
Families of 4-Manifolds with Nontrivial Stable

Cohomotopy Seiberg-Witten Invariants, and

Normalized Ricci Flow
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Abstract

In this article, we produce infinite families of 4-manifolds with
positive first betti numbers and meeting certain conditions on their
homotopy and smooth types so as to conclude the non-vanishing of the
stable cohomotopy Seiberg-Witten invariants of their connected sums.
Elementary building blocks used in [28] are shown to be included in
our general construction scheme as well. We then use these families to
construct the first examples of families of closed smooth 4-manifolds
for which Gromov’s simplicial volume is nontrivial, Perelman’s λ̄ in-
variant is negative, and the relevant Gromov-Hitchin-Thorpe type in-
equality is satisfied, yet no non-singular solution to the normalized
Ricci flow for any initial metric can be obtained. In [12], Fang, Zhang
and Zhang conjectured that the existence of any non-singular solution
to the normalized Ricci flow on smooth 4-manifolds with non-trivial
Gromov’s simplicial volume and negative Perelman’s λ̄ invariant im-
plies the Gromov-Hitchin-Thorpe type inequality. Our results in par-
ticular imply that the converse of this fails to be true for vast families
of 4-manifolds.

1 Introduction

Let X be a closed smooth Riemannian 4-manifold X with b+(X) > 1, where
b+(X) denotes the dimension of the maximal positive definite linear subspace
in the second cohomology of X. In what follows, e(X) and sign(X) denote
respectively the Euler characteristic and signature of X. Recall that a spinc-
structure ΓX on X induces a pair of spinor bundles S±

ΓX
which are Hermitian

vector bundles of rank 2 over X. A Riemannian metric on X and a uni-
tary connection A on the determinant line bundle LΓX

:= det(S+
ΓX

) induce
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the twisted Dirac operator DA : Γ(S+
ΓX

) −→ Γ(S−
ΓX

). The Seiberg-Witten
monopole equations [48] over X are the following non-linear partial differen-
tial equations for a unitary connection A of the complex line bundle LΓX

and
a spinor φ ∈ Γ(S+

ΓX
):

DAφ = 0, F+
A = iq(φ),

here F+
A is the self-dual part of the curvature of A and q : S+

ΓX
→ ∧+ is a cer-

tain natural real-quadratic map, where ∧+ is the bundle of self-dual 2-forms.
The quotient space of the set of solutions to the Seiberg-Witten monopole
equations by gauge group is called the Seiberg-Witten moduli space. In his
celebrated article [48], Witten introduced an invariant of smooth 4-manifolds
by using the fundamental homology class of the Seiberg-Witten moduli space,
which is now called the Seiberg-Witten invariant, and is well-defined for any
closed 4-manifold X with b+(X) > 1.

In [7, 5], Bauer and Furuta adopted a remarkable approach to introduce
a refinement of the Seiberg-Witten invariant SWX without using the Seiberg-
Witten moduli space. They introduced a new invariant, which takes values in
a certain stable cohomotopy group πb+

S1,B
(Pic0(X), indD), where b+ := b+(X)

and indD is the virtual index bundle for the Dirac operators parametrized
by the b1(X)-dimensional Picard torus Pic0(X). This invariant is called the
stable cohomotopy Seiberg–Wittten invariant, and herein will be denoted as:

BFX(ΓX) ∈ πb+

S1,B(Pic0(X), indD).

where ΓX is a spinc-structure on X. Moreover, in [5] Bauer proved a non-
vanishing theorem of BF∗ for a connected sum of 4-manifolds with b+ > 1

and b1 = 0 [5] subject to a couple of conditions, and used this theorem to
show that there are 4-manifolds that appear as such connected sums, for
which SW∗ is trivial but BF∗ is not. In particular, BF∗ is a strictly stronger
invariant than SW∗.

In [28], H. Sasahira and the second author of the current article gen-
eralized Bauer’s non-vanishing theorem by removing the condition b1 = 0

for the summands. We now introduce the notion of BF-admissibility for a
4-manifold, as discussed in [28]:

Definition 1 A closed oriented smooth 4-manifold X with b+(X) > 1 is
called BF-admissible if the following three conditions are satisfied.

1. There exists a spinc-structure ΓX with SWX(ΓX) ≡ 1 ( mod 2) and
c2

1(LΓX
) = 2e(X) + 3sign(X), where c1(LΓX

) is the first Chern class of
LΓX

.
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2. b+(X) − b1(X) ≡ 3 (mod 4).

3. Sij(ΓX) := 1
2

< c1(LΓX
) ∪ ei ∪ ej, [X] >≡ 0 (mod 2) for all i, j,

where e1, e2, · · · , es be a set of generators of H1(X, Z), s = b1(X), and [X] is
the fundamental class of Xi and < ·, · > is the pairing between cohomology
and homology.

