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8.1 Introduction

• Purpose of Statistics, estimation and test-
ing

· make inference about the population by
using the information contained in a sample
taken from the population of our interest

· find a statistic for a unknown target pa-
rameter characterizing the population and
the sampling distribution of the statistic in
making statistical inferences

: (point/interval) estimation and testing

• Estimation and Estimator

· Estimation in two different forms

i) Point estimation, ii) Interval estimation

(example) interested in estimating the unknown mean
waiting time µ at a supermarket checkout station

i) point estimation by a single number : an expert
considers 10 minutes as the estimate of µ.

ii) interval estimation by the two values enclosing

µ : µ will fall in between 6 and 14(i.e., [6, 14])
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· (Definition 8.1) An estimator is a for-
mula that tells how to calculate the value
of an (point/interval) estimate based on
the measurements contained in a sample.

(example) Firing a revolver at a red target

: one shot does not tell us if he/she is an ex-
pert, but many shots(say 100) shots might provide
sufficient amount of evidence

: (estimator - revolver), (estimate - a single
shot), and (parameter of interest - a red target)

(example) Suppose one is interested in the cen-

ter (i.e., location parameter) of the population, µ.

Given n random variables, Y1, . . . , Yn from the pop-

ulation, the sample mean is Ȳ = 1
n

∑n
i=1 Yi(which is

also a random variable). After observing a particu-

lar value of a random variable, Y1 = y1, . . . , Yn = yn,

then Ȳ = ȳ = 1
n

∑n
i=1 yi.
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(example) Suppose we are interested in the mean
of UMass female students’ height, µ. So, we mea-
sure heights of 100 female students and calculate
sample mean, ȳ using a sample mean formula Ȳ .

: but we can not evaluate the goodness of point
estimation procedure based on one single constant
value, ȳ. We would evaluate this point estimation
procedure after this procedure is used many times.

: Thus, we do repeated sampling(i.e., obtain 1000
samples of size 100 from the population) and calcu-
late sample mean from each sample, ȳ1, ȳ2, . . . , ȳ1000.

: Finally we construct a frequency distribution of
1000 sample means and see how closely the dis-
tribution clusters around the true mean of UMass
female students’ height. Note a frequency distribu-
tion of 1000 sample means is an approximation to
the sampling distribution of Ȳ .

· Many different estimators for the same
population parameter. Then we need to
know how we can find better estimators

(example) Ȳ = 1
n

∑n
i=1 Yi, sample mean is one

possible point estimator of µ, the center (i.e., loca-

tion parameter) of the population. How about the

median or mode of n random variables?
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8.2 Bias and Mean Square Error of Point
Estimators

Four students(A,B, C, D) fire a revolver at a
red target n times.

• Variation among n shots

: < < <

:

• Average distance between n shots and the
target

: < < < <

:
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Suppose Y1, . . . , Yn constitute a random sample
from a population with a parameter θ of our in-
terest. Let θ̂ = θ̂(Y1, . . . , Yn)(random quantity)
be a point estimator for a parameter θ.

• Since θ̂ is a statistic for θ, it has its own sampling
distribution, say f(θ̂).

• Unbiasedness

(Def 8.2 and 8.3) The bias of θ̂ is given by B(θ̂) =
E(θ̂)− θ. If B(θ̂) = 0, θ̂ is an unbiased estimator of
θ. Otherwise, θ̂ is a biased estimator.

• Variance and standard error

(Def) The variance of the sampling distribution of θ̂
is given by σ2

θ̂
= V (θ̂) = E(θ̂−E(θ̂))2. The standard

deviation of the sampling distribution of θ̂ is given

by σθ̂ =
√
σ2
θ̂

=
√
V (θ̂). We call σθ̂ the standard

error of θ̂.

