Quiver variety references


P. Gabriel, Unzerlegbare Darstellungen, I, Manuscripta Math. 6 (1972),

L.A. Nazarova, Representations of quivers of infinite type,
Izv. Akad. Nauk SSSR, Ser. Math. 37 (1973), 752-791

C.W. Curtis and I. Reiner, Methods of Representation Theory, II,
Wiley, 1987 (Chapter 10)

D.J. Benson, Representations and Cohomology, I, Cambridge, 1991
(Chapter 4)

W. Crawley-Boevey, Lectures on representations of quivers (Oxford, 1992)

C.M. Ringel, Unzerlegbare Darstellungen endlich-dimensionaler
Algebren, Jahresber. Deutsche Math.-Verein. 85 (1983), no. 2, 86-105

C.M. Ringel, Tame algebras and integral quadratic forms, Lect. Notes
in Math. 1099, Springer, 1984


C.M. Ringel, Hall algebras and quantum groups, Invent. Math. 101
(1990), 583-592

W. Crawley-Boevey, Geometry of the moment map for representations of
quivers, Compositio Math. 126 (2001), 257-293

G. Lusztig, Introduction to Quantum Groups, Birkh\"auser, 1993
(Chapter 9 etc.)

G. Lusztig, Quivers, perverse sheaves and quantized enveloping algebras,
J. Amer. Math. Soc. 4 (1991), 365-421

G. Lusztig, Affine quivers and canonical bases, Inst. Hautes \'Etudes
Sci. Publ. Math. No. 76 (1992), 111-163

G. Lusztig, On quiver varieties, Adv. Math. 136 (1998), 141-182

G. Lusztig, Remarks on quiver varieties, Duke Math. J. 105 (2000),

G. Lusztig, Quiver varieties and Weyl group actions, Ann. Inst. Fourier,
Grenoble 50 (2000), 461-489

H. Nakajima, Quiver varieties and Kac-Moody algebras, Duke Math. J. 91
(1998), 515-560

H. Nakajima, Quiver varieties and finite-dimensional representations
of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), 145-238

H. Nakajima, Quiver varieties and tensor products, Invent. Math. 146
(2001), 399-449