The new non-vanishing theorem [28] tells us that, for i = 1, 2, 3, a
connected sum #j

i=1Xi of BF-admissible, closed oriented 4-manifold Xi has
a non-trivial stable cohomotopy Seiberg-Witten invariant. Observe that,
when b1(Xi) = 0, the second condition for BF-admissibility just reads as
b+(X) ≡ 3 (mod 4) and the third one holds trivially. That is, the new non-
vanishing theorem when b1(Xi) = 0 for all summands is nothing but Bauer’s
non-vanishing theorem from [5], and therefore can be regarded as a natural
generalization of the latter. In order to apply this new non-vanishing theorem
of stable cohomotopy Seiberg-Witten invariant to geometry and topology of
smooth 4-manifolds, it is essential to find BF-admissible 4-manifolds. Of par-
ticular interest was to find BF-admissible 4-manifolds with b1 6= 0, so as to
get new applications that does not follow from Bauer’s original non-vanishing
theorem stated for b1 = 0. In [28], two types of 4-manifolds were seen to be
BF-admissible: Products Σg×Σh of two Riemann surfaces of odd genera, and
primary Kodaira surfaces. Failing to get other examples of 4-manifolds with
b1 > 0 satisfying the BF-axioms, the authors raised the following problem
in the same work [28]:

Problem 1 ([28]) Find BF-admissible, closed oriented 4-manifolds with b1 >

0, which are not primary Kodaira surfaces or products Σg × Σh of Riemann
surfaces with odd genera.

In the first part of our article, we will answer this problem by showing
the existence of vast families of BF-admissible 4-manifolds with b1 > 0.
Moreover, we will see that these families naturally include products Σg×Σh

and primary Kodaira surfaces. The main surgical operation involved in these
constructions is the Luttinger surgery along Lagrangian tori [37], defined and
discussed in detail in Subsection 2.1 below.

In Subsection 2.2, we will introduce the notion of surgered product mani-
folds which are obtained from products Σg×Σh via Luttinger surgeries along
certain homologically essential Lagrangian tori. Note that Σg × Σh are the
trivial examples of surgered product manifolds. We will prove that:

3



Theorem A Let Σg × Σh be the product of two Riemann surfaces of odd
genera g, h, equipped with the product symplectic form. Then any surgered
product manifold obtained from Σg×Σh with b1 > 0 is BF-admissible. More-
over, and primary Kodaira surface is a surgered product manifold obtained
from T2 × T2, and is BF-admissible.

In [1], Akhmedov, Baldridge, Kirk, D. Park, and the first author of the
current article, showed that a very large portion of the symplectic geog-
raphy plane could be populated with minimal symplectic 4-manifolds. In
Subsection 2.3, we will make use of these examples, while paying attention
to preserving BF-admissibility during the employed surgical operations, to
prove the following:

Theorem B Let a and b be integers satisfying 2a+3b ≥ 0, a+b ≡ 0 ( mod
8), and b < −1 is satisfied. Set as α = (a + b)/2 and β = (a − b)/2.
Then, there exists a BF-admissible, irreducible symplectic 4-manifold with
fundamental group Z which is homeomorphic to

αCP2#βCP2#(S1 × S3) (1)

and a BF-admissible, irreducible symplectic 4-manifold with fundamental
group Zp, p odd, which is homeomorphic to

(α − 1)CP2#(β − 1)CP2#Yp, (2)

where Yp is the 4-manifold with fundamental group Zp, obtained from the
product L(p, 1) × S1 of Lens space L(p, 1) and S1 after a 0 surgery along
{pt} × S1.

Note that these symplectic 4-manifolds are not brand new; they are pro-
duced using the families of [1], and were studied in [46]. The new key ob-
servation is that, under the mild condition a + b ≡ 0 (mod 8), they are all
BF-admissible.

Combining the new non-vanishing theorem [28], Theorems A, and B, we
conclude that vast families that consist of connected sums of 4-manifolds
with b1 > 0 have non-trivial stable cohomotopy Seiberg-Witten invariants.
The existence of such families of connected sums enables us to give several
new application regarding the geometry and topology of smooth 4-manifolds,
which we present in the second part of our article.

It is known that connected sums of manifolds equipped with positive
scalar curvature metrics admit such metrics as well [18, 42]. Also known
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is that positive scalar curvature metric is stable under codimension q ≥ 3

surgeries [18, 42]. These results imply that the connected sums (1) and (2)
admit positive scalar curvature metrics with respect to their standard smooth
structures. Importantly, it means that stable cohomotopy Seiberg-Witten
invariants of the connected sums of 4-manifolds given in (1) and (2) above,
equipped with standard smooth structures, vanish. This fact, together with
the new non-vanishing theorem [28] and Theorem B, allows us to prove the
existence of pairwise homeomorphic but not diffeomorphic 4-manifolds with
trivial Seiberg-Witten invariants. Namely, we get exotic copies of standard
4-manifolds which are connected sums of CP2, CP2, S1 × S3, Yp, with trivial
Seiberg-Witten invariants but non-trivial stable cohomotopy Seiberg-Witten
invariants.

Corollary 2 For i = 1, 2, 3, let Xi be any one of the 4-manifolds given
in Theorem B. Then any connected sum #j

i=1Xi admits an exotic smooth
structure, for j = 2, 3.