• Mean square error(MSE)

(Def 8.4) The MSE of θ̂ is given by MSE(θ̂) =
E(θ̂ − θ)2 = V (θ̂) +

(
B(θ̂)2

)
.
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(Exercise) Suppose that Y1, Y2, Y3 denote a random
sample from an exponential distribution with a param-
eter θ. Consider the following four estimators of θ :
θ̂1 = Y1, θ̂2 = (Y1 +Y2)/2, θ̂3 = (Y1 + 2Y2)/3 and θ4 = Ȳ .

a. Which of these estimators are unbiased?

b. Among the unbiased estimators, which has the small-

est variance?

(Exercise) Suppose Y has a binomial distribution with

parameters n and p(i.e., Y ∼ b(n, p)).

a. Show that p̂1 = Y/n is an unbiased estimator of p.

b. Consider another estimator, p̂2 = (Y + 1)/(n + 2).

Then find the bias of p̂2.

c. Derive MSE(p̂1) and MSE(p̂2).
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8.3 Some Common Unbiased Point Estimators

• Methods for point estimators : Chapter 9.

• Common unbiased θ̂ (Table 8.1)
θ Sample θ̂ E(θ̂) σθ̂ σ̂θ̂

size
1) µ n Ȳ µ σ/

√
n S/

√
n

2) p n Y
n

p
√

pq
n

√
Y

n
(1−Y

n
)

n

3) µ1 − µ2 n1,n2 Ȳ1 − Ȳ2 µ1 − µ2

√
σ2

1

n1
+ σ2

2

n2

√
S2

1

n1
+ S2

1

n2

4) p1 − p2 n1,n2
Y1

n1
− Y2

n2
p1 − p2

√
p1q1

n1
+ p2q2

n2

√
Y1
n1

(1− Y1
n1

)

n1
+

Y2
n2

(1− Y2
n2

)

n2

1) For n random samples, Y1, . . . , Yn with E(Yi) = µ(population
mean) and V (Yi) = σ2, Ȳ for µ

2) For Y ∼ b(n, p) and q = 1− p, sample proportion Y
n

for p

3) For n1 random samples Y11, . . . , Y1n1 with E(Y1i) =
µ1 and V (Y1i) = σ2

1, and n2 random samples Y21, . . . , Y2n2

with E(Y2j) = µ2 and V (Y2j) = σ2
2 where i = 1, . . . , n1

and j = 1, . . . , n2, Ȳ1 − Ȳ2 for µ1 − µ2.

4) For Y1 ∼ b(n, p1) (q1 = 1−p1) and Y2 ∼ b(n, p2)(q2 =
1− p2) , difference in the sample proportions Y1

n1
− Y2

n2

for p1 − p2.

(note) the two samples from two populations in 3)

and 4) are independent.
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• Comments for estimators in Table 8.1

· 1) and 3) have valid E(θ̂) and σθ̂ regard-
less of the form of the population distribu-
tion, p(y) or f(y)

· 1) - 4) have sampling distributions, either
p(θ̂) or f(θ̂) that are approximately normal
for large samples (by C.L.T in Chapter 7.3)

· 1) - 4) are unbiased with near-normal(or
bell-shaped) sampling distributions for moderate-
sized samples

• For n random samples Y1, . . . , Yn with E(Yi) =
µ and V (Yi) = σ2, an estimator for the pop-
ulation variance, σ2 is (see example 8.1)

· S2 = 1
n−1

∑n
i=1(Yi − Ȳ )2 : unbiased

· S′2 = 1
n

∑n
i=1(Yi − Ȳ )2 : biased

• Goodness of a point estimator : how much
faith can one place in the validity of statis-
tical inference? (See Chapter 8.4)
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8.4 Evaluating the Goodness of a Point
Estimator

• Reasonable measure of the goodness of θ̂
for θ :

(Def 8.5) The error of estimation ε is
ε =| θ̂ − θ |.

· hopes ε to be as small as possible

· varies randomly in repeated sampling

· ε is a random quantity, as θ̂ = θ̂(Y1, . . . , Yn)
is a also random variable.

• Probability statements about ε : P (ε < b)

· Suppose θ̂ satisfies the following proper-
ties, i) E(θ̂) = θ and ii) its sampling distri-
bution is symmetric at θ.

