The toric geometry of triangulated polygons in Euclidean space

$\begin{array}{lll}\text { B. Howard } & \text { C. Manon } & \text { J. Millson }\end{array}$
${ }^{1}$ Institute for Mathematics and its Applications University of Minnesota
${ }^{2}$ Department of Mathematics
University of Maryland College Park

AMS sectional conference, Storrs CT, October 2006

Motivating picture

Figure: A triangulated 4-gon, bent around the diagonal.

GIT quotients, symplectic reduction

- Let \mathbf{w} be an n-tuple of positive integers.
- The max. torus $T \subset S L(n)$ acts naturally on $G(2, n)$.
- This natural action may be "twisted" by w (by shifting the momentum map, or by the associated character $\chi_{\mathbf{w}}$ on the Plucker line bundle)
- The resulting quotient by T may be identified with the moduli space of polygonal linkages

$$
M_{\mathbf{w}}=\left\{\mathbf{p} \in\left(\mathbb{R}^{3}\right)^{n}\left|\sum p_{i}=0,\left|p_{i}\right|=w_{i}\right\} / S O(3, \mathbb{R})\right.
$$

$G(2, n)=$ "framed" n-gons.

- identify $\mathbb{R}^{3} \cong \mathfrak{s u}(2)^{*}$
- moment map $\mu: \mathbb{C}^{2} \rightarrow \mathbb{R}^{3}$ for $S U(2)$ action is given by $(z, w) \mapsto(1 / 4)\left(|z|^{2}-|w|^{2}, 2 \Re z \bar{w}, 2 \Im z \bar{w}\right)$.
- $S U(2)$ acts diagonally on $M_{2, n}$ (2 by n matrices); a matrix is momentum level zero iff the columns C_{i} satisfy $\sum_{i} \mu\left(C_{i}\right)=0$,
- Interpretation: spin-framed n-gons modulo $\operatorname{SU}(2)$, isomorphic to $\operatorname{Aff} G(2, n) \cong M_{2, n} / / S L(2)$.

The coordinate ring R_{n} of $G(2, n)$.

- Generators: $[i, j]$, for $1 \leq i<j \leq n$.
- Relations: $[i, \Pi][j, k]-[i, k][j, \Pi]+[i, j][k, \Pi]=0$, for $1 \leq i<j<k<I \leq n$.
- The subring of monomials generated by products $\prod_{k}\left[i_{k}, j_{k}\right]$ where the index i appears w_{i} times is the coordinate ring of M_{w}.

Speyer-Sturmfels toric degenerations of R_{n}

Figure: A triangulated hexagon and dual tree; $w t([i, j])=$ path length.

The toric variety V_{n}^{T}

The weighting wt derived from the tree (or triangulation) \mathcal{T} gives rise to an increasing filtration of the Grassmannian ring. The associated graded ring is toric.

Let the toric fiber be denoted $V_{n}^{\mathcal{T}}$, and define $M_{\mathrm{w}}^{\mathcal{T}}:=V_{n}^{\mathcal{T}} / / T$.

glueing together triangles

- The triangulation determines $n-2$ spin-frame triangles.
- Some edges are outer edges, some are internal diagonals.
- There is a natural S^{1} action on each (oriented) framed edge which rotates the spin frame but leaves the primary vector fixed.
- This torus splits as $\mathbb{T}=\mathbb{T}_{\text {edge }} \times \mathbb{T}_{\text {diag }}$ and $\mathbb{T}_{\text {diag }}=\mathbb{T}_{\text {diag }}^{-} \times \mathbb{T}_{\text {diag }}^{+}$, where $\mathbb{T}_{\text {diag }}^{-}$is the anti-diagonal action on pairs of meeting diagonals.
- The quotient by $\mathbb{T}_{\text {diag }}^{-}$is $V_{n}^{\mathcal{T}}$.
- The additional quotient by $\mathbb{T}_{\text {edge }}$ is the toric fiber of $M_{\mathbf{w}}$.

Picture of the triangular decomposition

The Kamiyama-Yoshida construction

- Kapovich-Millson bending flows on $G(2, n)$ (and M_{w}) are not well-defined where a diagonal vanishes.
- to make them well-defined - Kamiyama-Yoshida construction quotients out the "bad parts":
- If the polygon $\mathrm{p}=\mathrm{p}_{1} \vee \mathrm{p}_{2}$ is a wedge (vanishing diagonal) divide by $S U(2) \times S U(2)$; in general if $k-1$ diagonals vanish, $\mathbf{p}=\mathbf{p}_{1}$ SU(2)
- There is a nice stratification (in the sense of Sjamaar-Lerman) of this space by vanishing of diagonals.