Moreover, by combining Theorem D in [28] with Theorems A and B of
our paper, we also obtain

Corollary 3 Let X be any closed, simply connected, non-spin, symplectic
4-manifold with b+ ≡ 3 (mod 4). For i = 1, 2, let Xi be any one of the
4-manifolds given in Theorem A or Theorem B. Then any connected sum

X#
(

#j
i=1Xi

)

admits an exotic smooth structure, for j = 1, 2.

Examples of closed non-spin and simply-connected 4-manifolds (which nec-
essarily satisfy b+ ≡ 3 (mod 4)) can be pulled out from the large collections
of [1], or from earlier works of various authors in this direction. (See for
instance Gompf’s pioneer work [15].)

Another main application we will give regards the Ricci flow solutions on
smooth 4-manifolds, and is discussed in Section 3. This is tightly related to
Conjecture 1.8 of Fang, Zhang and Zhang in [12], as we will explain below.
Let X be a closed oriented Riemannian manifold of dimension n ≥ 3. The
normalized Ricci flow on X the following evolution equation [21]:

∂

∂t
g = −2Ricg +

2

n
sgg, (3)

where Ricg is the Ricci curvature of the evolving Riemannian metric g,
sg :=

∫
X
sgdµg/volg and sg denotes the scalar curvature of the evolving

Riemannian metric g, volg :=
∫

X
dµg and dµg is the volume measure with
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respect to g. A solution {g(t)}, t ∈ [0, T) of (3) on X is called non-singular
[22] if T = ∞ and if the Riemannian curvature tensor Rmg(t) of g(t) satisfies

sup
X×[0,T)

|Rmg(t)| < ∞.

In [22], Hamilton classified non-singular solutions to (3) on 3-manifolds. This
work played an important role in understanding long-time behavior of solu-
tions of the Ricci flow on 3-manifolds. In [12], Fang, Zhang and Zhang also
studied the properties of non-singular solutions to (3) in higher dimensions.
One of fundamental discoveries due to [12] is that, under a certain condition
on the scalar curvature, the existence of the non-singular solutions of (3)
brings constraints on the topology of the 4-manifold, and in particular on its
Euler characteristic and signature:

2e(X) − 3|sign(X)| ≥ 0.

This can be seen as a generalization of Hitchin-Thorpe inequality [24, 45] to
Ricci flow case. Based on this fact, the authors proposed a conjecture. To
state their conjecture precisely, we need to recall the definition of Perelman’s
λ̄ invariant [40, 41]. Let g be any Riemannian metric on a closed oriented
smooth manifold X with dimension n ≥ 3. Consider the least eigenvalue λg

of the elliptic operator 4∆g + sg, where sg denotes the scalar curvature of g,
and ∆ = d∗d = −∇ · ∇ is the positive-spectrum Laplace-Beltrami operator
associated with g. λg can be expressed in terms of Raleigh quotients as

λg = inf
u

∫
X

[

sgu
2 + 4|∇u|2

]

dµ
∫

M
u2dµ

,

where the infimum is taken over all smooth, real-valued functions u on X.
Consider the the scale-invariant quantity λg(volg)

2/n, where volg =
∫

M
dµg

denotes the total volume of (X, g). By taking the supremum of λg(volg)
2/n

over the space of all Riemannian metrics, we define Perelman’s λ̄ invariant
of X:

λ̄(X) = sup
g

λg(volg)
2/n. (4)

The Fang-Zhang-Zhang conjecture can be stated as follows:

Conjecture 4 ([12]) Let X be a closed oriented smooth Riemannian 4-manifold
with ||X|| 6= 0 and λ̄(X) < 0, where ||X|| denotes Gromov’s simplicial volume.

6



Suppose that there is a non-singular solution to the normalized Ricci flow on
X. Then the following holds:

2e(X) − 3|sign(X)| ≥
1

1296π2
||X||. (5)

In this article, we refer to this conjecture as the FZZ conjecture in short. To
the best of our knowledge, the FZZ conjecture remains open. In connection
with this conjecture, the following problem arises naturally:

Problem 5 Let X be a closed oriented smooth 4-manifold with ||X|| 6= 0,
λ̄(X) < 0 and satisfying the inequality (5). Then, is there always a non-
singular solution to the normalized Ricci flow on X?

This is nothing but the converse of Conjecture 4. In the current article, we
shall prove:

Theorem C Let Xm be a BF-admissible closed oriented smooth 4-manifold
and consider the following connected sum:

Mℓ1,ℓ2

g,h,j := (#j
m=1Xm)#(Σh × Σg)#ℓ1(S

1 × S3)#ℓ2CP2,

where j = 1, 2, ℓ1, ℓ2 ≥ 1, and g, h ≥ 3 are odd integers. Then, there are
infinitely many sufficiently large integers g, h, ℓ1, ℓ2 for which Mℓ1,ℓ2

g,h,j has the
following properties.

1. X has ||X|| 6= 0 and satisfies the strict case of the inequality (5):

2e(X) − 3|sign(X)| >
1

1296π2
||X||.

