FEBRUARY 13 NOTES

1. Section 3: Fundamental Theorems About Groups

Today, we're going to prove several results about groups. Recall the definition of a group:
Definition 1.1. A group is a set G with a binary operation \star on G such that:
(1) (associativity) \star is associative, i.e. for every $x, y, z \in G$,

$$
(x \star y) \star z=x \star(y \star z) .
$$

(2) (identity) there is an element $e \in G$ such that, for any $x \in G$,

$$
x \star e=e \star x=x .
$$

The element $e \in G$ is called the identity element or identity of G.
(3) (inverses) for each element $x \in G$, there is an element $y \in G$ such that

$$
x \star y=y \star x=e .
$$

The element y is called the inverse of x and is denoted by $y=x^{-1}$ or $y=-x$, depending on the context.

There are several things that follow from this definition, i.e. several properties of groups that we can prove with just these three axioms.

Theorem 1.2. Suppose (G, \star) is a group. The identity element $e \in G$ is unique.
Before the proof, some commentary on uniqueness: when we say something like 'the identity is unique' we mean that there is only one element $e \in G$ satisfying the identity axiom. To prove a statement like this, we want to assume that there exist two elements satisfying the property, and then prove those elements are the same.

Proof. Suppose $e, e^{\prime} \in G$ are two elements satisfying $e \star x=x \star e=x$ and $e^{\prime} \star x=x \star e^{\prime}=x$ for all $x \in G$. Using the first equation with $x=e^{\prime}$, we see that

$$
e \star e^{\prime}=e^{\prime} \star e=e^{\prime}
$$

and from the second equation with $x=e$, we see that

$$
e^{\prime} \star e=e \star e^{\prime}=e
$$

and therefore $e=e \star e^{\prime}=e^{\prime}$ so $e=e^{\prime}$.
Theorem 1.3. Suppose (G, \star) is a group and $x \in G$ is any element. Then, the inverse of x is unique.

Proof. Suppose $x \in G$ and there exists two elements y, y^{\prime} such that $x \star y=y \star x=e$ and $x \star y^{\prime}=y^{\prime} \star x=e$. These equations imply that

$$
x \star y=x \star y^{\prime} .
$$

Now, we'll algebraically manipulate this to conclude that $y=y^{\prime}$, first starring both sides with y on the left:

$$
\begin{aligned}
& y \star(x \star y)=y \star\left(x \star y^{\prime}\right) \\
& \Longrightarrow(y \star x) \star y=(y \star x) \star y^{\prime} \quad \text { by associativity } \\
& \Longrightarrow e \star y=e \star y^{\prime} \quad \text { by the definition of inverse } \\
& \Longrightarrow y=y^{\prime} \quad \text { by definition of identity }
\end{aligned}
$$

Therefore, $y=y^{\prime}$ so the inverse of x is unique.
Theorem 1.4. If (G, \star) is a group and $x \in G$, then $\left(x^{-1}\right)^{-1}=x$. (In words: the inverse of x^{-1} is just x.)

Proof. The previous theorem tells us that inverses are unique, so we must only verify that x satisfies the necessary property to be the inverse of x^{-1}. But, because x^{-1} is the inverse of x, we know $x^{-1} \star x=x \star x^{-1}=e$, so x satisfies the property to be the inverse of x^{-1}.

We will now draw a consequence of the previous Theorem. Results that are consequences of things we've already shown are called corollaries.

Corollary 1.5. Suppose $(G<\star)$ is a group. If $x_{1}, x_{2} \in G$ such that $x_{1}^{-1}=x_{2}^{-1}$, then $x_{1}=x_{2}$. In other words, no two different elements can have the same inverse.

Proof. If $x_{1}^{-1}=x_{2}^{-1}$, then $\left(x_{1}^{-1}\right)^{-1}=\left(x_{2}^{-1}\right)^{-1}$, so by the previous theorem, $x_{1}=x_{2}$.
Theorem 1.6. If (G, \star) is a group and $x, y \in G$, then $(x \star y)^{-1}=y^{-1} \star x^{-1}$.
Proof. We prove this again by verifying the inverse property. We must show that $(x \star y) \star\left(y^{-1} \star x^{-1}\right)=e$ and similarly $\left(y^{-1} \star x^{-1}\right) \star(x \star y)=e$. We'll verify the first equation together and leave the second one as an exercise. We compute:

$$
\begin{array}{rlr}
(x \star y) \star\left(y^{-1} \star x^{-1}\right) & =\left((x \star y) \star y^{-1}\right) \star x^{-1} \quad \text { by associativity } \\
& =\left(x \star\left(y \star y^{-1}\right)\right) \star x^{-1} \quad \text { by associativity } \\
& =(x \star e) \star x^{-1} \quad \text { by definition of inverse } \\
& =x \star x^{-1} \quad \text { by definition of identity } \\
& =e \quad \text { by definition of inverse }
\end{array}
$$

Therefore, we have shown that $(x \star y) \star\left(y^{-1} \star x^{-1}\right)=e$. Similarly, one can show that $\left(y^{-1} \star x^{-1}\right) \star(x \star y)=e$ and therefore $y^{-1} \star x^{-1}$ is the inverse of $x \star y$.

