The CMC Dynamics Theorem deals with describing all of the periodic or repeated geometric behavior of a properly embedded CMC surface with bounded second fundamental form in \mathbb{R}^3 in order to better understand general properties that hold for all such surfaces. Today I will be discussing my joint work with Giuseppe Tinaglia at the University of Notre Dame, South Bend, Indiana, concerning the CMC Dynamics Theorem with a focus on the CMC Minimal Element Theorem.
The space $T(M)$ of translational limits of M

Notation

- **$M \subset \mathbb{R}^3$** is a properly embedded CMC surface with bounded second fundamental form.
- **W_M** is the closed connected component in \mathbb{R}^3 on the mean convex side of M.
- **$L(M)$** is the set of all properly immersed (not necessarily connected) surfaces $\Sigma \subset \mathbb{R}^3$ which are limits of some sequence of translates $M - p_n$, where $p_n \in M$ with $|p_n| \to \infty$.
- **$T(M)$** is the set of (pointed) components of surfaces in $L(M)$ passing through the origin.
On the left is the singly-periodic surface M, which is the CMC desingularization of the collection of singly-periodic spheres on the right.

Elements of $L(M)$ are all translates of M and a doubly periodic family of Delaunay surfaces which contain $\vec{0}$.

Elements of $T(M)$ are translates of M passing through $\vec{0}$ and translates of a fixed Delaunay surface D passing through $\vec{0}$.

The only nonempty minimal T-invariant $\Delta \subset T(M)$ is $T(D)$, where $D \in T(M)$ is a fixed Delaunay surface.
Lemma

A nonempty set $\Delta \subset T(M)$ is a minimal T-invariant set if and only if whenever $\Sigma \in \Delta$, then $T(\Sigma) = \Delta$.
Theorem (CMC Dynamics Theorem in homogeneous manifolds)

Let M denote a noncompact, properly embedded, separating CMC hypersurface with bounded second fundamental form in a homogeneous manifold N. Fix a base point $p \in N$ and a transitive group G of isometries. Let $T_G(M)$ the set of connected, properly immersed submanifolds passing through p which are limits of a divergent sequence of compact domains on M "translated" by elements in G. Then:

- M has a fixed size regular neighborhood on its mean convex side.
- For each $\Sigma \in T_G(M) \cup \{M\}$, we have $T_G(\Sigma) \neq \emptyset$ and $T_G(\Sigma) \subset T_G(M)$.
- $T_G(M)$ and has a natural compact topological space structure induced by a metric.
- Every nonempty T_G-invariant subset of $T_G(M)$ contains a nonempty minimal T_G-invariant subset.
Key properties of minimal elements

Theorem (Minimal Element Theorem)

Suppose that M has possibly nonempty compact boundary and $\Sigma \in T(M)$ is a minimal element. Then:

- $T(\Sigma) = L(\Sigma)$, i.e., every surface in $L(\Sigma)$ is connected.
- If Σ has at least 2 ends, then Σ is a Delaunay surface.
- Σ is chord-arc, i.e., there exists a $c > 0$ such that for $p, q \in \Sigma$ with $d_{R^3}(p, q) \geq 1$, then
 $$d_\Sigma(p, q) \leq c \cdot d_{R^3}(p, q).$$
- For all $c, D > 0$, there exists a $d_{c, D} > 0$ such that: For every compact set $X \subset \Sigma$ with extrinsic diameter less than D and for each $q \in \Sigma$, there exists a smooth compact, domain $X_{q,c} \subset \Sigma$ and a vector, $v[q, c, D] \in R^3$, so that
 $$d_\Sigma(q, X_{q,c}) < d_{c,D} \quad \text{and} \quad d_H(X, X_{q,c} + v[q, c, D]) < c.$$
The Alexandrov reflection principle at infinity

Theorem (Halfspace Theorem, R-R, M-T)

If \(M \subset \{ x_3 > 0 \} \), then \(T(M) \) has a minimal element with the \((x_1, x_2)\)-plane \(P \) as a plane of Alexandrov symmetry.

Idea of the proof.