2. X admits at least one smooth structure for which Perelman’s λ̄ invariant
is negative and there is no non-singular solution to the normalized Ricci
flow for any initial metric.

Since there are infinitely many BF-admissible closed 4-manifolds by The-
orems A and B, as a corollary to Theorem C, we see that:

Corollary 6 The converse of the FZZ conjecture fails to hold for vast fam-
ilies of 4-manifolds.
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In Subsection 3.4, we will propose a stronger version of the Conjecture 4;
see Conjecture 26 stated there. We shall moreover derive results analagous
to Theorem C; see Theorems D.

Acknowledgments. The first author was partially supported by the NSF grant
DMS-0906912. The second author is partially supported by the Grant-in-Aid
for Scientific Research (C), Japan Society for the Promotion of Science, No.
20540090.

2 Families of 4-manifolds satisfying BF-axioms

In this section, we will be proving Theorems A and B, which were stated in
the Introduction.

2.1 Logarithmic transforms and Luttinger surgeries

Let L be an embedded self-intersection zero 2-torus in a 4-manifold X with
oriented tubular neighborhood N(L). A framing of N(L) is a choice of an
orientation-preserving diffeomorphism ξ : N(L) → D2× T2, giving an identi-
fication

H1(∂(X \ N(L))) ∼= H1(L) ⊕ Z, (6)

where the last summand is generated by a positively oriented meridian µL

of L. We can construct a new 4-manifold X ′ = X \ N(T) ∪φ D2 × T2 using a
diffeomorphism φ : ∂(T2 × D2) → ∂N(L). This diffeomorphism is uniquely
determined up to isotopy by the homology class

φ∗[∂D2] = p[µL] + q[S1
λ] ,

where S1
λ is a push-off of a primitive curve λ in L by the chosen framing ξ. To

sum up, the result of the surgery is determined by the torus L, the framing
ξ, the surgery curve λ and the surgery coefficient p/q ∈ Q ∪ {∞}. This
data is encoded in the notation X(L, λ, p/q) whenever the framing is clear
from the context. The operation producing X ′ = X(L, λ, p/q) is called the
(generalized) logarithmic p/q transform of X along L —with surgery curve λ

and framing ξ, which we will denote by (L, λ, p/q).
If (X, ωX) is a symplectic manifold and L is a Lagrangian torus in X, then

L admits a Weinstein neighborhood N(L), which is a tubular neighborhood
of L equipped with a canonical framing. This framing, called the Lagrangian
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framing here, is characterized by the unique property that x × T2, for any
x ∈ D2, corresponds to a Lagrangian submanifold of X under it. Let ξ

be the Lagrangian framing and S1
λ be the Lagrangian push-off of λ, i.e the

push-off of λ in this framing. The (L, λ, 1/q) surgery with these choices can
be performed symplectically, providing us with —a deformation class of—
a symplectic form ωX′ on X ′ = X(L, λ, p/q) that agrees with ωX on the
complement of N(L) [3]. This special logarithmic transform is referred as
Luttinger surgery.

The classical topological invariants of 4-manifolds we are interested in
this article change under logarithmic transforms (and in particular under
Luttinger surgeries) as follows: Euler characteristic and signature of X ′ and
X are the same, yet their spin types may differ depending on the choice
of L and the surgery. It follows that when µL is nullhomologous and S1

λ is
homologically essential in X\N(L), we have b1(X

′) = b1(X)−1 and b2(X
′) =

b2(X) − 2. On the other hand, when both S1
λ and L are nullhomologous in

X \ N(L),
H1(X(L, λ, p/q); Z) = H1(X; Z) ⊕ Z/pZ .

Lastly, applying the Seifert-Van Kampen theorem, we get:

π1(X(L, λ, p/q)) = π1(X \ N(T))/〈[µL]
p[S1

λ]
q = 1〉. (7)

It follows from the very definition that a logarithmic transform operation
can be reversed, by performing a logarithmic transform along the core torus
of the surgery that now lies in X ′ = X(L, λ, p/q) by an appropriate choice of
the surgery curve and the surgery coefficient. It is an easy exercise to see that,
the same holds true in the symplectic setting; i.e. a Luttinger surgery can
be reversed to obtain back the original symplectic 4-manifold. In this case,
we will call it undoing the corresponding logarithmic transform or Luttinger
surgery.

In what follows, we will mainly be interested in Luttinger surgeries so as to
conclude that the resulting 4-manifolds we obtain satisfy the first assumption
of Definition 1. Namely, we will be using the canonical class ΓX associated to
the resulting symplectic form, so that

SWX(ΓX) ≡ 1 (mod 2) , and c2
1(LΓX

) = 2e(X) + 3sign(X).

