A ring structure on intersection cohomology of hypertoric varieties

Tom Braden1 and Nicholas Proudfoot2

1University of Massachusetts, Amherst

2University of Oregon

October 4, 2007
Outline

1. Hypertoric varieties
2. Minimal extension sheaves
3. Ring structure on IH
To a rational hyperplane arrangement \mathcal{H} in \mathbb{R}^d, associate a \textit{Hypertoric variety} $\mathcal{M}_\mathcal{H}$.

- $\dim_{\mathbb{C}} \mathcal{M}_\mathcal{H} = 2d$, torus $T = (\mathbb{C}^*)^d$ acts
To a rational hyperplane arrangement \mathcal{H} in \mathbb{R}^d, associate a
\textit{Hypertoric variety} $\mathcal{M}_\mathcal{H}$.

- $\dim_{\mathbb{C}} \mathcal{M}_\mathcal{H} = 2d$, torus $T = (\mathbb{C}^*)^d$ acts
- Rationally smooth $\iff \mathcal{H}$ is \texttt{simple}
To a rational hyperplane arrangement \mathcal{H} in \mathbb{R}^d, associate a *hypertoric variety* $\mathcal{M}_\mathcal{H}$.

- $\dim_{\mathbb{C}} \mathcal{M}_\mathcal{H} = 2d$, torus $T = (\mathbb{C}^*)^d$ acts
- Rationally smooth \iff \mathcal{H} is *simple*
- Smooth \iff \mathcal{H} is simple and *unimodular*.
To a rational hyperplane arrangement \mathcal{H} in \mathbb{R}^d, associate a Hypertoric variety $M_{\mathcal{H}}$.

- $\dim_{\mathbb{C}} M_{\mathcal{H}} = 2d$, torus $T = (\mathbb{C}^*)^d$ acts
- Rationally smooth \iff \mathcal{H} is simple
- Smooth \iff \mathcal{H} is simple and unimodular
- Never compact
The toric varieties X_P whose moment polyhedra are the chambers of \mathcal{H} are Lagrangian subvarieties of \mathcal{M}_H.

If \mathcal{M}_H is smooth, then every X_P is smooth, and $\mathcal{M}_H = \bigcup_P T^*X_P$.
If \mathcal{H} is central, then \mathcal{M}_H is affine. If $\tilde{\mathcal{H}}$ is a simplification of \mathcal{H}, there is a map $\mathcal{M}_{\tilde{\mathcal{H}}} \rightarrow \mathcal{M}_H$ which is an (orbifold) resolution of singularities.
If $\mathcal{H} = \{H_1, \ldots, H_n\}$ is simple, there exists a canonical ring isomorphism

$$H^*_T(\mathcal{M}_\mathcal{H}) = \mathbb{R}[e_1, \ldots, e_n]/\langle \prod_{i \in S} e_i \mid \bigcap_{i \in S} H_i = \emptyset \rangle.$$

This is the face ring $\mathbb{R}[\Delta_\mathcal{H}]$ of the matroid complex of \mathcal{H}.
Theorem (Proudfoot-Webster '04)

If \mathcal{H} is central, then there is an isomorphism

$$IH^\bullet_T(\mathcal{M}_\mathcal{H}) \cong \mathbb{R}[\Delta^{bc}_\mathcal{H}]$$

of $H^\bullet_T(pt)$-modules.

$\Delta^{bc}_\mathcal{H} = "\text{broken circuit complex}"

= simplices of $\Delta_\mathcal{H}$ containing no broken circuit.

$\text{circuit} = \text{minimal non-face } C \text{ of } \Delta_\mathcal{H}$

$\text{broken circuit} = C \setminus \text{min}(C)$.

This isomorphism is not canonical. $\Delta^{bc}_\mathcal{H}$ depends on the choice of ordering of the hyperplanes, although its Betti numbers do not.
Example

Circuits: \{1, 2, 3\}, \{1, 2, 4\}, \{3, 4\}
Example

Circuits: \(\{1, 2, 3\}, \{1, 2, 4\}, \{3, 4\} \)

Broken circuits: \(\{2, 3\}, \{2, 4\}, \{4\} \)
Example

Circuits: \{1, 2, 3\}, \{1, 2, 4\}, \{3, 4\}

Broken circuits: \{2, 3\}, \{2, 4\}, \{4\}

\[\Delta_{bc}^{\mathcal{H}} = \{\{1, 2\}, \{1, 3\}, \{1\}, \{2\}, \{3\}, \emptyset\} \].
Proudfoot and Speyer constructed a Cohen-Macaulay ring $R(\mathcal{H})$ which degenerates to $\mathbb{R}[\Delta^{bc}]$ for any choice of ordering:

$$R(\mathcal{H}) = \mathbb{R}[e_1, \ldots, e_n]/\left\langle \sum_{i \in C} a_i \prod_{j \in C \setminus i} e_j = 0 \right\rangle$$

where C runs over all circuits, and $\sum_{i \in C} a_i v_i = 0$ is a linear dependence among the normal vectors v_i to the hyperplanes H_i. In particular $R(\mathcal{H})$ has the same graded dimension as $\mathbb{R}[\Delta^{bc}]$.