Then, P (ε =| θ̂ − θ |< b) = P (θ − b < θ̂ <

θ+ b) ≈ the fraction of times, in repeated
sampling, that θ̂ falls within b units of θ
for small b(probabilistic bound on ε).
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• Calculation of b so that P (ε < b) = .90

· If we know the probability distribution,
f(θ̂) of θ̂, b satisfies

∫ θ+b
θ−b f(θ̂)dθ̂ = .90.

· If we do not know f(θ̂), can we obtain b?

i) use Tchebysheff’s theorem (p.146 or p.207) to
obtain an approximate bound on ε.

: Suppose θ̂ is unbiased. Then P (ε =| θ̂ − θ |<
b = kσθ̂) ≥ 1− 1/k2 for k ≥ 1.

: for k = 2, P (ε < b = 2σθ̂) ≥ .75, which is very
conservative.

ii) use a 2-standard error bound, b = 2σθ̂ or 2σ̂θ̂

: P (ε =| θ̂ − θ |< b = 2σθ̂) is near .95 in many

situations (Table 8.2).

(Example 8.2)

(Example 8.3)
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8.5 Confidence interval (Interval estimator)

• Interval estimator, [θ̂L, θ̂U ] : a procedure
calculating an interval of probable values
of an unknown population parameter, θ by
using the sample measurements

· indicate the reliability of an estimate, as it
represents a range of values around an es-
timate that include θ(with a certain prob-
ability in repeated sampling)

· its length and location are random quan-
tities, as one or both of endpoints in the
interval vary randomly from sample to sam-
ple (i.e., θ̂L = θ̂L(Y1, . . . , Yn), θ̂U = θ̂U(Y1, . . . , Yn))

· [θ̂L, θ̂U ] are written with a percentage;
what does this percentage represent?

• Confidence of the interval, 100(1− α)%

· Given a single sample, Y1 = y1, . . . , Yn =
yn, suppose one has a procedure generat-
ing an intervals for θ with the confidence
100(1− α)%.

12



· Then an interval based on a single sample,
y1, . . . , yn, either contains the true value of
θ or it does not.

· If the same procedure was used many
times (in repeated sampling), each inter-
val would either contain or fail to contain
the true value of θ. But, the percentage
of all intervals enclosing the true value of
θ would be very close to 100(1− α)%.

· 100(1−α)% confidence intervals: interval
estimators with the confidence 100(1−α)%

• Goal : construct a confidence interval, [θ̂L, θ̂U ]
that can generate narrow intervals having
a high probability of enclosing θ (under re-
peated sampling).
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• Two-sided confidence interval, [θ̂L, θ̂U ]

· θ̂L and θ̂U : random lower and upper end-
point (i.e., confidence limit)

· 1− α = P (θ̂L ≤ θ ≤ θ̂U), confidence coef-
ficient

· The probability that an interval based on a single
sample of size n would contain θ is zero or one. If
the same procedure were implemented many times
in repeated sampling, each individual interval would
either contain or fail to contain θ, but the fraction of
the time that the constructed intervals will contain
the true value of θ would be close to 100(1− α).

· prefer intervals with higher (1−α) if their lengths
are the same.

· prefer narrower confidence intervals with the same

(1− α).

• Lower one-sided confidence interval, [θ̂L,∞)

· P (θ̂L ≤ θ) = 1− α

• Upper one-sided confidence interval, (−∞, θ̂U ]

· P (θ ≤ θ̂U) = 1− α
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• How to find confidence intervals?

· Use pivotal method : need to find a piv-
otal quantity having two characteristics

i) it is a function of Y1, . . . , Yn and un-
known θ where θ is the only unknown quan-
tity.

ii) its probability distribution does not de-
pend on θ

· Logic of the pivotal method: for a r.v.

