Rigidity Theory for Matroids

Mike Develin (American Institute of Mathematics) Jeremy Martin (University of Kansas)
 Victor Reiner (University of Minnesota)

AMS Eastern Sectional Meeting Storrs, Connecticut
October 28, 2006

Graph Varieties

Picture space $\mathcal{X}=\mathcal{X}^{d}(G)$ of a graph G : a variety whose points parametrize arrangements of points and lines in $\mathbb{P}_{\mathbb{F}}^{d}$ that "look like" G

$$
G=K_{3}
$$

Combinatorics of G (rigidity properties, associated matroid)

Geometry/topology of \mathcal{X}
(defining equations, component structure, homology groups, much more)

Combinatorial Rigidity Theory

A framework is a physical model of G built out of "joints" and "bars".

- Pivoting framework: the bars are fixed in length, but can pivot around their endpoints.
- Telescoping framework: the bars are attached to joints at fixed angles, but their lengths can change.

Question: How can we tell combinatorially whether a bar-joint framework of G is rigid? (Ambient dimension matters!)

The Rigidity Matroid

Let $G=(V, E), n=|V|, r=|E|$, and $d \geq 2$.
d-rigidity matrix $R^{d}(G)$:

- rows indexed by E, columns indexed by $d V$
- column dependencies = infinitesimal motions preserving edge lengths
- row dependencies $=$ stresses (constraints on edge lengths)
d-rigidity matroid $\mathcal{R}=\mathcal{R}^{d}(G)$ on E : represented by rows of $R^{d}(G)$.
- G is d-rigid iff rank $R^{d}=d n-\binom{d+1}{2}$
(the only infinitesimal motions are translation and rotation)
- G is d-rigidity-independent iff $\mathcal{R}^{d}(G)$ is Boolean (there are no constraints on the edge lengths)

The Parallel Matroid

Let $G=(V, E), n=|V|, r=|E|$, and $d \geq 2$.
d-parallel matrix $P^{d}(G)$:

- rows indexed by E, columns indexed by $d V$
- column dependencies = motions preserving edge directions
- row dependencies = constraints on edge directions
d-parallel matroid $\mathcal{P}=\mathcal{P}^{d}(G)$ on E : represented by rows of $P^{d}(G)$.
- G is d-parallel rigid iff rank $R^{d}=d n-(d+1)$
(the only infinitesimal motions are translation and scaling)
- G is d-parallel-independent iff $\mathcal{P}^{d}(G)$ is Boolean (there are no constraints on the edge directions)

Combinatorial Rigidity in the Plane

Laman's Theorem Bases of $\mathcal{R}^{2}\left(K_{n}\right)=$ edge sets E such that

1. $|E|=2 n-3$;
2. For every $F \subset E,|F| \leq 2|V(F)|-3$.

basis of $R^{2}\left(K_{5}\right)$

not a basis
(Idea: The edges are not concentrated in any one part of the graph, as that would overdetermine some lengths and underdetermine others.)
Planar Duality Theorem $\quad \mathcal{R}^{2}(G)=\mathcal{P}^{2}(G)$ for every graph G.

Graph Varieties and Rigidity Theory

Theorem (JLM) Let G be a graph. The following are equivalent:
(1) $\mathcal{X}=\mathcal{X}^{d}(G)$ is irreducible
(2) The pictures with distinct points are Zariski dense in \mathcal{X}
(3) $(d-1)|F|<d \cdot \operatorname{rank}(F)$ for all $\emptyset \neq F \subset E(G)$
(4) The Tutte polynomial $T_{G}\left(q, q^{d-1}\right)$ is monic in q, of degree $|V(G)|-1$
(5) G is d-parallel independent

Idea of proof:
Partition \mathcal{X} into cellules indexed by set partitions of $V(G)$, and calculate dimension of each cellule.

- Putting $d=2$ in (3) recovers Laman's condition
\Longrightarrow Planar Duality Theorem

Extending Rigidity Theory to Matroids

Standard proofs of Laman's and Recski's Theorems involve linear algebra and graph-theoretic arguments. But these results can be stated purely in terms of the underlying matroid.

- Can these theorems be proved matroidally?
- Are the appropriate underlying objects for combinatorial rigidity theory really graphs, or should we actually be studying matroids?
- If the latter, how can we use matroids to improve our understanding of rigidity (and vice versa)?
- What is the matroidal analogue of the picture space of a graph?
- What is the geometry behind all this?

First Approach: d-Laman Independence

Let M be a matroid on ground set E, and let $d \in(1, \infty)_{\mathbb{R}}$.
The \boldsymbol{d}-Laman complex of \boldsymbol{M} is the simplicial complex

$$
\mathcal{L}^{d}(M)=\left\{F \subset E\left|d \cdot \operatorname{rank}\left(F^{\prime}\right)>\left|F^{\prime}\right| \text { for all } \emptyset \neq F^{\prime} \subseteq F\right\}\right.
$$

Theorem $\quad \mathcal{L}^{d}(M)$ is a matroid complex for every matroid M $\Longleftrightarrow d \in \mathbb{Z}$.

Theorem The following are equivalent:
(1) $T_{M}\left(q^{d-1}, q\right)$ is monic of degree $(d-1) \cdot \operatorname{rank}(M)$;
(2) $\mathcal{L}^{d}(M)=2^{E}$ (generalizing Laman's condition);
(3) For every $e \in E$, the multiset $E \cup\{e\}$ can be partitioned into d disjoint independent sets (generalizing Recski's condition).

Second Approach: The Photo Space

Let M be a matroid represented over \mathbb{F}^{r} by vectors $E=\left\{v_{1}, \ldots, v_{n}\right\}$ spanning \mathbb{F}^{r}.

