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Motivating picture

Figure: A triangulated 4-gon, bent around the diagonal.
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GIT quotients, symplectic reduction

Let w be an n-tuple of positive integers.
The max. torus T ⊂ SL(n) acts naturally on G(2, n).
This natural action may be “twisted” by w (by shifting the
momentum map, or by the associated character χw on the
Plucker line bundle)
The resulting quotient by T may be identified with the
moduli space of polygonal linkages
Mw = {p ∈ (R3)n |

∑
pi = 0, |pi | = wi}/SO(3, R).
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G(2, n) = “framed” n-gons.

identify R3 ∼= su(2)∗

moment map µ : C2 → R3 for SU(2) action is given by
(z, w) 7→ (1/4)(|z|2 − |w |2, 2<zw , 2=zw).

SU(2) acts diagonally on M2,n (2 by n matrices); a matrix is
momentum level zero iff the columns Ci satisfy∑

i µ(Ci) = 0,
Interpretation: spin-framed n-gons modulo SU(2),
isomorphic to AffG(2, n) ∼= M2,n//SL(2).
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The coordinate ring Rn of G(2, n).

Generators: [i , j], for 1 ≤ i < j ≤ n.
Relations: [i , l][j , k ]− [i , k ][j , l] + [i , j][k , l] = 0, for
1 ≤ i < j < k < l ≤ n.
The subring of monomials generated by products

∏
k [ik , jk ]

where the index i appears wi times is the coordinate ring of
Mw.
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Speyer-Sturmfels toric degenerations of Rn
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Figure: A triangulated hexagon and dual tree; wt([i , j]) = path length.
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The toric variety V T
n

The weighting wt derived from the tree (or triangulation) T
gives rise to an increasing filtration of the Grassmannian ring.
The associated graded ring is toric.

Let the toric fiber be denoted V T
n , and define MT

w := V T
n //T .
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glueing together triangles

The triangulation determines n − 2 spin-frame triangles.
Some edges are outer edges, some are internal diagonals.
There is a natural S1 action on each (oriented) framed
edge which rotates the spin frame but leaves the primary
vector fixed.
This torus splits as T = Tedge × Tdiag and
Tdiag = T−

diag × T+
diag , where T−

diag is the anti-diagonal
action on pairs of meeting diagonals.
The quotient by T−

diag is V T
n .

The additional quotient by Tedge is the toric fiber of Mw.
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Picture of the triangular decomposition
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The Kamiyama-Yoshida construction

Kapovich-Millson bending flows on G(2, n) (and Mw) are
not well-defined where a diagonal vanishes.
to make them well-defined - Kamiyama-Yoshida
construction quotients out the “bad parts”:
If the polygon p = p1 ∨ p2 is a wedge (vanishing diagonal),
divide by SU(2)× SU(2); in general if k − 1 diagonals
vanish, p = p1 ∨ · · · ∨ pk then divide by k + 1 copies of
SU(2).
There is a nice stratification (in the sense of
Sjamaar-Lerman) of this space by vanishing of diagonals.
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The quotient map π is not algebraic

•
v0 = v3

•
v2

•
v1

•
v4

•
v5
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The subspace of bowties in Mw (isomorphic to SO(3, R)) is
collapsed to a point under π : Mw → MT

w . This is for the “fan”
triangulation where all diagonals initiate from the first vertex v0.
In particular, π is not a regular morphism of varieties since this
subspace is odd-dimensional.
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Main Theorem – Foth-Hu conjecture

The Kamiyama-Yoshida construction for G(2, n) (resp. Mw)
coincides with the special fiber V T

n (resp. MT
w ) of the

Speyer-Sturmfels degeneration.
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Bending flows vs. residual T+
diag action

The Sjamaar-Lerman stratification is by symplectic strata,
and the bending flows extend to Hamiltonian flows on V T

n .
The open set of prodigal n-gons in Mw maps
symplectomorphically onto its image in MT

w .
On the open set of prodigal n-gons, the action of the
bending flow torus on Mw (almost) coincides with the
action of T+

diag on MT
w : each S1 component of T+

diag acts by
spinning around the associated diagonal axis twice. (This
comes about from the double cover SU(2) → SO(3, R).)

Benjamin Howard, Chris Manon, John Millson Toric Geometry of Polygons



Example: n = 4 and w = (1, 1, 1, 1)

.

The classical cross-ratio gives an isomorphism of Mw with
CP1.
Here the subspace of Mw where the diagonal vanishes is
mapped onto the real line segment [0, 1] of the complex
plane. The unique linkage with maximal diagonal maps to
∞.
The image of a bending-flow orbit is an ellipse with foci 0
and 1.
Under π : Mw → MT

w , the interval [0, 1] is sent to zero, and
the ellipses as above are sent to circles centered at zero.
Thus the toric degeneration repairs the failure of the
bending flows to preserve the complex structure.
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