The toric geometry of triangulated polygons in Euclidean space

B. Howard¹ C. Manon² J. Millson²

¹Institute for Mathematics and its Applications University of Minnesota

²Department of Mathematics University of Maryland College Park

AMS sectional conference, Storrs CT, October 2006

ヘロト ヘアト ヘビト ヘビト

Motivating picture

Figure: A triangulated 4-gon, bent around the diagonal.

ヘロン 人間 とくほとく ほとう

æ

- Let w be an *n*-tuple of positive integers.
- The max. torus $T \subset SL(n)$ acts naturally on G(2, n).
- This natural action may be "twisted" by w (by shifting the momentum map, or by the associated character χ_w on the Plucker line bundle)

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 ● ④ ● ●

• The resulting quotient by *T* may be identified with the moduli space of polygonal linkages $M_{\mathbf{w}} = \{\mathbf{p} \in (\mathbb{R}^3)^n \mid \sum p_i = 0, |p_i| = w_i\}/SO(3, \mathbb{R}).$

G(2, n) = "framed" *n*-gons.

- identify $\mathbb{R}^3 \cong \mathfrak{su}(2)^*$
- moment map $\mu : \mathbb{C}^2 \to \mathbb{R}^3$ for SU(2) action is given by $(z, w) \mapsto (1/4)(|z|^2 |w|^2, 2\Re z \overline{w}, 2\Im z \overline{w}).$
- SU(2) acts diagonally on M_{2,n} (2 by *n* matrices); a matrix is momentum level zero iff the columns C_i satisfy ∑_i μ(C_i) = 0,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

 Interpretation: spin-framed n-gons modulo SU(2), isomorphic to AffG(2, n) ≅ M_{2,n}//SL(2).

- Generators: [i, j], for $1 \le i < j \le n$.
- Relations: [i, l][j, k] [i, k][j, l] + [i, j][k, l] = 0, for $1 \le i < j < k < l \le n$.
- The subring of monomials generated by products $\prod_k [i_k, j_k]$ where the index *i* appears w_i times is the coordinate ring of M_w .

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Speyer-Sturmfels toric degenerations of R_n

Figure: A triangulated hexagon and dual tree; wt([i, j]) = path length.

<週 > < 注 > < 注 > ... 注

The weighting *wt* derived from the tree (or triangulation) \mathcal{T} gives rise to an increasing filtration of the Grassmannian ring. The associated graded ring is toric.

Let the toric fiber be denoted V_n^T , and define $M_w^T := V_n^T //T$.

くぼう くほう くほう

glueing together triangles

- The triangulation determines n 2 spin-frame triangles.
- Some edges are outer edges, some are internal diagonals.
- There is a natural S¹ action on each (oriented) framed edge which rotates the spin frame but leaves the primary vector fixed.
- This torus splits as $\mathbb{T} = \mathbb{T}_{edge} \times \mathbb{T}_{diag}$ and $\mathbb{T}_{diag} = \mathbb{T}^-_{diag} \times \mathbb{T}^+_{diag}$, where \mathbb{T}^-_{diag} is the anti-diagonal action on pairs of meeting diagonals.
- The quotient by \mathbb{T}^-_{diag} is $V^{\mathcal{T}}_n$.
- The additional quotient by \mathbb{T}_{edge} is the toric fiber of M_{w} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Picture of the triangular decomposition

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

The Kamiyama-Yoshida construction

- Kapovich-Millson bending flows on G(2, n) (and M_w) are not well-defined where a diagonal vanishes.
- to make them well-defined Kamiyama-Yoshida construction quotients out the "bad parts":
- If the polygon p = p₁ ∨ p₂ is a wedge (vanishing diagonal), divide by SU(2) × SU(2); in general if k 1 diagonals vanish, p = p₁ ∨ · · · ∨ p_k then divide by k + 1 copies of SU(2).
- There is a nice stratification (in the sense of Sjamaar-Lerman) of this space by vanishing of diagonals.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The Kamiyama-Yoshida construction