Using the fixed sized regular neighborhood of \(M \) and the Alexandrov reflection principle, one finds a positive number \(C \) so that \(M \cap \{ x_3 < C \} \) is a graph a smooth function on some domain in \(P \) and points \(p_n \in M \cap \{ x_3 = C \} \) such that the tangent spaces to \(M \) at the points \(p_n \) converge to the vertical. A subsequence of the translated surfaces \(M - p_n \) gives rise to a limit surface \(\Sigma \in T(M) \) with the plane \(P \) as a plane of Alexandrov symmetry. By the Dynamics Theorem, \(T(\Sigma) \) contains the desired minimal element.
Lemma (Large Balls Lemma)

If $\mathbb{R}^3 - M$ contains balls of arbitrarily large radius, then $T(M)$ has a minimal element with a plane of Alexandrov symmetry.

Proof.

Find a sequence B_n of such open balls so that there exist a divergent sequence of points $p_n \in M \cap \partial B_n$ and a related limit $\Sigma \in T(M)$ arising from $M - p_n$, which lies in the halfspace $\lim_{n \to \infty} (B_n - p_n) \subset \mathbb{R}^3$. Then apply the Halfspace Theorem to Σ.

Corollary

If $T(M)$ does not contain a minimal element with a plane of Alexandrov symmetry, then there is an integer K such that the number of ends of M or of any $\Sigma \in L(M)$ is at most K.
Idea of the proof of the corollary.

Suppose that $\mathbf{T}(\mathbf{M})$ contains no minimal examples with a plane of Alexandrov symmetry. The proof uses the following fact, for any $R > 0$. Suppose E_1, E_2, \ldots, E_k are disjoint end representatives for a surface $\Sigma \in \mathbf{T}(\mathbf{M})$ with boundaries in some ball $B(R - 1)$. When k is sufficiently large, then for every ball B of radius R in $\mathbb{R}^3 - (\Sigma \cup B(R))$, B is disjoint from one of these end representatives. Otherwise, one contradicts the uniform cubical volume estimate for all surfaces in $\mathbf{T}(\mathbf{M})$ in balls of radius R.

The proof of Large Balls Lemma now works.
Theorem (Annular End Theorem)

Suppose M has a plane of Alexandrov symmetry and at least $n > 1$ ends. Then M has at least n annular ends.

Corollary

If $\Sigma \in T(M)$ is a minimal element, then each surface in $L(\Sigma)$ has at most one end or else Σ is a Delaunay surface.

Proof of the corollary.

If a surface in $T(\Sigma)$ has a plane of Alexandrov symmetry, then so does Σ and every surface in $L(\Sigma)$, and the corollary follows from the theorem. So assume that no surface in $T(\Sigma)$ has a plane of Alexandrov symmetry. If some surface $\Sigma' \in L(\Sigma)$ has $n > 1$ ends, then the Large Balls Lemma implies every surface in $L(\Sigma')$ has at least n components. Choose $F \in L(\Sigma')$ with Σ as a component. Repeating this argument, $L(F) \subset L(\Sigma')$ has an element with $2n - 1$ ends. So $T(\Sigma)$ has an element with a plane of Alexandrov symmetry, a contradiction.
Minimal elements $\Sigma \in T(M)$ are chord-arc.

Theorem

Minimal elements $\Sigma \in T(M)$ are chord-arc.

Proof: For $p, q \in \mathbb{R}^3$, $d(p, q) = d_{\mathbb{R}^3}(p, q)$. Let $\Sigma \in T(M)$ be a minimal element.

Assertion

There exists a function $f : [1, \infty) \rightarrow [1, \infty)$ so that for $p, q \in \Sigma$ with $1 \leq d(p, q) \leq R$, $d_{\Sigma}(p, q) \leq f(R) \cdot d(p, q)$.

Proof.

Otherwise there exists an R_0 and points $p_n, q_n \in \Sigma$ with $d(p_n, q_n) \leq R_0$ and $n \leq d_{\Sigma}(p_n, q_n)$. Then $(\Sigma - p_n) \rightarrow \Sigma_\infty \in L(\Sigma)$ which is disconnected; this contradicts previous corollary, so f exists.
There exists a function $f: [1, \infty) \to [1, \infty)$ so that for $p, q \in \Sigma$ with $1 \leq d(p, q) \leq R$, $d_{\Sigma}(p, q) \leq f(R) \cdot d(p, q)$.

