MATH 704 – Spring 2010
Homework Set # 7

*Problem 54. Let $M \subset \mathbb{R}^3$ be a compact surface. Prove that there exists a point $p \in M$ where the Gaussian curvature $K > 0$.

Hint: Consider the map $F: M \rightarrow \mathbb{R}$, defined by

$$F(x, y, z) = x^2 + y^2 + z^2$$

and let p be a point where F attains a global maximum. Let $T_p(M) = p^\perp$ and prove that for every curve $\alpha(s) \subset M$, parametrized by arc length and such that $\alpha(0) = p$, $|\alpha''(0)| > 1/R$.

Problem 55. Let M be a surface and $\Phi: U \subset \mathbb{R}^2 \rightarrow M$ a local parametrization. Let X_u, X_v be the coordinate vector fields defined by Φ. We say that Φ is an orthogonal parametrization if and only if $F = \langle X_u, X_v \rangle = 0$. As always denote by $E = \langle X_u, X_u \rangle$ and $G = \langle X_v, X_v \rangle$.

Prove that the Christoffel symbols are given by:

$$\Gamma^1_{11} = \frac{1}{2}(E_u/E) ; \quad \Gamma^2_{11} = -\frac{1}{2}(E_v/G) ; \quad \Gamma^1_{12} = \frac{1}{2}(G_v/G)$$

$$\Gamma^2_{12} = \frac{1}{2}(G_u/G) ; \quad \Gamma^1_{22} = -\frac{1}{2}(G_u/E) ; \quad \Gamma^2_{22} = \frac{1}{2}(E_v/E)$$

*Problem 56.** Let M be a surface and $\Phi: U \subset \mathbb{R}^2 \rightarrow M$ an orthogonal parametrization. Prove that:

$$K = -\frac{1}{2\sqrt{EG}} \left(\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right).$$

*Problem 57.** Let M be a surface and $\Phi: U \subset \mathbb{R}^2 \rightarrow M$ a local parametrization. Let X_u, X_v be the coordinate vector fields defined by Φ. We say that Φ is a conformal or isothermal parametrization if and only if $F = \langle X_u, X_v \rangle = 0$ and $E = G = \lambda(u, v)$.

a) Prove that the Gaussian curvature is given by:

$$K = -\frac{1}{2\lambda} \Delta(\log \lambda),$$

where $\Delta(f) = f_{uu} + f_{vv}$.

b) Compute the Gaussian curvature of the upper half plane endowed with the Poincaré metric:

$$\langle \partial_x, \partial_x \rangle = \langle \partial_y, \partial_y \rangle = 1/y^2 ; \quad \langle \partial_x, \partial_y \rangle = 0$$

Problem 58. Let M be an open set in \mathbb{R}^2 with the Riemannian metric:

$$g = \begin{pmatrix} 1 & 0 \\ 0 & \lambda^2(x, y) \end{pmatrix}$$

where $\lambda(x, y)$ is never zero on M. Compute the Christoffel symbols and the Gaussian curvature.

*Problem 59.** Compute the Christoffel symbols and the Gaussian curvature of the sphere S^2 in terms of spherical coordinates.
Problem 60. Compute the Christoffel symbols, and the Gaussian curvature of the sphere \(S^2 \) in terms of stereographic coordinates.

Problem 61. Let \(y = \varphi(x) \), \(x \in (a,b) \) be a \(C^\infty \) function such that \(\varphi(x) > 0 \) for all \(x \in (a,b) \). Let \(S \subset \mathbb{R}^3 \) be the surface of revolution obtained rotating the graph of \(\varphi \) around the \(x \)-axis. Let \(\Phi : (a,b) \times (0,2\pi) \to \mathbb{R}^3 \) be the local parametrization of \(S \) given by:

\[
\Phi(u,v) = (u, \varphi(u) \cos(v), \varphi(u) \sin(v))
\]

a) Compute \(E, F, G, e, f \) and \(g \) for the parametrization \(\Phi \).

b) Compute the Gaussian curvature of \(S \).

c) Compute the Christoffel symbols \(\Gamma^k_{ij} \) relative to the local coordinates defined by \(\Phi \).

d) Characterize the points of \(S \) at which the Gaussian curvature is positive, negative or zero.

e) Find the volume element of \(S \) (in terms of the local coordinates \((u,v) \)).

*Problem 62. Repeat the previous problem for the surface of revolution obtained rotating the curve:

\[
C = \{(\varphi(u), \psi(u)) : \psi(u) > 0 \quad ; \quad \varphi'(u)^2 + \psi'(u)^2 = 1\}
\]

around the \(x \)-axis.

Problem 63. Find the surfaces of revolution (in the sense of the previous two problems) with constant Gaussian curvature.

