
FEBRUARY 8 NOTES

1. Section 2: Groups

Definition 1.1. A group is a set G with a binary operation ⋆ on G such that:

(1) (associativity) ⋆ is associative, i.e. for every x, y, z ∈ G,

(x ⋆ y) ⋆ z = x ⋆ (y ⋆ z).

(2) (identity) there is an element e ∈ G such that, for any x ∈ G,

x ⋆ e = e ⋆ x = x.

The element e ∈ G is called the identity element or identity of G.
(3) (inverses) for each element x ∈ G, there is an element y ∈ G such that

x ⋆ y = y ⋆ x = e.

The element y is called the inverse of x and is denoted by y = x−1 or y = −x, depending
on the context.

We denote groups by (G, ⋆) or just by G if ⋆ is ‘clear from context.’

For a general group G, ⋆ does not have to be commutative. We have a special name for the
groups where ⋆ is commutative.

Definition 1.2. If (G, ⋆) is a group and ⋆ is commutative, then G is called an abelian group.

Today, we will mostly focus on examples of groups. First, a reminder: let n ∈ Z be a positive
integer. For a ∈ Z, the notation a (mod n) means the (positive) remainder of a when divided by
n. For example: 4 (mod 3) = 1; 11 (mod 4) = 3, −2 (mod 3) = 1, etc. Writing a = b (mod n)
means that a and b have the same remainder when divided by n.

Formally, the ‘remainder’ is defined as follows.
Division algorithm. Suppose n is a positive integer. Then, for any a ∈ Z, there exist unique
integers q, r such that a = qn + r and 0 ≤ r < n. The integer q is called the quotient of a by n,
and the integer r is called the remainder.

Proof. First, we will show that q and r exist. Let q be the largest multiple of n that is less than a,
i.e. qn ≤ a < (q + 1)n. Then, defining r to be r = a − qn, by subtracting qn from the inequality
qn ≤ a < (q + 1)n, we see that 0 ≤ r < n. Therefore, a = qn+ r where 0 ≤ r < n.

Next, we will show that q and r are unique. Suppose that a = q1n+ r1 and a = q2n+ r2 where
0 ≤ r1, r2 < n. Then, subtracting one equation from the other, we see that (q1 − q2)n = r2 − r1.
Because |r2 − r1| < n (because each were less than n), and r2 − r1 is a multiple of n, this implies
that r2 − r1 = 0 and then q1 − q2 = 0. Therefore, r2 = r1, and q1 = q2 so q and r are unique. □

Definition 1.3. Given any integer a, the number a (mod n) is the unique integer r in the Division
algorithm.

Example 1.4. Let n be a positive integer and let Zn := {0, 1, 2, . . . , n − 1}. Let +n denote the
binary operation a +n b = a + b (mod n). Then, +n is a binary operation on Zn: the elements of
Zn are precisely the remainders when we divide by n, and taking the sum of any two elements mod
n gives another element in Zn.

Additionally, (Zn,+n) is a group. The binary operation is associative (this is something you
probably proved in Math 300) and there is an identity element 0: for any a ∈ Zn, a+n0 = 0+na = a.
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Finally, each element a ∈ Zn has an inverse. If a = 0, then its inverse is 0: 0 + 0 = 0. If a ̸= 0,
then n − a ∈ Zn, and n − a is the inverse of a because a +n (n − a) = (n − a) +n a = 0. Because
+n is commutative, this an abelian group.

For any finite group, we can make a table describing the binary operation by listing the elements
across the first row and down the first column. Then, we fill in each entry of the table with a ⋆ b,
where a is the first entry of that row and b is the first entry of that column. For example, if our
group only had two elements a, b, we would create the table:

⋆ a b

a a ⋆ a a ⋆ b

b b ⋆ a b ⋆ b

Let’s try with Z2 = {0, 1} and Z3 = {0, 1, 2}. In these cases, we get:

+2 0 1

0 0 1

1 1 0

and

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Is there anything that you notice about these tables?
Another reminder from last week:

Definition 1.5. We define Mn(R) to be the set of all n×n matrices. We define GLn(R) to be the
set of all invertible n× n matrices.

Example 1.6. (Mn(R),+) is an abelian group. Addition is an associative binary operation, the
identity element is the zero matrix and, given a matrix A, the inverse is −A.

(GLn(R),×) is a non-abelian group. Multiplication is a binary operation on GLn(R): given two
invertible matrices A,B ∈ GLn(R), their product AB is an n× n invertible matrix. We know this
from linear algebra: a matrix M is invertible if and only if detM ̸= 0, so A,B ∈ GLn(R) means
detA,detB ̸= 0. This implies that det(AB) = det(A) det(B) ̸= 0, so AB is invertible. Then, the
identity element is I the n × n identity matrix, and given any A ∈ GLn(R), by definition, A−1

exists, so inverses exist.

Example 1.7. From the worksheet, we saw that · was a binary operation on S = {a+bi ∈ C | a2+b2 = 1}.
Because · is just multiplication, it is associative. This set also has an identity and inverses: 1 = 1+0i
is the identity, because 1 · (a+ bi) = a+ bi, and given any a+ bi ∈ S, because a2 + b2 = 1, we can
show that (a+ bi)(a− bi) = a2 + b2 = 1, so (a+ bi)−1 = a− bi. Therefore, (S, ·) is a group! As we
discussed, S is actually the unit circle, so geometric objects can be groups.

Example 1.8. If X is a nonempty set, is (P(X),∪) a group?
The answer is no! We already proved that ∪ is an associative binary operation. What would

the identity element be? It must be some set E ⊂ X such that E ∪ A = A ∪ E = A for every set
A in X. This is possible if and only if E = ∅. But, this means elements do not have inverses: the
inverse of an element A ∈ P(X) must be some element B such that A∪B = ∅. But, if A ̸= ∅, it is
impossible that A ∪B = ∅, so inverses cannot exist!

Example 1.9. If X is a set, is (P(X),∆) a group?
The answer is yes! On the worksheet, you showed that ∆ is an associative binary operation.

(Reminder: A∆B = (A− B) ∪ (B − A).) Does this have an identity? Given any A ⊂ X, we need
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an element E ⊂ X such that A∆E = (A−E)∪ (E−A) = A. This is only possible if E is contained
in A, and the only set contained in every other set is E = ∅. So, we must have E = ∅. Then, what
is A−1? It must be some set B such that A∆B = (A− B) ∪ (B − A) = ∅. This is only possible if
B = A, because then A − B = B − A = ∅. But, this says A = A−1 so inverses exist and this is a
group!
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