Question

Is there a canonical identification $R(\mathcal{H}) \cong IH_\mathcal{T}(\mathcal{M}_\mathcal{H})$?
Minimal extension sheaves on fans
(Barthel-Brasselet-Fieseler-Kaup, Bressler-Lunts) give a canonical functorial computation of IH_T of toric varieties. We adapt this formalism to arrangements and hypertoric varieties...
Let $L_{\mathcal{H}} =$ the lattice of flats of \mathcal{H}. If \mathcal{H} is simple, this is just the matroid complex $\Delta_{\mathcal{H}}$.

$E \leq F$ means E lies in fewer hyperplanes — E is larger as a subspace of \mathbb{R}^d.

![Diagram of the lattice of flats and matroid complex](image)
Let $L_\mathcal{H}$ = the lattice of flats of \mathcal{H}. If \mathcal{H} is simple, this is just the matroid complex $\Delta_\mathcal{H}$.

$E \leq F$ means E lies in fewer hyperplanes — E is larger as a subspace of \mathbb{R}^d.

For any flat F, define $\mathcal{A}(F) = \text{Sym}(N_F)$, where N_F is the normal space to F in \mathbb{R}^d.

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
\end{array} \quad \begin{array}{c}
12 \\
2 \\
23 \\
24 \\
\end{array} \quad \begin{array}{c}
\mathbb{R} [x,y] \\
\mathbb{R} [x] \\
\mathbb{R} [y] \\
\mathbb{R} \\
\end{array}
\]
The quotient maps $\mathcal{A}(F) \to \mathcal{A}(E)$ when $E \leq F$ make \mathcal{H} into a sheaf of graded rings on $L_{\mathcal{H}}$, with the order topology.

A sheaf \mathcal{M} on $L_{\mathcal{H}}$ is an \mathcal{A}-module if $\mathcal{M}(F)$ is a graded $\mathcal{A}(F)$-module for each flat F, and the restriction maps are maps of modules.

Definition

An \mathcal{A}-module \mathcal{L} is a **minimal extension sheaf** if

1. $\mathcal{L}(\emptyset) = \mathcal{A}(\emptyset) = \mathbb{R}$
2. $\mathcal{L}(F)$ is a free $\mathcal{A}(F)$-module for all F
3. \mathcal{L} is flabby — sections extend upward
4. \mathcal{L} is minimal with respect to 1, 2, and 3.
Theorem (B.-Proudfoot)

Any two minimal extension sheaves on $L_{\mathcal{H}}$ are canonically isomorphic, up to a scalar.

If \mathcal{H} is rational, then there is a canonical isomorphism

$$\mathcal{L}(L_{\mathcal{H}}) \cong IH^\bullet_{\mathcal{T}}(\mathcal{M}_{\mathcal{H}}).$$
If \mathcal{H} is simple, then \mathcal{A} itself is a minimal extension sheaf. Its global sections are the face ring $\mathbb{R}[\Delta_{\mathcal{H}}]$.
Another example

For the central version of our arrangement, \mathcal{A} is not flabby:

\[
\begin{array}{ccc}
1 & 2 & 34 \\
\downarrow & \downarrow & \downarrow \\
1234 & 2 & 34 \\
\end{array}
\]
Another example

For the central version of our arrangement, A is not flabby: sections cannot be extended to the point.

$$A = \mathbb{R}[x, y]$$
Another example

Adding an extra generator at the point, we get a flabby sheaf:

\[
A = \mathbb{R}[x, y]
\]
The sheaves \mathcal{A} and \mathcal{L} come from localizing equivariant cohomology and intersection cohomology

$\mathcal{M}_\mathcal{H}$ has a stratification $\bigcup_F S_F$ indexed by $L_\mathcal{H}$. The T-stabilizer is the same for any point $p \in S_F$, and

$$H_T^\bullet(Tp) \cong \text{Sym}((t_F)^*) = \mathcal{A}(F).$$
The sheaves \mathcal{A} and \mathcal{L} come from localizing equivariant cohomology and intersection cohomology

\mathcal{M}_H has a stratification $\bigcup_F S_F$ indexed by L_H. The T-stabilizer is the same for any point $p \in S_F$, and

$$H_T^\bullet(Tp) \cong \text{Sym}((t_F)^*) = \mathcal{A}(F).$$

$\mathcal{L}(F)$ is the equivariant IH “stalk” along Tp. If p degenerates from a large stratum S_E to a small one S_F, this induces a map

$$\mathcal{L}(F) \to \mathcal{L}(E)$$

which is the restriction map for the sheaf \mathcal{L}.
A normal slice to the stratum S_F in $\mathcal{M}_\mathcal{H}$ is isomorphic to the affine hypertoric variety $\mathcal{M}_{\mathcal{H}_F}$ defined by the localization of \mathcal{H} at F: the central arrangement obtained by restricting to hyperplanes in F and slicing.