The rest of the assumptions will be seen to be satisfied merely by looking at
the topological effect of the underlying logarithmic transforms.
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2.2 Surgered product manifolds

Let X0 be the product of two Riemann surfaces Σg and Σh, equipped with the
product symplectic form. The second homology group H2(X0) is generated by
the homology classes of Σg, Σh and the Lagrangian tori ai×cj, ai×dj, bi×cj,
bi×dj, i = 1, . . . , g and j = 1, . . . , h, where ai, bi and cj, dj are the symplectic
pairs of homology generators of the surfaces Σg and Σh, respectively. Assume
that X1 is obtained from X0 via Luttinger surgeries along some of these
homologically essential Lagrangian tori in X0, such that: Each surgery is
performed with surgery curve equal to one of ai, bi, cj, dj carried on the torus
and with surgery coefficient equal to 1/n with respect to the Lagrangian
framing, for some n ∈ Z. In the present article, we shall call these new
symplectic manifolds surgered product manifolds. Then we have

Lemma 7 All surgered product manifolds obtained from Σg×Σh with b1 > 0,
are BF-admissible, for g, h are positive odd integers.

Proof. Assume g and h are both odd positive integers. Since

b+(Σg × Σh) = 1 + 2gh , and b1(Σg × Σh) = 2(g + h),

the difference b+ − b1 ≡ 1 + 2(gh − g − h) ≡ 3 (mod 4). If we perform a
torus surgery along any one of the product Lagrangian tori with the surgery
curve equals any one of the homology generators (namely ai, bi, cj or dj for
i = 1, . . . g, j = 1, . . . , h) and the surgery coefficient equals 1/n with respect
to the Lagrangian framing, then b1 drops by one, as seen from the equation
(6). Note that we can just compute b1 in Q-coefficients so n can be any
integer here.

Since the torus surgery does not change the Euler characteristic, b2 of the
new manifold we get drops by two. Moreover, what dies in the new homology
is nothing but the homology class of the torus we performed the surgery along
as well as the homology class of the torus dual to it. (A detailed analysis of
this fact can be found in [25].) These Lagrangian tori made up a hyperbolic
pair in the second homology of the original manifold, so we see that each one
of b+ and b− drop by one. Hence the difference b+ − b1 remains the same
and equals to 3 (mod 4) after the surgery, satisfying the second condition in
Definition 1.

Now, let (X, ωX) be the resulting symplectic 4-manifold obtained by
a sequence of Luttinger surgeries of this sort in X0. To guarantee that
b+(X) > 1, one just should not get taken by the heat of this process and
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kill all pairs of Lagrangian tori. It suffices to leave one such pair; Σg × {pt}

and {pt} × Σh still descend to the new symplectic manifold as a hyperbolic
pair, and together with another pair of Lagrangian tori we get b+(X1) > 1

as required.
For the class ΓX take any almost complex structure compatible with the

symplectic form, on which Seiberg-Witten invariant evaluates as 1 (and thus
equals 1 (mod 2)) by Taubes’ celebrated work in [44]. This particularly
implies that the first condition in Definition 1 is satisfied.

The new set of generators for H1(X) is given by all ai, bi, cj or dj for
i = 1, . . . g, j = 1, . . . , h except for the used surgery curves. Now note that
ap × bq and cr × ds for p, q = 1, . . . , g and r, s = 1, . . . , h (whichever still
exist) are all trivial in H2(X). On the other hand all other possible products
were prescribing Lagrangian tori in the symplectic manifold X0. Since the
canonical class of X0 can be supported away from all these tori [3], these
tori are still Lagrangian in X. Thus, if we choose ΓX as an almost complex
structure compatible with the symplectic form on X, then the evaluation
Sij(ΓX) := 1

2
< c1(ΓX) ∪ ei ∪ ej, [X] > is either trivially zero to begin with

or is equal to evaluating ω on a Lagrangian torus, and thus, vanishes in all
possible cases, satisfying the third condition in Definition 1.

In addition to the manifolds of the type Σg × Σh for g, h odd, it was
observed in [28] that a primary Kodaira surface is also BF-admissible. Both
of these families of manifolds are indeed subfamilies of surgered manifolds,
as we now show for the non-trivial case: 1

Lemma 8 A primary Kodaira surface K is a surgered product manifold. In
particular, K is BF-admissible.

Proof. Take g = h = 1 and perform one Luttinger surgery along any one
of the homologically essential tori listed above. Without loss of generality
we can assume that this torus is a × c (where we drop the subindices as
g = h = 1). The resulting manifold can be described by the dimensionally
reduced Kirby diagram given below. In the diagram one depicts X0 = T2×T2

as S1 × T3 where the first S1 component corresponds to a, and not drawn.
Then since the diagram and the surgery are set in an S1 invariant way,
the Luttinger surgery amounts to performing a Dehn surgery along c with
coefficient n in the T3 component [2]. The resulting diagram describes the
smooth type of a primary Kodaira surface.

1Tian-Jun Li has informed us that this observation was known to him. Also see [25].
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Figure 1: An S1 invariant surgery diagram for a primary Kodaira surface.

Another way to see this is through the classification of Lagrangian torus
bundles over tori (see [14]). The projection onto b×d describes a Lagrangian
torus bundle on T4 equipped with the product symplectic form (i.e. the sum
of the pullbacks of the volume forms on tori a × b and c × d). The reader
can verify that the Luttinger surgery along a × c in question yields a new
Lagrangian torus bundle over a torus, where the fiber now is necessarily
inessential in homology. As the result is a symplectic 4-manifold admitting
a Lagrangian torus bundle over a torus, it is a primary Kodaira surface.