Case A: Every ball of a fixed radius $R - 1$ in \mathbb{R}^3 intersects Σ.

Proof.

Let $p, q \in \Sigma$ such that $d(p, q) \geq 4R$. Let B_1, \ldots, B_n be a chain of closed balls of radius R centered along the line segment joining p, q and with points $s_i \in B_i \cap \Sigma$ and $s_1 = p, s_n = q$, and so that, $1 \leq d(s_i, s_{i+1}) \leq 4R$. Note $(n - 1)2R \leq d(p, q)$.
Minimal elements $\Sigma \in T(M)$ are chord-arc

- There exists a function $f : [1, \infty) \to [1, \infty)$ so that for $p, q \in \Sigma$ with $1 \leq d(p, q) \leq R$, $d_\Sigma(p, q) \leq f(R) \cdot d(p, q)$.

- **Case A:** Every ball of a fixed radius $R - 1$ in \mathbb{R}^3 intersects Σ.

Proof.

Let $p, q \in \Sigma$ such that $d(p, q) \geq 4R$. Let B_1, \ldots, B_n be a chain of closed balls of radius R centered along the line segment joining p, q and with points $s_i \in B_i \cap \Sigma$ and $s_1 = p, s_n = q$, and so that, $1 \leq d(s_i, s_{i+1}) \leq 4R$. Note $(n - 1)2R \leq d(p, q)$. By the triangle inequality,

$$d_\Sigma(p, q) \leq \sum_{i=1}^{n-1} d_\Sigma(s_i, s_{i+1}) \leq \sum_{i=1}^{n-1} f(4R)d(s_i, s_{i+1}) \leq f(4R) \cdot (n - 1)4R \leq 2f(4R) \cdot d(p, q).$$
Case B: Σ has a plane of Alexandrov symmetry. The proof of this case uses similar arguments as in Case A. This completes the proof of the chord-arc property of minimal elements.

Theorem (Annular End Theorem)
Suppose \(M \) has a plane of Alexandrov symmetry and at least \(n > 1 \) ends. Then \(M \) has at least \(n \) annular ends. In particular, \(M \) has a finite number of ends greater than 1 if and only if it has finite topology.

Proof: Suppose \(M \) is a bigraph over a domain \(\Delta \) in the \(x_1x_2 \)-plane and \(M_1, M_2 \subset M \) are ends of \(M \), which are components in the complement of a vertical cylinder of radius \(R_0 \). Suppose \(M_i \) is a bigraph over \(\Delta_i \subset \Delta \).
Figure: $\sigma_1(1)$ is the short arc in the circle of radius R_1. $P_1(1)$ is the yellow shaded region containing $\sigma_1(1)$ and an arc of ∂_1 in its boundary. By the Alexandrov reflection principle and height estimates for CMC graphs, P_1 lies $1/H$ close to any vertical halfspace containing $\sigma_1(1)$.

After a horizontal translation and a rotation of M_1 around the x_3-axis, we may assume that M_1 lies in $\{(x_1, x_2, x_3) \mid x_2 > 0\}$. The proof of the Halfspace Theorem shows that after another rotation, we may also assume Δ_1 also contains divergent sequence of points $p_n = (x_1(n), x_2(n), 0) \in \partial \Delta_1$ such that $\frac{x_2(n)}{x_1(n)} \to 0$ as $n \to \infty$ and the surfaces $M_1 - p_n$ converge to a Delaunay surface.
Figure: Choosing the points $p_n \in M_1$ and related data.

Our goal is to show M_1 contains an annular end. This follows from the next assertion.

Assertion

The regions between forming Delaunay surfaces near p_n are annuli.

The assertion holds if the segment $a(n) \cap \Delta_1$ bounds a compact domain in (above) Δ_1.
Existence of green bubble implies that for some $c > 0$, the CMC flux F of $E_2 = \nabla x_2$ on the portion X_n of M_1 over the shaded rectangle satisfies $F > c$, contradicting a standard application of the divergence theorem.
Figure: A picture of M_1 with two bubbles blown on its mean convex side.