unique, so we must only verify that x satisfies the necessary property to be the inverse of x^{-1} . But, because x^{-1} is the inverse of x, we know $x^{-1} \star x = x \star x^{-1} = e$, so x satisfies the property to be the inverse of x^{-1} .

We will now draw a consequence of the previous Theorem. Results that are consequences of things we've already shown are called *corollaries*.

Corollary 1.5. Suppose $(G < \star)$ is a group. If $x_1, x_2 \in G$ such that $x_1^{-1} = x_2^{-1}$, then $x_1 = x_2$. In other words, no two *different* elements can have the same inverse.

Proof. If
$$x_1^{-1} = x_2^{-1}$$
, then $(x_1^{-1})^{-1} = (x_2^{-1})^{-1}$, so by the previous theorem, $x_1 = x_2$.

Theorem 1.6. If (G, \star) is a group and $x, y \in G$, then $(x \star y)^{-1} = y^{-1} \star x^{-1}$.

Proof. We prove this again by verifying the inverse property. We must show that $(x \star y) \star (y^{-1} \star x^{-1}) = e$ and similarly $(y^{-1} \star x^{-1}) \star (x \star y) = e$. We'll verify the first equation together and leave the second one as an exercise. We compute:

$$\begin{aligned} (x \star y) \star (y^{-1} \star x^{-1}) &= ((x \star y) \star y^{-1}) \star x^{-1} & \text{by associativity} \\ &= (x \star (y \star y^{-1})) \star x^{-1} & \text{by associativity} \\ &= (x \star e) \star x^{-1} & \text{by definition of inverse} \\ &= x \star x^{-1} & \text{by definition of identity} \\ &= e & \text{by definition of inverse} \end{aligned}$$

Therefore, we have shown that $(x \star y) \star (y^{-1} \star x^{-1}) = e$. Similarly, one can show that $(y^{-1} \star x^{-1}) \star (x \star y) = e$ and therefore $y^{-1} \star x^{-1}$ is the inverse of $x \star y$.

Are you tired of checking two equalities to prove the identity and inverse properties? Let's show that it suffices to only check one. First, a definition:

Definition 1.7. If (G, \star) is a group and $x \in G$, an element $y \in G$ such that $x \star y = e$ is called a **right inverse** of x. If $y \star x = e$, then y is called a **left inverse** of x.

Theorem 1.8. Suppose (G, \star) is a group and $x \in G$. If there exists $y \in G$ such that $x \star y = e$ or $y \star x = e$, then $y = x^{-1}$.

Proof. Suppose first that $x \star y = e$. We know there exists some element x^{-1} in G, and we want to show that $y = x^{-1}$. If we star both sides of the equation $x \star y = e$ on the left with x^{-1} , we can

algebraically manipulate this:

 $\begin{aligned} x^{-1} \star (x \star y) &= x^{-1} \star e \\ \implies (x^{-1} \star x) \star y &= x^{-1} \qquad \text{by associativity and definition of identity} \\ \implies e \star y &= x^{-1} \qquad \text{by definition of inverse} \\ \implies y &= x^{-1} \qquad \text{by definition of identity} \end{aligned}$

and therefore $y = x^{-1}$.

Similarly, if we start with $y \star x = e$, we can star both sides on the right with x^{-1} to conclude that $y = x^{-1}$.

This theorem tells us that, if $y \in G$ is a left or right inverse of $x \in G$, then y is actually the inverse of x. So, to verify any element is an inverse, you just need to verify that $x \star y = e$ or $y \star x = e$ (not both!).

Example 1.9. In linear algebra, you learned to find the inverse of a matrix $A \in GL_n(\mathbb{R})$ by solving the equation AB = I for B. This method computes a *right* inverse for A, but because $(GL_n(\mathbb{R}), \times)$ is a group, this right inverse is actually the *inverse*, i.e. AB = I and BA = I (even though we never checked the equation BA = I).

This method of proof can be used more generally to prove something on your homework:

Theorem 1.10 (The Cancellation Laws.). Suppose (G, \star) is a group and $x, y, z \in G$.

(1) If $x \star y = x \star z$, then y = z.

(2) If $x \star y = z \star y$, then x = z.

Definition 1.11. If G is a set with binary operation \star and $e \in G$ an element such that $x \star e = x$ for all $x \in G$, then e is called a **right identity.** If $e \star x = x$ for all $x \in G$, then e is called a **left identity.**

Theorem 1.12. Suppose G is a set with associative binary operation \star . If $e \in G$ is a right identity (respectively, left) and every element $x \in G$ has a right inverse (respectively, left), then e is both a left and right identity and the inverses are both left and right inverses. Therefore, G is a group.

Proof. We will prove this assuming that e is a right identity and that every element $x \in G$ has a right inverse, i.e. an element x^{-1} such that $x \star x^{-1} = e$ (the left case is similar). Suppose that $x \star e = x$ for all $x \in G$. We need to show that $e \star x = x$.

Starting with the equation $x \star e = x$, if x = e, we obtain $e \star e = e$. Because x has a right inverse x^{-1} , we know that $x \star x^{-1} = e$. If we plug this in for the second and third e in the equation $e \star e = e$, we get

$$e \star (x \star x^{-1}) = x \star x^{-1}.$$

Now, using associativity, we know this implies

$$(e \star x) \star x^{-1} = x \star x^{-1}$$

Now, let's multiply both sides by the right inverse of x^{-1} , use associativity, and then the definition of inverse to conclude $(e \star x) \star e = x \star e$. Using that e was the right identity, this implies that $e \star x = x$.

So, only assuming that G has a right identity and every element has a right inverse, we've shown that the right identity is in fact a two-sided identity. Now, we need to show that, if x^{-1} is the right inverse of x, then $x^{-1} \star x = e$. This will show that x^{-1} is actually the left inverse of x and therefore a two-sided inverse. We know x^{-1} has some right inverse, which we will call y, such that $x^{-1} \star y = e$. So, we want to show that x = y. But, because $x \star x^{-1} = e$, we know $(x \star x^{-1}) \star y = e \star y$. Using associativity and the definition of right inverse and the right identity property of e, the left hand side becomes x. Because we already proved that e was a two-sided identity, the right hand side is just y, so we conclude x = y. Therefore, $x \star x^{-1} = x^{-1} \star x = e$ and we have shown that G is a group!

What is the point of everything we just did? We could in fact re-define a group:

Definition 1.13. A group G is a set with associative binary operation \star such that G has a *right* identity element and every element $x \in G$ has a *right* inverse.

Equivalently, one could replace both 'rights' by 'lefts.'

In words, this is saying that you don't need to check both equations to show something is an inverse or an identity; it suffices to check just one for each.