Idea: Take a " d-dimensional snapshot" of M by applying a linear transformation $\phi: \mathbb{F}^{r} \rightarrow \mathbb{F}^{d}$, and record information about the directions of the vectors by requiring $\phi\left(v_{i}\right)$ to lie in some subspace W_{i}.
(Analogy: describing a picture of a graph by the direction vectors of its constituent lines.)

For integers $0<k<d$, define the photo space

$$
X_{k, d}(M)=\left\{\left(\phi, W_{1}, \ldots, W_{n}\right): \begin{array}{l}
\phi \in \operatorname{Hom}_{\mathbb{F}}\left(\mathbb{F}^{r}, \mathbb{F}^{d}\right) \\
\\
\phi\left(v_{i}\right) \in W_{i} \forall i, W_{i} \forall i
\end{array}\right\}
$$

M is (k, d)-parallel independent if the projection map

$$
X_{k, d}(M) \rightarrow \operatorname{Gr}\left(k, \mathbb{F}^{d}\right)^{n}
$$

is dense. (I.e., there are no mutual constraints on the W_{i} 's.)

The (k, d)-parallel independence complex is defined as $\mathcal{P}^{k, d}(M):=\left\{F \subset E:\left.M\right|_{F}\right.$ is (k, d)-parallel independent $\}$

Theorem The following are equivalent:
(1) M is (k, d)-parallel independent, i.e., $\mathcal{P}^{k, d}=2^{E}$;
(2) $X_{k, d}(M)$ is irreducible;
(3) M is $\left(\frac{d}{d-k}\right)$-Laman independent;
(4) $d \cdot \operatorname{rank}(F)>(d-k)|F|$ for every nonempty flat F of M.
(Proof is very similar to the corresponding statement for picture spaces.)

Third Approach: The Rigidity Matroid of a Matroid

$E=$ vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ spanning \mathbb{F}^{r}
$M=$ matroid represented by E
$\phi=d \times r$ matrix of transcendentals $\left(\phi_{i j}\right)$
d-rigidity matroid $\mathcal{R}^{d}(M)$: represented over $\mathbb{F}(\phi)$ by

$$
\left\{v_{i} \otimes \phi\left(v_{i}\right) \mid i \in[n]\right\} \subset \mathbb{F}^{r} \otimes \mathbb{F}(\phi)^{d}
$$

- Generalizes the graphic case: $\mathcal{R}^{d}(M(G))=\mathcal{R}^{d}(G)$
- Can be regarded as the Jacobian of a "pseudo-distance" matrix

The Nesting Theorem For every represented matroid M,

$$
\mathcal{P}^{1, d}(M) \subset \mathcal{R}^{d}(M) \subset \mathcal{L}^{d}(M)=\mathcal{P}^{d-1, d}(M) .
$$

Corollary $\quad \mathcal{P}^{1,2}(M)=\mathcal{R}^{2}(M)=\mathcal{L}^{2}(M)$
(generalizing Laman's Theorem and Planar Duality Theorem)

$U_{2,4}$ and the Cross Ratio (I)

Let M be the uniform matroid $U_{2,4}$.
(Ground set E has size 4 ; independent sets are subsets of size ≤ 2.)

$$
\begin{array}{ll}
\mathcal{L}^{d}(M)= \begin{cases}U_{2,4} & \text { if } 1<d<\frac{3}{2} \\
U_{3,4} & \text { if } \frac{3}{2}<d \leq 2 \\
U_{4,4} & \text { if } d>2\end{cases} \\
\mathcal{P}^{1, d}(M) & = \begin{cases}U_{3,4} & \text { if } d=2 \\
U_{2,4} & \text { if } d>2\end{cases}
\end{array} \quad(d \in \mathbb{R})
$$

- What does this mean geometrically?

$U_{2,4}$ and the Cross Ratio (II)

Let \mathbb{F} be a field with at least three elements, and $\mu \in \mathbb{F}^{\times}-\{0,1\}$
Represent $U_{2,4}$ over \mathbb{F} by the vectors

$$
\left\{v_{1}=(1,0), v_{2}=(0,1), v_{3}=(1,1), v_{4}=(\mu, 1)\right\} \subset \mathbb{F}^{2}
$$

Recall that $\mathcal{P}^{1,2}(M)=U_{3,4}$.
We can choose $\phi: \mathbb{F}^{2} \rightarrow \mathbb{F}^{2}$ by specifying the slopes of three of the $\phi\left(v_{i}\right)$, but not all four.

Every $\phi: \mathbb{F}^{2} \rightarrow \mathbb{F}^{d}$ preserves the cross-ratio.

Open Questions

(1) Is $\mathcal{R}^{d}(M)$ independent of the particular representation?
... or at least dependent only on the choice of field?
.... or at least for nice classes of matroids (e.g., graphic, uniform)?

- Yes for $d=2$ and all M, by the Nesting Theorem.
- $\mathcal{R}^{d}(M)$ is well-defined up to projective equivalence (i.e., changing coordinates or independently scaling the $v_{i}{ }^{\prime}$ s)
(2) Determine the defining equations of $X_{k, d}(M)$ (e.g., the cross-ratio in the example of $U_{2,4}$).
- Probably related to decompositions of M and its minors into disjoint bases (as for the picture variety of a graph)

Open Questions

(3) For $\mathbb{F}=\mathbb{F}_{q}$ finite, $\left|X_{d, k}(M)\right|=q$-binomial specialization of $T_{M}(x, y)$. In particular,

$$
q^{d r}\left|X_{d-k, d}\left(M^{*}\right)\right|=q^{(d-k) n}\left|X_{k, d}(M)\right| .
$$

- Is there a combinatorial explanation for this?
$(\infty) \quad$ Characterize $\mathcal{R}^{d}(M)$ combinatorially???

