FEBRUARY 8 NOTES

1. Section 2: Groups

Definition 1.1. A group is a set G with a binary operation \star on G such that:
(1) (associativity) \star is associative, i.e. for every $x, y, z \in G$,

$$
(x \star y) \star z=x \star(y \star z) .
$$

(2) (identity) there is an element $e \in G$ such that, for any $x \in G$,

$$
x \star e=e \star x=x
$$

The element $e \in G$ is called the identity element or identity of G.
(3) (inverses) for each element $x \in G$, there is an element $y \in G$ such that

$$
x \star y=y \star x=e
$$

The element y is called the inverse of x and is denoted by $y=x^{-1}$ or $y=-x$, depending on the context.
We denote groups by (G, \star) or just by G if \star is 'clear from context.'
For a general group G, \star does not have to be commutative. We have a special name for the groups where \star is commutative.

Definition 1.2. If (G, \star) is a group and \star is commutative, then G is called an abelian group.
Today, we will mostly focus on examples of groups. First, a reminder: let $n \in \mathbb{Z}$ be a positive integer. For $a \in \mathbb{Z}$, the notation $a(\bmod n)$ means the (positive) remainder of a when divided by n. For example: $4(\bmod 3)=1 ; 11(\bmod 4)=3,-2(\bmod 3)=1$, etc. Writing $a=b(\bmod n)$ means that a and b have the same remainder when divided by n.

Formally, the 'remainder' is defined as follows.
Division algorithm. Suppose n is a positive integer. Then, for any $a \in \mathbb{Z}$, there exist unique integers q, r such that $a=q n+r$ and $0 \leq r<n$. The integer q is called the quotient of a by n, and the integer r is called the remainder.
Proof. First, we will show that q and r exist. Let q be the largest multiple of n that is less than a, i.e. $q n \leq a<(q+1) n$. Then, defining r to be $r=a-q n$, by subtracting $q n$ from the inequality $q n \leq a<(q+1) n$, we see that $0 \leq r<n$. Therefore, $a=q n+r$ where $0 \leq r<n$.

Next, we will show that q and r are unique. Suppose that $a=q_{1} n+r_{1}$ and $a=q_{2} n+r_{2}$ where $0 \leq r_{1}, r_{2}<n$. Then, subtracting one equation from the other, we see that $\left(q_{1}-q_{2}\right) n=r_{2}-r_{1}$. Because $\left|r_{2}-r_{1}\right|<n$ (because each were less than n), and $r_{2}-r_{1}$ is a multiple of n, this implies that $r_{2}-r_{1}=0$ and then $q_{1}-q_{2}=0$. Therefore, $r_{2}=r_{1}$, and $q_{1}=q_{2}$ so q and r are unique.

Definition 1.3. Given any integer a, the number $a(\bmod n)$ is the unique integer r in the Division algorithm.
Example 1.4. Let n be a positive integer and let $\mathbb{Z}_{n}:=\{0,1,2, \ldots, n-1\}$. Let $+_{n}$ denote the binary operation $a+_{n} b=a+b(\bmod n)$. Then, $+_{n}$ is a binary operation on \mathbb{Z}_{n} : the elements of \mathbb{Z}_{n} are precisely the remainders when we divide by n, and taking the sum of any two elements mod n gives another element in \mathbb{Z}_{n}.

Additionally, $\left(\mathbb{Z}_{n},+_{n}\right)$ is a group. The binary operation is associative (this is something you probably proved in Math 300) and there is an identity element 0: for any $a \in \mathbb{Z}_{n}, a+{ }_{n} 0=0+_{n} a=a$.

Finally, each element $a \in \mathbb{Z}_{n}$ has an inverse. If $a=0$, then its inverse is $0: 0+0=0$. If $a \neq 0$, then $n-a \in \mathbb{Z}_{n}$, and $n-a$ is the inverse of a because $a+_{n}(n-a)=(n-a)+_{n} a=0$. Because $+_{n}$ is commutative, this an abelian group.