Y , suppose that the probability distribution of the

pivotal quantity is known. Then, P (a ≤ Y ≤ b) =

P (c(a+ d) ≤ a(Y + d) ≤ c(b+ d))

(Example 8.4)

(Example 8.5)

(Exercise 8.46)
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8.6 Large-sample confidence intervals

• Pivotal method to develop confidence in-
tervals for θ when sample size is large

· Approximate probability distribution of θ̂−θσθ̂
is a standard normal distribution, N(0,1)
as long as sample size is large and E(θ̂) = θ

(note that this holds for four unbiased es-
timators in Table 8.1).

· Then a 100(1−α)% two-sided confidence
interval for θ is

[θ̂L, θ̂U ] = [θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂]

where zα/2 is a value satisfying P (Z ≥ zα/2) = α/2
and Z ∼ N(0,1)

Why? Since θ̂−θ
σθ̂
∼ N(0,1),

1− α = P (−zα/2 ≤
θ̂ − θ
σθ̂
≤ zα/2)

= P (−zα/2σθ̂ ≤ θ̂ − θ ≤ zα/2σθ̂)

= P (θ̂ − zα/2σθ̂ ≤ θ ≤ θ̂ + zα/2σθ̂)

How about a 100(1−α)% one-sided inter-
val for θ?

16



· Unknown σ2
θ̂

might be replaced with esti-

mated value, σ̂2
θ̂

as long as n is large. (note
that the calculated confidence interval will
have approximately the stated confidence
coefficient).

For θ = µ, θ̂ = Ȳ and σ2
θ̂

= σ2/n. Use sample

variance, s2 for unknown σ2.
For θ = p, θ̂ = p̂ and σ2

θ̂
=
√
pq/n. Use p̂ for

unknown p.

(Example 8.7)

(Example 8.8)

(Exercise 8.56) In a Gallup Poll of n = 800 randomly

chosen adults, 45% indicated that movies were getting

better whereas 43% indicated that movies were getting

worse.

(a) Find a 98% confidence interval for p, the overall

proportion of adults who say that movies are getting

better?
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8.7 Selecting the sample size

• Method of choosing n using the large-sample

confidence intervals procedure: θ̂−θ
σθ̂
∼·N(0,1),

1) The following information should be given
by the experimenter : a desired bound, B
on the error of estimation, and an associ-
ated confidence level, 1− α.

2) 1 − α = P (| θ̂ − θ |≤ zα/2σθ̂) means α =

P (| θ̂ − θ |> zα/2σθ̂)

3) Calculate (approximate) n by equating
zα/2σθ̂ = B satisfying P (Z > zα/2) = α/2

where Z ∼ N(0,1). For unknown σθ̂ use
one of the following methods

· replace unknown σθ̂ with its estimate σ̂θ̂

· σθ̂ =range/4 where the range of a set of mea-

surement is the difference between the largest and

smallest values (this works if the distribution of

measurements is approximately normal).
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(Example) suppose that one wants to estimate the
average daily yield µ of a chemical. If one wishes
the error of estimation to be less than 5 tons with
probability .95, how large n should be? Assume
also that the range of the daily yields is known to
be approximately 84 tons.

(Example 8.9) The reaction of an individual to a
stimulus in a psychological experiment may take one
of two forms, A and B, If an experiment wishes to
estimate the probability p that a person will react
in manner A, how many people must be included in
the experiment? Assume that the experimenter will
be satisfied if the error of estimation is less than .04
with probability equal to .90. Assume also that he
expects p to be close to .6.

(Example 8.10)
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8.8 Small-sample confidence intervals
for µ, and µ1 − µ2

[Case 1] Given n random samples, Y1, . . . , Yn ∼
N(µ, σ2), unknown σ2, and small n, how to
construct a confidence interval for µ?.

[Case 2] Given n1 random samples, Y11, . . . , Y1n1
∼

N(µ1, σ
2), n2 random samples, Y21, . . . , Y2n2

∼
N(µ2, σ

2), unknown σ2, and small n1 and n2,
how to obtain a confidence interval for µ1−µ2?
(assume that they are independent samples).

· The large sample procedure in Chapter
8.8 might not be suitable.