*Problem 64. Compute the Gaussian curvature of the torus \(T \) obtained by rotating the circle:

\[
x^2 + (y - b)^2 = r^2 \quad ; \quad b > r
\]

around the \(x \)-axis. It is understood that the metric on \(T \) is induced from the Euclidean metric in \(\mathbb{R}^3 \).

*Problem 65. Let \((M,g)\) be a Riemannian manifold. Prove that given vector fields \(X,Y \in \mathcal{X}(M) \) the unique vector field \(\nabla_XY \) defined by the expression:

\[
2g(\nabla_XY, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y)
\]

is the Riemannian connection.

*Problem 66. Let \((M_1, g_1)\) and \((M_2, g_2)\) be Riemannian manifolds and let \(\nabla^{(1)} \) and \(\nabla^{(2)} \) denote the respective Riemannian connections. Let \(F : M_1 \to M_2 \) be an isometry.

a) Show that \(F_* \left(\nabla^{(1)}_X(Y) \right) = \nabla^{(2)}_{F_*X}(F_*Y) \quad ; \quad X,Y \in \mathcal{X}(M_1) \).

b) Let \(R_1 \) and \(R_2 \) denote the respective curvature tensors. Show that:

\[
R_1(X,Y,Z,W)(p) = R_2(F_*(X),F_*(Y),F_*(Z),F_*(W))(F(p))
\]
c) Let $\alpha: \mathbb{R} \to M_1$ be a C^∞ curve and Y a C^∞ vector field along α. Let $F_\ast(Y)$ denote the C^∞ vector field along $F \circ \alpha$ defined by $F_\ast(Y)(F(\alpha(t))) = F_{\ast, \alpha(t)}Y(\alpha(t))$. Show that:

$$\frac{DF_\ast(Y)}{dt} = F_\ast\left(\frac{DY}{dt}\right)$$

d) Let $\alpha: \mathbb{R} \to M_1$ be a geodesic in M_1. Show that $F \circ \alpha$ is a geodesic in M_2.

Problem 67. Let (M, g_M) be a Riemannian manifold and $\pi : M \to N$ a C^∞ covering map.

a) Show that N has a unique Riemannian metric g_N for which π is a local isometry.

b) Compute the Gaussian curvature of the torus T with the Riemannian metric defined by the covering $\pi: \mathbb{R}^2 \to T$.

Problem 68. Let (M, g) be a Riemannian manifold and let ∇ denote the Riemannian connection. Given $\eta \in C^\infty(M)$, define a new Riemannian structure g_η on M by:

$$g_\eta(X, Y) = e^{2\eta}g(X, Y)$$

Let ∇^η denote the Riemannian connection associated to the metric g_η. Show that:

$$\nabla^\eta X Y = \nabla X Y + X(\eta Y) + Y(\eta X) - g(X, Y)\text{grad}(\eta)$$

where $\text{grad}(\eta)$ is the gradient of η relative to the metric g.

Problem 69. Let ∇ be a connection on a manifold M and $\alpha \in \Lambda^r(M)$. Define:

$$(\nabla_X(\alpha))(Y_1, \ldots, Y_r) = X(\alpha(Y_1, \ldots, Y_r)) - \sum_{i=1}^r \alpha(Y_1, \ldots, \nabla_X Y_i, \ldots, Y_r),$$

where $X, Y_1, \ldots, Y_r \in \mathcal{X}(M)$. Prove that:

a) $\nabla_X(\alpha) \in \Lambda^r(M)$.

b) $\nabla_{fX}(\alpha) = f \nabla_X(\alpha)$ for $f \in C^\infty(M)$.

c) Prove that $\nabla_X(f\alpha) = (\nabla_X f)\alpha + f\nabla_X(\alpha)$.

Generalize these statements to the case of a connection on a vector bundle.

Problem 70. Let M be a manifold and let ∇ denote a connection on M. Given $f \in C^\infty(M)$, we define a bilinear map

$$H_f: \mathcal{X}(M) \times \mathcal{X}(M) \to C^\infty(M) ; \quad H_f(X, Y) := (\nabla_X df)(Y)$$

a) Show that H_f is $C^\infty(M)$-bilinear; i.e. a tensor on M.

b) Let $p \in M$ be a critical point of f, $u, v \in T_p(M)$ Prove that $H_f(u, v)$ agrees with the value $\text{Hess}_p(u, v)$ defined in Problem 45 of M703.

Problem 71. Let (M, g) be a Riemannian manifold and let ∇ denote the Riemannian connection. Let $\alpha \in \Lambda^1(M)$ and suppose $\nabla_X(\alpha) = 0$ for all $X \in \mathcal{X}(M)$. Show that α is closed.