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Graph Varieties

Picture space X = X
d(G) of a graph G: a variety whose points pa-

rametrize arrangements of points and lines in P
d
F

that “look like” G

G = K3

L(12)

L(13)=L(23) p(1)=p(2)

p(3)

Combinatorics of G

(rigidity properties,
associated matroid)

←→

Geometry/topology of X

(defining equations,
component structure,

homology groups,
much more)



Combinatorial Rigidity Theory

A framework is a physical model of G built out of “joints” and “bars”.

• Pivoting framework: the bars are fixed in length, but can pivot
around their endpoints.
• Telescoping framework: the bars are attached to joints at fixed an-
gles, but their lengths can change.

Question: How can we tell combinatorially whether a bar-joint frame-
work of G is rigid? (Ambient dimension matters!)



The Rigidity Matroid

Let G = (V, E), n = |V |, r = |E|, and d ≥ 2.

d-rigidity matrix Rd(G):

• rows indexed by E, columns indexed by dV

• column dependencies = infinitesimal motions preserving edge lengths
• row dependencies = stresses (constraints on edge lengths)

d-rigidity matroidR = Rd(G) on E: represented by rows of Rd(G).

• G is d-rigid iff rank Rd = dn−
(

d+1
2

)

(the only infinitesimal motions are translation and rotation)

• G is d-rigidity-independent iffRd(G) is Boolean
(there are no constraints on the edge lengths)



The Parallel Matroid

Let G = (V, E), n = |V |, r = |E|, and d ≥ 2.

d-parallel matrix P d(G):

• rows indexed by E, columns indexed by dV

• column dependencies = motions preserving edge directions
• row dependencies = constraints on edge directions

d-parallel matroid P = Pd(G) on E: represented by rows of P d(G).

• G is d-parallel rigid iff rank Rd = dn− (d + 1)
(the only infinitesimal motions are translation and scaling)

• G is d-parallel-independent iff Pd(G) is Boolean
(there are no constraints on the edge directions)



Combinatorial Rigidity in the Plane

Laman’s Theorem Bases ofR2(Kn) = edge sets E such that
1. |E| = 2n− 3;
2. For every F ⊂ E, |F | ≤ 2|V (F )| − 3.

2(K )
5

basis of R not a basis

(Idea: The edges are not concentrated in any one part of the graph, as
that would overdetermine some lengths and underdetermine others.)

Planar Duality Theorem R2(G) = P2(G) for every graph G.



Graph Varieties and Rigidity Theory

Theorem (JLM) Let G be a graph. The following are equivalent:

(1) X = X d(G) is irreducible

(2) The pictures with distinct points are Zariski dense in X

(3) (d− 1)|F | < d · rank(F ) for all ∅ 6= F ⊂ E(G)

(4) The Tutte polynomial TG(q, qd−1) is monic in q, of degree |V (G)| − 1

(5) G is d-parallel independent

Idea of proof:

Partition X into cellules indexed by set partitions of V (G),
and calculate dimension of each cellule.

• Putting d = 2 in (3) recovers Laman’s condition
=⇒ Planar Duality Theorem



Extending Rigidity Theory to Matroids

Standard proofs of Laman’s and Recski’s Theorems involve linear alge-
bra and graph-theoretic arguments. But these results can be stated purely
in terms of the underlying matroid.

• Can these theorems be proved matroidally?

• Are the appropriate underlying objects for combinatorial rigidity
theory really graphs, or should we actually be studying matroids?

• If the latter, how can we use matroids to improve our understanding
of rigidity (and vice versa)?

• What is the matroidal analogue of the picture space of a graph?

• What is the geometry behind all this?



First Approach: d-Laman Independence

Let M be a matroid on ground set E, and let d ∈ (1,∞)R.

The d-Laman complex of M is the simplicial complex

Ld(M) =
{

F ⊂ E | d · rank(F ′) > |F ′| for all ∅ 6= F ′ ⊆ F
}

Theorem Ld(M) is a matroid complex for every matroid M

⇐⇒ d ∈ Z.