· Use a t-distribution with parameter ν(called
degree of freedom), T = Z√

W/ν
∼ t(ν − 1)

where Z ∼ N(0,1), W ∼ χ2(ν), and Z and
W are independnt (see Def 7.2).

· T is a pivotal quantity and P (−tα/2 ≤ T ≤
tα/2) = 1− α. (see Table 5, T-table)
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[Case 1] Given n random samples, Y1, . . . , Yn ∼
N(µ, σ2), unknown σ2, and small n,

· Ȳ−µ
σ/
√
n
∼ N(0,1), (n−1)S2

σ2 ∼ χ2(n − 1), and

Ȳ and S2 are independent(Thm 7.1, 7.3)

· T =
Ȳ−µ
σ/
√
n√

(n−1)S2

σ2 /(n−1)
= Ȳ−µ

S/
√
n
∼ t(n − 1) where

S =
√
S2

· The 100(1 − α)% two-sided confidence
interval for µ is

[Ȳ − tα/2(S/
√
n), Ȳ + tα/2(S/

√
n)].

Why? 1 − α = P (−tα/2 ≤ T ≤ tα/2) = P (Ȳ −
tα/2(S/

√
n) ≤ µ ≤ Ȳ + tα/2(S/

√
n))

(Example 8.11) suppose a manufacturer of gun-

powder has developed a new powder, which was

tested in eight shells, and measured the muzzle ve-

locity, Yi, i = 1, . . . ,8. Assume that Yi were normally

distributed, its variance σ2 was unknown, and their

sample mean and sample variance were ȳ = 2959

and s2 = 39.12. Find a 95% confidence interval for

the true average velocity µ for shells of this type.
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[Case 2] Given two sets of random samples,
Y11, . . . , Y1n1

∼ N(µ1, σ
2), Y21, . . . , Y2n2

∼ N(µ2, σ
2),

unknown common σ2, and small n1 and n2,

· T =

(Ȳ1−Ȳ2)−(µ1−µ2)√
σ2/n1+σ2/n2√
(n1+n2−2)S2

p

σ2(n1+n2−2)

= (Ȳ1−Ȳ2)−(µ1−µ2)
Sp
√

1/n1+1/n2
∼

t(n1+n2−2) where S2
p =

(n1−1)S2
1+(n2−1)S2

2
n1+n2−2 ,

· The 100(1 − α)% two-sided confidence
interval for µ is[

(Ȳ1 − Ȳ2)− tα/2Sp
√

1/n1 + 1/n2,

(Ȳ1 − Ȳ2) + tα/2Sp
√

1/n1 + 1/n2

]

(Example 8.12)

(Exercise 8.83)
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8.9 Confidence intervals for σ2

• Population variance σ2 : amount of vari-
ability in the population

• An unbiased estimator for unknown σ2 :
S2 = 1

n−1

∑n
i=1(Yi − Ȳ )2 (example 8.1)

• Confidence interval for σ2 using the pivotal
method

· Suppose a random sample, Y1, . . . , Yn ∼
N(µ, σ2) where µ and σ2 are unknown.

· Then a 100(1−α)% two-sided interval is

[σ2
L, σ

2
U ] =

[
(n−1)S2

χ2
(α/2)

, (n−1)S2

χ2
1−(α/2)

]
(see Table 6)

Why? since (n−1)S2

σ2 ∼ χ2(n−1)(Thm 7.3),

1− α = P

[
χ2

1−(α/2) ≤
(n− 1)S2

σ2
≤ χ2

(α/2)

]
= P

(n− 1)S2

χ2
(α/2)

≤ σ2 ≤
(n− 1)S2

χ2
1−(α/2)


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• How about a 100(1−α)% one-sided inter-
val for σ2?

(Example 8.13) An experimenter wanted
to check the variability of measurements
obtained by using equipment designed to
measure the volume of an audio source.
Three independent measurements recorded
by this equipment for the same sound were
4.1, 5.2 and 10.2. Estimate σ2 with confi-
dence coefficient .90.
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