Are you tired of checking two equalities to prove the identity and inverse properties? Let's show that it suffices to only check one. First, a definition:

Definition 1.7. If (G, \star) is a group and $x \in G$, an element $y \in G$ such that $x \star y=e$ is called a right inverse of x. If $y \star x=e$, then y is called a left inverse of x.

Theorem 1.8. Suppose (G, \star) is a group and $x \in G$. If there exists $y \in G$ such that $x \star y=e$ or $y \star x=e$, then $y=x^{-1}$.

Proof. Suppose first that $x \star y=e$. We know there exists some element x^{-1} in G, and we want to show that $y=x^{-1}$. If we star both sides of the equation $x \star y=e$ on the left with x^{-1}, we can
algebraically manipulate this:

$$
\begin{aligned}
& x^{-1} \star(x \star y)=x^{-1} \star e \\
& \Longrightarrow\left(x^{-1} \star x\right) \star y=x^{-1} \quad \text { by associativity and definition of identity } \\
& \Longrightarrow e \star y=x^{-1} \quad \quad \text { by definition of inverse } \\
& \Longrightarrow y=x^{-1} \quad \text { by definition of identity }
\end{aligned}
$$

and therefore $y=x^{-1}$.
Similarly, if we start with $y \star x=e$, we can star both sides on the right with x^{-1} to conclude that $y=x^{-1}$.

This theorem tells us that, if $y \in G$ is a left or right inverse of $x \in G$, then y is actually the inverse of x. So, to verify any element is an inverse, you just need to verify that $x \star y=e$ or $y \star x=e$ (not both!).
Example 1.9. In linear algebra, you learned to find the inverse of a matrix $A \in G L_{n}(\mathbb{R})$ by solving the equation $A B=I$ for B. This method computes a right inverse for A, but because $\left(G L_{n}(\mathbb{R}), \times\right)$ is a group, this right inverse is actually the inverse, i.e. $A B=I$ and $B A=I$ (even though we never checked the equation $B A=I)$.

This method of proof can be used more generally to prove something on your homework:
Theorem 1.10 (The Cancellation Laws.). Suppose (G, \star) is a group and $x, y, z \in G$.
(1) If $x \star y=x \star z$, then $y=z$.
(2) If $x \star y=z \star y$, then $x=z$.

Definition 1.11. If G is a set with binary operation \star and $e \in G$ an element such that $x \star e=x$ for all $x \in G$, then e is called a right identity. If $e \star x=x$ for all $x \in G$, then e is called a left identity.
Theorem 1.12. Suppose G is a set with associative binary operation \star. If $e \in G$ is a right identity (respectively, left) and every element $x \in G$ has a right inverse (respectively, left), then e is both a left and right identity and the inverses are both left and right inverses. Therefore, G is a group.

Proof. We will prove this assuming that e is a right identity and that every element $x \in G$ has a right inverse, i.e. an element x^{-1} such that $x \star x^{-1}=e$ (the left case is similar). Suppose that $x \star e=x$ for all $x \in G$. We need to show that $e \star x=x$.

Starting with the equation $x \star e=x$, if $x=e$, we obtain $e \star e=e$. Because x has a right inverse x^{-1}, we know that $x \star x^{-1}=e$. If we plug this in for the second and third e in the equation $e \star e=e$, we get

$$
e \star\left(x \star x^{-1}\right)=x \star x^{-1}
$$

Now, using associativity, we know this implies

$$
(e \star x) \star x^{-1}=x \star x^{-1}
$$

Now, let's multiply both sides by the right inverse of x^{-1}, use associativity, and then the definition of inverse to conclude $(e \star x) \star e=x \star e$. Using that e was the right identity, this implies that $e \star x=x$.

So, only assuming that G has a right identity and every element has a right inverse, we've shown that the right identity is in fact a two-sided identity. Now, we need to show that, if x^{-1} is the right inverse of x, then $x^{-1} \star x=e$. This will show that x^{-1} is actually the left inverse of x and therefore a two-sided inverse. We know x^{-1} has some right inverse, which we will call y, such that $x^{-1} \star y=e$. So, we want to show that $x=y$. But, because $x \star x^{-1}=e$, we know $\left(x \star x^{-1}\right) \star y=e \star y$. Using associativity and the definition of right inverse and the right identity property of e, the left hand side becomes x. Because we already proved that e was a two-sided identity, the right hand
side is just y, so we conclude $x=y$. Therefore, $x \star x^{-1}=x^{-1} \star x=e$ and we have shown that G is a group!

What is the point of everything we just did? We could in fact re-define a group:
Definition 1.13. A group G is a set with associative binary operation \star such that G has a right identity element and every element $x \in G$ has a right inverse.

Equivalently, one could replace both 'rights' by 'lefts.'
In words, this is saying that you don't need to check both equations to show something is an inverse or an identity; it suffices to check just one for each.