- Kapovich-Millson bending flows on G(2, n) (and M_w) are not well-defined where a diagonal vanishes.
- to make them well-defined Kamiyama-Yoshida construction quotients out the "bad parts":
- If the polygon p = p₁ ∨ p₂ is a wedge (vanishing diagonal), divide by SU(2) × SU(2); in general if k − 1 diagonals vanish, p = p₁ ∨ · · · ∨ p_k then divide by k + 1 copies of SU(2).
- There is a nice stratification (in the sense of Sjamaar-Lerman) of this space by vanishing of diagonals.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The quotient map π is not algebraic

The subspace of bowties in $M_{\mathbf{w}}$ (isomorphic to $SO(3, \mathbb{R})$) is collapsed to a point under $\pi : M_{\mathbf{w}} \to M_{\mathbf{w}}^T$. This is for the "fan" triangulation where all diagonals initiate from the first vertex v_0 . In particular, π is not a regular morphism of varieties since this subspace is odd-dimensional.

The Kamiyama-Yoshida construction for G(2, n) (resp. M_w) coincides with the special fiber V_n^T (resp. M_w^T) of the Speyer-Sturmfels degeneration.

ヘロン 人間 とくほ とくほ とう

3

- The Sjamaar-Lerman stratification is by symplectic strata, and the bending flows extend to Hamiltonian flows on V_n^T.
- The open set of prodigal *n*-gons in *M*_w maps symplectomorphically onto its image in *M*^T_w.
- On the open set of prodigal *n*-gons, the action of the bending flow torus on *M*_w (almost) coincides with the action of T⁺_{diag} on *M*^T_w: each S¹ component of T⁺_{diag} acts by spinning around the associated diagonal axis *twice*. (This comes about from the double cover SU(2) → SO(3, ℝ).)

・ロト ・ 理 ト ・ ヨ ト ・

Example: n = 4 and w = (1, 1, 1, 1)

.

- The classical cross-ratio gives an isomorphism of $M_{\mathbf{w}}$ with \mathbb{CP}^1 .
- Here the subspace of *M*_w where the diagonal vanishes is mapped onto the real line segment [0, 1] of the complex plane. The unique linkage with maximal diagonal maps to ∞.
- The image of a bending-flow orbit is an ellipse with foci 0 and 1.
- Under π : M_w → M^T_w, the interval [0, 1] is sent to zero, and the ellipses as above are sent to circles centered at zero.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

• Thus the toric degeneration repairs the failure of the bending flows to preserve the complex structure.

Related papers

- P. Foth and Yi Hu, Toric degeneration of weight varieties and applications, Trav. Math., XVI, 87–105, Univ. Luxembourg, 2005.
- V. Guillemin, L. Jeffrey, and R. Sjamaar, Symplectic Implosion, Transform. Groups 7 (2002), no. 2, 155–184.
- J. C. Hurtubise and L. C. Jeffrey, Representations with weighted frames and framed parabolic bundles, Canad. J. Math. 52 (2000), no. 6, 1235–1268.
- Y. Kamiyama, T. Yoshida, Symplectic Toric Space Associated to Triangle Inequalities, Geometriae Dedicata 93 (2002), 25-36.
- M. Kapovich, J. J. Millson, The symplectic geometry of polygons in Euclidean space, J. Differential Geom. 44 (1996), no. 3, 479-513.
- G. Kempf, L. Ness, *The length of vectors in representation spaces*, Algebraic Geometry, Proceedings, Copenhagen 1978, Lecture Notes in Mathematics 732, 233-243.
- A. Klyachko, Spatial polygons and stable configurations of points on the projective line, Algebraic geometry and its applications (Yaroslavl, 1992), 67-84.
- R.Sjamaar, Holomorphic slices symplectic reduction and multiplicities of representations, Annals of Mathematics 141 (1995), 87-129.
- R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction, Annals of Mathematics 134 (1991), 375–422.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

D. Speyer and B. Sturmfels, The tropical Grassmannian, http://lanl.arXiv.org/math.AG/0304218.