For any finite group, we can make a table describing the binary operation by listing the elements across the first row and down the first column. Then, we fill in each entry of the table with $a \star b$, where a is the first entry of that row and b is the first entry of that column. For example, if our group only had two elements a, b, we would create the table:

$$
\begin{array}{c|cc}
\star & a & b \\
\hline a & a \star a & a \star b \\
b & b \star a & b \star b
\end{array}
$$

Let's try with $\mathbb{Z}_{2}=\{0,1\}$ and $\mathbb{Z}_{3}=\{0,1,2\}$. In these cases, we get:

$$
\begin{array}{c|cc}
+_{2} & 0 & 1 \\
\hline 0 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

and

+3	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Is there anything that you notice about these tables?
Another reminder from last week:
Definition 1.5. We define $M_{n}(\mathbb{R})$ to be the set of all $n \times n$ matrices. We define $G L_{n}(\mathbb{R})$ to be the set of all invertible $n \times n$ matrices.

Example 1.6. $\left(M_{n}(\mathbb{R}),+\right)$ is an abelian group. Addition is an associative binary operation, the identity element is the zero matrix and, given a matrix A, the inverse is $-A$.
$\left(G L_{n}(\mathbb{R}), \times\right)$ is a non-abelian group. Multiplication is a binary operation on $G L_{n}(\mathbb{R})$: given two invertible matrices $A, B \in G L_{n}(\mathbb{R})$, their product $A B$ is an $n \times n$ invertible matrix. We know this from linear algebra: a matrix M is invertible if and only if $\operatorname{det} M \neq 0$, so $A, B \in G L_{n}(\mathbb{R})$ means $\operatorname{det} A, \operatorname{det} B \neq 0$. This implies that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \neq 0$, so $A B$ is invertible. Then, the identity element is I the $n \times n$ identity matrix, and given any $A \in G L_{n}(\mathbb{R})$, by definition, A^{-1} exists, so inverses exist.

Example 1.7. From the worksheet, we saw that • was a binary operation on $S=\left\{a+b i \in \mathbb{C} \mid a^{2}+b^{2}=1\right\}$. Because • is just multiplication, it is associative. This set also has an identity and inverses: $1=1+0 i$ is the identity, because $1 \cdot(a+b i)=a+b i$, and given any $a+b i \in S$, because $a^{2}+b^{2}=1$, we can show that $(a+b i)(a-b i)=a^{2}+b^{2}=1$, so $(a+b i)^{-1}=a-b i$. Therefore, (S, \cdot) is a group! As we discussed, S is actually the unit circle, so geometric objects can be groups.
Example 1.8. If X is a nonempty set, is $(\mathcal{P}(X), \cup)$ a group?
The answer is no! We already proved that \cup is an associative binary operation. What would the identity element be? It must be some set $E \subset X$ such that $E \cup A=A \cup E=A$ for every set A in X. This is possible if and only if $E=\emptyset$. But, this means elements do not have inverses: the inverse of an element $A \in \mathcal{P}(X)$ must be some element B such that $A \cup B=\emptyset$. But, if $A \neq \emptyset$, it is impossible that $A \cup B=\emptyset$, so inverses cannot exist!
Example 1.9. If X is a set, is $(\mathcal{P}(X), \Delta)$ a group?
The answer is yes! On the worksheet, you showed that Δ is an associative binary operation. (Reminder: $A \Delta B=(A-B) \cup(B-A)$.) Does this have an identity? Given any $A \subset X$, we need
an element $E \subset X$ such that $A \Delta E=(A-E) \cup(E-A)=A$. This is only possible if E is contained in A, and the only set contained in every other set is $E=\emptyset$. So, we must have $E=\emptyset$. Then, what is A^{-1} ? It must be some set B such that $A \Delta B=(A-B) \cup(B-A)=\emptyset$. This is only possible if $B=A$, because then $A-B=B-A=\emptyset$. But, this says $A=A^{-1}$ so inverses exist and this is a group!

