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Let G(d, n) be the Grassmannian of d-planes in C
n. Let T = (C∗)n,

then T acts on C
n by rescaling coordinates and hence acts on

G(d, n).

Let x ∈ G(d, n), corresponding to a linear space L ⊂ Cn. For I a

d-element subset of [n] := {1, 2, . . . , n}, we say I ∈ Matroid(x) if

and only if the projection L→ CI is surjective. Equivalently,

I ∈ Matroid(x) if and only if pI(x) 6= 0. Then Tx is the toric

variety associated to the polytope

PMatroidx := ConvexHull (ei1 + · · · + eid
)(i1,...,id)∈Matroid(x) ⊂ R

n.



All the one dimensional orbits in Tx have stabilizers of the form

{z ∈ T : zi = zj}. Equivalently, all the edges of PMatroid(x) are

parallel to ei − ej for some i, j ∈ [n].

Proposition. (Gelfand, Goresky, MacPherson, Serganova) Let M

be a nonempty collection of d-element subsets of [n]; let

PM := ConvexHull (ei1 + · · · + eid
)(i1,...,id)∈M .

Then M is a matroid if and only if every edge of PM is in the

direction ei − ej for some i, j ∈ [n].

We say M is a rank d matroid on [n]. We call polytopes of this

type matroidal. Note that every face of a matroidal polytope is

matroidal.



The (equivariant and ordinary) cohomology and K-classes of Tx

depend only on Matroid(x), and we will give explicit formulas later.

Corresponding classes can be defined for matroids that don’t come

from points of Grassmannians. The equivariant classes are altered

by permuting the elements of [n], but the ordinary classes are not,

i.e., they are matroid isomorphism invariants.



Let M1 and M2 be matroids of ranks d1 and d2 on E1 and E2.

Then M1 ⊕M2 is a rank d1 + d2 matroid defined on E1 ⊔ E2.

M1 ⊕M2 := M1 ×M2 ⊂

(

E1

d1

)

×

(

E2

d2

)

⊂

(

E1 ⊔ E2

d1 + d2

)

.

We have PM1⊕M2

∼= PM1
× PM2

. A matroid which can not be

nontrivially written as a direct sum is called connected, every

matroid is uniquely expressible as a direct sum of connected

matroids. If dimPM = n− c, then M has c connected components.



Combinatorialists have defined many matroid invariants. I want to

think about three main examples:

• The Tutte polynomial: a two variable polynomial associated to a

matroid. Special values include the β invariant, chromatic

polynomial, number of bases, number of independent sets.

• Billera, Jia and Reiner’s quasisymmetric function

(arXiv:math.CO/0606646). There is a certain Hopf algebra which

has, as a basis, the set of isomorphism classes of matroids. This is a

combinatorial Hopf algebra in the sense of Aguair, Bergeron and

Sottile and so, by their results, there is a canonical Hopf algebra

morphism to the quasi-symmetric functions.

• My invariant from arXiv:math.AG/0603551.



All of these invariants are maps φ from {Isomorphism classes of

matroids} to some commutative ring with the following two

properties:

• φ multiplies in direct sums, that is to say,

φ(M1 ⊕M2) = φ(M1)φ(M2).

• φ adds in polytope decompositions. Let P̊M =
⊔

F∈F P̊F , where

all the F are matroids. Then

φ(M) =
∑

F∈F

(−1)dimPM−dimPF φ(F ).

We will see both these properties are natural from a K-theory

perspective.



What is K◦?

Let X be an algebraic variety. Then K◦(X) is the abelian group

generated by coherent sheaves on X , modulo the relations

[A] + [C] = [B] whenever there is a short exact sequence

0 → A → B → C → 0. K◦(X) is the subgroup generated by vector

bundles. When X is smooth, as it will be in all examples we

discuss, K◦(X) = K◦(X).



K◦(X) is a ring, with multiplication [E ] · [F ] = [E ⊗ F ] for E and F

vector bundles and K◦(X) is a K◦(X) module under the same

multiplication when E is a vector bundle and F any coherent sheaf.

If ψ : X → Y is any proper map then there is a map

ψ∗ : K◦(X) → K◦(Y ) by [E ] 7→
∑

i(−1)i[Riφ∗(E)]. An especially

important case is the map from a proper variety X to a point;

giving a map K◦(X) → K◦(pt) = Z. This map is the holomorphic

Euler characteristic of E , and we denote it χ([E ]).

If ψ : X → Y is any map, then there is a map

ψ∗ : K◦(Y ) → K◦(X) by [E ] 7→ [ψ∗E ]. If X → Y is flat, the same

formula gives a map K◦(Y ) → K◦(X).

Equivariant versions of these theories are defined using vector

bundles/sheaves equipped with group actions.

KT
◦ (pt) = K◦

T (pt) ∼= Z[x±1
1 , · · · , x±1

n ].



If x ∈ G(d, n), then the equivariant K-class [OTx] depends only on

Matroid(x). The ordinary K-class of [OTx] depends only on the

isomorphism class of Matroid(x). We denote these classes as

KT (M) and K(M).

Let ι be the injection G(d1, n1) ×G(d2, n2) →֒ G(d1 + d2, n1 + n2).

Then

ι∗(K(M1) ⊠ K(M2)) = K(M1 ⊕M2).

Let P̊M =
⊔

F∈F P̊F , where all the F are matroids. Then

K(M) =
∑

F∈F

(−1)dimPM−dimPF K(F ).



K◦
T (G(d, n)) = KT

◦ (G(d, n)) can be described as a certain quotient

of K◦
T (pt)[u±1

1 , · · ·u±1
d ]Sd .

Let S be the tautological rank d bundle on G(d, n), Sλ is the result

of applying the λ-th Schur functor to S and sλ the λ-th Schur

symmetric function, then sλ(u) represents [SΛ]. The classes [Sλ],

where λ ranges over the partitions fitting inside a d× (n− d) box,

form a K◦
T (pt) basis for K◦

T (G(d, n)). The linear functionals

[E ] 7→ χ([E ][Sλ]) are a dual basis to K◦
t (G(d, n)).

The ordinary K-class is gotten by replacing each x, coming from

K◦
T (pt) = Z[x±1

1 , . . . , x±1
n ] by a 1.



Let M be a rank d matroid on [n] and, for I ∈M , let CI ⊂ Rn be

the cone of PM at the vertex I. (The vertex of CI is at 0.) Let

hI(M)(x1, . . . , xn) be the generating function
∑

a∈Zn∩CI
xa, this is

a power series in xj/xi, where i ∈ I and j ∈ [n] \ I. It can be shown

that hI(M) is a rational function.

With the above notations,

K
T (M) =

∑

I∈M

hI(x)
∏

j∈[n]\I

d
∏

k=1

(1 − xjuk)

K(M) = K
T (M)|(x1,x2,...,xn)=(1,...,1).



K(M) adds in polyhedral decompositions, but it doesn’t multiply

in direct sums. However, if we fix e and restrict our attention to

matroids with d ≥ e, then K(M)(u1, . . . , ue, 0, 0, . . . , 0) does

multiply in direct sums. Moreover, this is true as an identity of

polynomials.

My proof is easy combinatorics. But, conceptually, it seems that

this fact is related to pulling back to the partial flag variety

Flag(1, 2, 3, . . . , e− 1, e, d;n) and then pushing down to

Flag(1, 2, 3, . . . , e;n).