Thus we have an isomorphism

$$\mathcal{L}(F) \cong \text{IH}_T^\bullet(\mathcal{M}_{\mathcal{H}_F}) \cong \mathbb{R}[\Delta_{\mathcal{H}_F}^{bc}] \cong R(\mathcal{H}_F).$$

For flats $E \leq F$, we can define a ring homomorphism $R(\mathcal{H}_F) \to R(\mathcal{H}_E)$ by setting the variables $e_i, i \in F \setminus E$ to zero.

With these maps, $F \mapsto R(\mathcal{H}_F)$ defines an \mathcal{A}-module \mathcal{R}.
Theorem (B.–Proudfoot)

\mathcal{R} is a minimal extension sheaf.

Corollary

If \mathcal{H} is a rational central arrangement, there is a canonical isomorphism

$$R(\mathcal{H}) = \mathcal{R}(L_{\mathcal{H}}) \cong \operatorname{IH}^\bullet_T(\mathcal{M}_\mathcal{H}).$$

In particular, $\operatorname{IH}^\bullet_T(\mathcal{M}_\mathcal{H})$ carries a canonical ring structure.
Theorem (B.–Proudfoot)

R is a minimal extension sheaf.

Corollary

If \mathcal{H} is a rational central arrangement, there is a canonical isomorphism

$$R(\mathcal{H}) = R(L_{\mathcal{H}}) \cong IH^\bullet(\mathcal{M}_{\mathcal{H}}).$$

In particular, $IH^\bullet(\mathcal{M}_{\mathcal{H}})$ carries a canonical ring structure.

How can we understand this ring structure?
Theorem (B.–Proudfoot)

If \mathcal{H} is unimodular, then the equivariant IC sheaf $\text{IC}_T(\mathcal{M}_\mathcal{H})$ can be made into a ring object in the equivariant derived category $D^b_T(\mathcal{H})$ by a multiplication map

$$\text{IC}_T(\mathcal{M}_\mathcal{H}) \otimes \text{IC}_T(\mathcal{M}_\mathcal{H}) \to \text{IC}_T(\mathcal{M}_\mathcal{H}).$$

This ring structure is unique, and it induces our ring structure on $\text{IH}^\bullet_T(\mathcal{M}_\mathcal{H})$.

This implies that the ring structure respects a number of other functorial maps besides the restrictions in the sheaf \mathcal{R}. For instance, restriction to the open stratum S_{\emptyset} gives a ring homomorphism

$$R(\mathcal{H}) = \text{IH}^\bullet_T(\mathcal{M}_\mathcal{H}) \to H^\bullet_T(S_{\emptyset}).$$
The unimodularity hypothesis is puzzling. The sheaf \mathcal{R} makes sense, gives a minimal extension sheaf, and has the “right” Betti numbers even if \mathcal{H} is not unimodular, or even not rational.

But there is an isomorphism of rings:

$$H_T^\bullet(S_\emptyset) \cong \mathbb{R}[e_1, \ldots, e_n]/\langle e_1^2, \ldots, e_n^2 \rangle + \langle \sum_{i \in C} \text{sgn}(a_i) \prod_{j \in C \setminus i} e_j = 0 \rangle.$$
Why is unimodularity needed?

The unimodularity hypothesis is puzzling. The sheaf \mathcal{R} makes sense, gives a minimal extension sheaf, and has the “right” Betti numbers even if \mathcal{H} is not unimodular, or even not rational.

But there is an isomorphism of rings:

$$H^*_T(S_\emptyset) \cong \mathbb{R}[e_1, \ldots, e_n]/\langle e_1^2, \ldots, e_n^2 \rangle + \left\langle \sum_{i \in C} \text{sgn}(a_i) \prod_{j \in C \setminus i} e_j = 0 \right\rangle.$$

If \mathcal{H} is unimodular, then $\text{sgn}(a_i) = a_i$, so this matches up with

$$R(\mathcal{H}) = \mathbb{R}[e_1, \ldots, e_n]/\left\langle \sum_{i \in C} a_i \prod_{j \in C \setminus i} e_j = 0 \right\rangle.$$
Wild speculation

Could there be some sort of “orbifold corrections” when \mathcal{H} is rational but not unimodular which make a topological description of our ring structure possible?