The Kamiyama-Yoshida construction

- Kapovich-Millson bending flows on $G(2, n)$ (and M_{w}) are not well-defined where a diagonal vanishes.
- to make them well-defined - Kamiyama-Yoshida construction quotients out the "bad parts":
- If the polygon $\mathbf{p}=\mathbf{p}_{1} \vee \mathbf{p}_{2}$ is a wedge (vanishing diagonal), divide by $S U(2) \times S U(2)$; in general if $k-1$ diagonals vanish, $\mathbf{p}=\mathbf{p}_{1} \vee \cdots \vee \mathbf{p}_{k}$ then divide by $k+1$ copies of $S U(2)$.
- There is a nice stratification (in the sense of Sjamaar-Lerman) of this space by vanishing of diagonals.

The quotient map π is not algebraic

The subspace of bowties in M_{w} (isomorphic to $S O(3, \mathbb{R})$) is collapsed to a point under $\pi: M_{\mathbf{w}} \rightarrow M_{\mathbf{w}}^{\mathcal{T}}$. This is for the "fan" triangulation where all diagonals initiate from the first vertex v_{0}. In particular, π is not a regular morphism of varieties since this subspace is odd-dimensional.

Main Theorem - Foth-Hu conjecture

The Kamiyama-Yoshida construction for $G(2, n)$ (resp. M_{w}) coincides with the special fiber $V_{n}^{\mathcal{T}}$ (resp. $M_{\mathrm{w}}^{\mathcal{T}}$) of the Speyer-Sturmfels degeneration.

Bending flows vs. residual $\mathbb{T}_{\text {dlag }}^{+}$action

- The Sjamaar-Lerman stratification is by symplectic strata, and the bending flows extend to Hamiltonian flows on $V_{n}^{\mathcal{T}}$.
- The open set of prodigal n-gons in M_{w} maps symplectomorphically onto its image in $M_{w}^{\mathcal{T}}$.
- On the open set of prodigal n-gons, the action of the bending flow torus on M_{w} (almost) coincides with the action of $\mathbb{T}_{\text {diag }}^{+}$on $M_{\mathbf{w}}^{\mathcal{T}}$: each S^{1} component of $\mathbb{T}_{\text {diag }}^{+}$acts by spinning around the associated diagonal axis twice. (This comes about from the double cover $S U(2) \rightarrow S O(3, \mathbb{R})$.)

Example: $n=4$ and $\mathbf{w}=(1,1,1,1)$

- The classical cross-ratio gives an isomorphism of M_{w} with $\mathbb{C P}^{1}$.
- Here the subspace of M_{w} where the diagonal vanishes is mapped onto the real line segment $[0,1]$ of the complex plane. The unique linkage with maximal diagonal maps to ∞.
- The image of a bending-flow orbit is an ellipse with foci 0 and 1.
- Under $\pi: M_{\mathbf{w}} \rightarrow M_{\mathbf{w}}^{\mathcal{T}}$, the interval $[0,1]$ is sent to zero, and the ellipses as above are sent to circles centered at zero.
- Thus the toric degeneration repairs the failure of the bending flows to preserve the complex structure.

Related papers

- P. Foth and Yi Hu, Toric degeneration of weight varieties and applications, Trav. Math., XVI, 87-105, Univ. Luxembourg, 2005.
- V. Guillemin, L. Jeffrey, and R. Sjamaar, Symplectic Implosion, Transform. Groups 7 (2002), no. 2, 155-184.
- J. C. Hurtubise and L. C. Jeffrey, Representations with weighted frames and framed parabolic bundles, Canad. J. Math. 52 (2000), no. 6, 1235-1268.
- Y. Kamiyama, T. Yoshida, Symplectic Toric Space Associated to Triangle Inequalities, Geometriae Dedicata 93 (2002), 25-36.
- M. Kapovich, J. J. Millson, The symplectic geometry of polygons in Euclidean space, J. Differential Geom. 44 (1996), no. 3, 479-513.
- G. Kempf, L. Ness, The length of vectors in representation spaces, Algebraic Geometry,Proceedings,Copenhagen 1978,Lecture Notes in Mathematics 732, 233-243.
- A. Klyachko, Spatial polygons and stable configurations of points on the projective line, Algebraic geometry and its applications (Yaroslavl, 1992), 67-84.
- R.Sjamaar, Holomorphic slices symplectic reduction and multiplicities of representations, Annals of Mathematics 141 (1995), 87-129.
- R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Annals of Mathematics 134 (1991), 375-422.
- D. Speyer and B. Sturmfels, The tropical Grassmannian, http://lanl.arXiv.org/math.AG/0304218.