Theorem A now follows from Lemmas 7 and 8.

2.3 Families obtained from surgered product manifolds

We are now going to look at large families of 4-manifolds constructed using
solely the surgered products as building blocks. Such families, spanning a
large portion of the geography plane were obtained in [1]:

Theorem 9 (Theorem A in [1]) Let a and b denote integers satisfying
2a+3b ≥ 0, and a+b ≡ 0 (mod 4). If, in addition, b ≤ −2, then there exists
a simply connected minimal symplectic 4-manifold with Euler characteristic
a and signature b and odd intersection form, except possibly for (a, b) equal
to (7,−3), (11,−3), (13,−5), or (15,−7).
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Note that the missing four lattice points given in the statement, using
the minimal symplectic CP2#2CP2 constructed by Akhmedov and Park, can
be realized by the same methods of [1], as shown in [4]. For the lack of a
better name, we will call all these manifolds as ABBKP manifolds in short.
A close look at these examples show that they are all obtained from surgered
product manifolds via a couple of operations. Namely:

(1) Symplectic blow-ups at points on the symplectic surfaces Σg × {pt} or
{pt} × Σh in the surgered product manifolds; and

(2) Symplectic fiber sums along symplectic surfaces which are obtained
from copies of Σg× {pt}, {pt}×Σh and exceptional spheres that might
have been introduced during blow-ups.

Said differently, these manifolds are obtained by using symplectic build-
ing blocks Σg × Σh —where g and h are not necessarily odd, the above two
operations, and Luttinger surgeries with coefficients ±1 are performed along
the product Lagrangian tori contained in them. This is because these La-
grangian tori are away from the standard symplectic surfaces Σg × {pt} or
{pt} × Σh, and remain Lagrangian after blow-ups of fiber sums. Therefore,
one can perform the above two operations and the Luttinger surgeries in any
order to get the resulting symplectic 4-manifold.

To meet the first and second conditions in Definition 1, we only deal with
those X with b+(X) ≡ 3 (mod 4). Since b1(X) = 0, the third condition in
Definition 1 is satisfied vacuously for these manifolds. Now, if we undo any of
the Luttinger surgeries, from our previous arguments in the proof of Lemma
7 we see that we re-introduce the hyperbolic pair of Lagrangian tori in the
new resulting symplectic manifold, but all the conditions in Definition 1 are
still satisfied. Hence we see that:

Theorem 10 If one undoes any collection of the Luttinger surgeries involved
in the construction of any one of the ABBKP manifold with b+ ≡ 3 (mod 4),
the resulting manifold meets all the conditions in Definition 1.

Undoing these surgeries in simply-connected end products will re-introduce
b1 in a straightforward fashion. The change in fundamental group however
is more subtle, and is to our interest mostly when we only undo one of the
surgeries to get manifolds with fundamental group Z and perform the last
surgery with general Luttinger surgery coefficient ±1/m instead of ±1 to
get Zm, for which we can use homeomorphism criteria given by the following
theorems:
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Theorem 11 (Hambleton-Teichner [20], see also [33].) Let X be a
smooth closed oriented 4-manifold with infinite cyclic fundamental group. X

is classified up to homeomorphism by the fundamental group, the intersection
on H2(X, Z)/Tors and the w2-type. If in addition, b2(X)− |sign(X)| ≥ 6, then
X is homeomorphic to the connected sum of S1×S3 with a unique closed simply
connected 4-manifold. In particular, X is determined up to homeomorphism
by its second Betti number b2(X), its signature τ(X) and its w2-type. Partic-
ularly, X is either spin or non-spin depending on the parity of its intersection
form.

Theorem 12 (Hambleton-Kreck [19]) Let X be a closed smooth oriented
4-manifold with finite cyclic fundamental group. Then X is classified up to
homeomorphism by the fundamental group, the intersection form on
H2(X; Z)/Tors, and the ω2-type. Moreover, any isometry of the intersec-
tion form can be realized by a homeomorphism.

A 0-surgery along {pt}× S1 in L(p, 1)× S1 yields a manifold with funda-
mental group Zp, which has the smallest homology among all other
4-manifolds of the same fundamental group, which we denote by Yp. A
bi-product of the above discussion gives rise to Theorem B:

Proof. [Theorem B] In [1], a key ingredient in the constructions were the
telescoping triples. We recall the definition of a telescoping triple here for the
convenience of reader: An ordered triple (X, T1, T2) where X is a symplectic
4-manifold and T1, T2 are disjointly embedded Lagrangian tori is called a
telescoping triple if

(i) The tori T1, T2 span a 2-dimensional subspace of H2(X; R).

(ii) π1(X) = Z ⊕ Z and the inclusion induces an isomorphism
π1(X\(T1∪T2)) → π1(X), which in particular implies that the meridians
of the Ti are trivial in π1(X \ (T1 ∪ T2)).