Theorem The following are equivalent:
(1) TM(qd−1, q) is monic of degree (d− 1) · rank(M);
(2) Ld(M) = 2E (generalizing Laman’s condition);
(3) For every e ∈ E, the multiset E ∪ {e} can be partitioned into

d disjoint independent sets (generalizing Recski’s condition).



Second Approach: The Photo Space

Let M be a matroid represented over F
r by vectors E = {v1, . . . , vn}

spanning F
r.

Idea: Take a “d-dimensional snapshot” of M by applying a linear trans-
formation φ : F

r → F
d, and record information about the directions of

the vectors by requiring φ(vi) to lie in some subspace Wi.

(Analogy: describing a picture of a graph by the direction vectors of its
constituent lines.)

For integers 0 < k < d, define the photo space

Xk,d(M) =







(φ,W1, . . . , Wn) :
φ ∈ HomF(Fr, Fd)
Wi ∈ Gr(k, Fd)
φ(vi) ∈ Wi ∀i









M is (k, d)-parallel independent if the projection map

Xk,d(M)→ Gr(k, Fd)n

is dense. (I.e., there are no mutual constraints on the Wi’s.)

The (k, d)-parallel independence complex is defined as

Pk,d(M) := {F ⊂ E : M |F is (k, d)-parallel independent}

Theorem The following are equivalent:

(1) M is (k, d)-parallel independent, i.e., Pk,d = 2E;

(2) Xk,d(M) is irreducible;

(3) M is
(

d
d−k

)

-Laman independent;

(4) d · rank(F ) > (d− k)|F | for every nonempty flat F of M .

(Proof is very similar to the corresponding statement for picture spaces.)



Third Approach: The Rigidity Matroid of a Matroid

E = vectors {v1, . . . , vn} spanning F
r

M = matroid represented by E

φ = d× r matrix of transcendentals (φij)

d-rigidity matroid R
d(M): represented over F(φ) by

{vi ⊗ φ(vi) | i ∈ [n]} ⊂ F
r ⊗ F(φ)d

• Generalizes the graphic case: Rd(M(G)) = Rd(G)
• Can be regarded as the Jacobian of a “pseudo-distance” matrix

The Nesting Theorem For every represented matroid M ,

P1,d(M) ⊂ Rd(M) ⊂ Ld(M) = Pd−1,d(M).

Corollary P1,2(M) = R2(M) = L2(M)
(generalizing Laman’s Theorem and Planar Duality Theorem)



U2,4 and the Cross Ratio (I)

Let M be the uniform matroid U2,4.

(Ground set E has size 4; independent sets are subsets of size ≤ 2.)

Ld(M) =











U2,4 if 1 < d < 3
2

U3,4 if 3
2

< d ≤ 2

U4,4 if d > 2

(d ∈ R)

P1,d(M) =

{

U3,4 if d = 2

U2,4 if d > 2
(d ∈ N)

• What does this mean geometrically?



U2,4 and the Cross Ratio (II)

Let F be a field with at least three elements, and µ ∈ F
× − {0, 1}

Represent U2,4 over F by the vectors

{v1 = (1, 0), v2 = (0, 1), v3 = (1, 1), v4 = (µ, 1)} ⊂ F
2.

Recall that P1,2(M) = U3,4.

We can choose φ : F
2 → F

2 by specifying the slopes of three of the φ(vi),
but not all four.

Every φ : F
2 → F

d preserves the cross-ratio.



Open Questions

(1) IsRd(M) independent of the particular representation?
. . . or at least dependent only on the choice of field?
. . . or at least for nice classes of matroids (e.g., graphic, uniform)?

— Yes for d = 2 and all M , by the Nesting Theorem.

— Rd(M) is well-defined up to projective equivalence
(i.e., changing coordinates or independently scaling the vi’s)

(2) Determine the defining equations of Xk,d(M)
(e.g., the cross-ratio in the example of U2,4).

— Probably related to decompositions of M and its minors into disjoint
bases (as for the picture variety of a graph)



Open Questions

(3) For F = Fq finite, |Xd,k(M)| = q-binomial specialization
of TM(x, y). In particular,

qdr |Xd−k,d(M
∗)| = q(d−k)n |Xk,d(M)|.

— Is there a combinatorial explanation for this?

(∞) Characterize Rd(M) combinatorially???