(iii) The image of the homomorphism induced by inclusion
π1(T) → π1(X) is a summand Z in π1(X).

(iv) The homomorphism induced by inclusion π1(T2) → π1(X) is an isomor-
phism.

Each ABBKP manifold X ′ is obtained using various telescoping triples. In
particular, X ′ can be viewed as obtained from a telescoping triple (X, T1, T2)

(say the ‘last’ telescoping triple involved in the construction) after a ±1

14



Luttinger surger along T2. The very properties of a telescoping triple implies
that undoing the Luttinger surgery along the core-torus that descends from
T2 hands us back a symplectic 4-manifold Z with fundamental group Z. Now
if one performs a Luttinger surgery along T2 in Z with the same surgery
curve but with surgery coefficient 1/p instead, from Seifert-Van Kampen
calculation we get a symplectic 4-manifold Zp with fundamental group Zp.
(Note that the sign of the surgery does not effect the resulting fundamental
group, so it is not relevant to our discussion here.)

We claim that the manifolds Z and Zp constructed for each ABBKP
manifold X make up the families

αCP2#βCP2#(S1 × S3) and

(α − 1)CP2#(β − 1)CP2#Yp ,

respectively. From Theorem 9, there is an X with a = e(X), b = sign(X)

satisfying a+b ≡ 0 ( mod 8), and b ≤ −2. (These constitute the ‘half’ of the
ABBKP manifolds, since we require a + b ≡ 0 (mod 8) instead of a + b ≡
0 (mod 4).) Therefore, the Euler characteristic and signature of Z and Zp

are also equal to a and b, respectively. Clearly, both are non-spin smooth
4-manifolds, and satisfy b2(X) − |sign(X)| ≥ 6. Now, π1(Z) = H1(Z) = Z

and π1(Zp) = H1(Zp) = Zp for p odd, lands Z in the same homeomorphism

class of (a + b)/2CP2#(a − b)/2CP2#(S1 × S3) by Theorem 11 and Zp in

(a + b/2 − 1)CP2#(a − b/2 − 1)CP2#Yp by Theorem 12, respectively.
To prove that the manifolds Z and Zp are irreducible, we recall that they

can equivalently be obtained from surgered products via two operations (1)
and (2) discussed above. There are two key observations made in [1] and [4]
to conclude the minimality of ABBKP manifolds: First of all, the surgered
products used in these constructions are minimal. After blow-ups minimality
is lost in the pieces, however, the fiber sums that follow are performed along
symplectic surfaces that intersect the new exceptional spheres in the way that
Usher’s theorem on minimality of symplectic fiber sums [47] can be employed
to conclude that the resulting symplectic 4-manifold is minimal. The same
observations hold true when one of the Luttinger surgeries goes undone, since
the only difference now surfaces in one of the surgered products containing the
corresponding Lagrangian torus being obtained from a product of Riemann
surfaces with one less Luttinger surgery (and thus yielding a non-rational
surface bundle over a non-rational surface, which has no π2). Hence, both Z

and Zp are minimal symplectic 4-manifolds with residually finite fundamental
groups. By [23], they are irreducible.
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Lastly, our claim that manifolds Z and Zp satisfy the BF-axioms, follow

from Theorem 10.

Remark In [1] many more possible lattice points in the geography plane for
sign ≤ 4 were realized by minimal symplectic 4-manifolds, leaving out about
280 lattice points. Moreover, the small manifolds constructed by Akhmedov
and Park in [4] leads to a slight enlargement of this region spanned by the
minimal symplectic 4-manifolds. These manifolds can also be used to enlarge
our families obtained in Theorem B—a similar discussion can be found in
[46]. Nevertheless, we are content with the vast families we have got for
the applications that will follow in the next chapter, and therefore will not
discuss these slight extensions here. 2

3 The Ricci flow and the FZZ conjecture

3.1 Asymptotic behavior of the Ricci curvature

Inspired by works of Cao [11] and Li [36], one parameter family λ̄k of smooth
invariants, where k ∈ R, was introduced in [28]. It is called λ̄k invariant.
Let X be a closed oriented Riemannian manifold with dimension ≥ 3. Then,
recall the following variant [36, 39] Fk : RX×C∞(X) → R of the Perelman’s
F -functional [40]:

Fk(g, f) :=

∫

X

(

ksg + |∇f|2
)

e−fdµg, (8)

where k is a real number k ∈ R. We shall call this Fk-functional. Notice
that F1-functional is nothing but Perelman’s F -functional. Li [36] pointed
out that all functionals Fk with k ≥ 1 have the monotonicity properties
under a certain coupled system of Ricci flow. As was already mentioned in
[36, 29] essentially, for a given metric g and k ∈ R, there exists a unique
minimizer of the Fk-functional under the constraint

∫
X
e−fdµg = 1. In fact,

by using a direct method of the elliptic regularity theory, one can see that
the following infimum is always attained:

λ(g)k := inf
f

{Fk(g, f) |

∫

X

e−fdµg = 1}.
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Notice that λ(g)k is nothing but the least eigenvalue of the elliptic operator
4∆g + ksg. It is then natural to introduce the following invariant [28] which
is called λ̄k invariant of X:

λ̄k(X) = sup
g∈RX

λ(g)k(volg)
2/n.

It is clear that λ̄1(X) = λ̄(X) holds. Then we have:

Theorem 13 ([28]) For m = 1, 2, 3, let Xm be a BF-admissible 4-manifold
and set as c2

1(Xm) = 2e(Xm) + 3sign(Xm). Suppose that N is a closed ori-
ented smooth 4-manifold with b+(N) = 0. Consider a connected sum M :=
(

#n
m=1Xm

)

#N, where n = 2, 3. Suppose moreover that
∑n

m=1 c2
1(Xm) > 0

holds, where n = 2, 3. Then, for n = 2, 3 and any real number k ≥ 2
3
, λ̄k

invariant of a connected sum M := (#n
m=1Xm)#N satisfies

λ̄k(M) ≤ −4kπ

√

√

√

√2

n∑

m=1

c2
1(Xm) < 0.

As a corollary of Theorem 13, we obtain:

Corollary 14 Let Xm be a BF-admissible closed oriented smooth 4-manifold
and consider the a connected sum:

M := (#j
m=1Xm)#(Σh × Σg)#ℓ1(S

1 × S3)#ℓ2CP2,

where j = 1, 2, ℓ1, ℓ2 ≥ 1. And g, h ≥ 3 are odd integers such that c
j
g,h :=

∑j

m=1(2e(Xm)+3sign(Xm))+4(1−h)(1−g) > 0. Then, for any real number
k ≥ 2

3
, λ̄k invariant of the connected sum M is given by

λ̄k(M) ≤ −4kπ

√

2c
j
g,h < 0. (9)

Proof. By Theorem A, the product Σh × Σg of Riemann surface with odd

genus is BF-admissible. Hence, Theorem 13 implies the bound (9).

We also have:

Lemma 15 Let X be a closed oriented Riemannian manifold of dimension
n ≥ 3 and assume that there is a positive real number k such that the λk(X) <

0. If there is a solution {g(t)}, t ∈ [0, T), to the normalized Ricci flow, then

ŝg(t) := min
x∈X

sg(t)(x) ≤
λk(X)

k(volg(0))2/n
< 0,

where we define as ŝg := minx∈X sg(x) for a given Riemannian metric g.
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Proof. The case where k = 1 is proved in [26]. Though the proof is similar to
the case, we shall include the proof for the reader. Let {g(t)} be any solution
to the normalized Ricci flow on X. Notice that λg(t) can be expressed in
terms of Raleigh quotients as

λg(t) = inf
u

∫
X

[

ksg(t)u
2 + 4|∇u|2

]

dµg(t)∫
X

u2dµg(t)

,

where the infimum is taken over all smooth real-valued functions u on X.
Therefore we have

λg(t) = inf
u

∫
X

[

ksg(t)u
2 + 4|∇u|2

]

dµg(t)∫
X

u2dµg(t)

≥ inf
u

∫
X

[

kŝg(t)u
2 + 4|∇u|2

]

dµg(t)∫
X

u2dµg(t)

≥ kŝg(t)

(

inf
u

∫
X

u2dµg(t)∫
X

u2dµg(t)

)

= kŝg(t).

Hence λg(t) ≥ kŝg(t) holds. By the very definition of λk invariant, we have

λk(X) ≥ λg(t)(volg(t))
2/n. We therefore get λk(X) ≥ kŝg(t)(volg(t))

2/n. Since
the normalized Ricci flow preserves the volume of the solution, we have
volg(t) = volg(0). Hence, we get λk(X) ≥ kŝg(t)(volg(0))

2/n.

Theorem 13 and 15 tell us that the following result holds:

Theorem 16 Under the same assumption with Theorem 13, a solution to
the normalized Ricci flow satisfies the following bound:

ŝg(t) := min
x∈M

sg(t)(x) ≤ −
( 4π

(volg(0))1/2

√

√

√

√2

n∑

m=1

c2
1(Xm)

)

< 0. (10)

Notice that the right hand side of the bound (10) is a negative constant of
independent of both x ∈ M and t.

We also need to recall the following key result proved in [12]:

Lemma 17 ([12]) Let X be a closed oriented Riemannian 4- manifold and
assume that there is a long time solution {g(t)}, t ∈ [0,∞), to the normalized
Ricci flow. Assume moreover that the solution satisfies |sg(t)| ≤ C and ŝg(t) ≤
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−c < 0 where the constants C and c is independent of both x ∈ X and time

t ∈ [0,∞). Then, the trace-free part
◦

rg(t) of the Ricci curvature satisfies

∫∞

0

∫

X

|
◦

rg(t) |2dµg(t)dt < ∞.

This result and Theorem 16 imply immediately the following result used to
prove Theorem 20 stated below:

Theorem 18 Under the same assumption with Theorem 13, any non-singular
solution to the normalized Ricci flow on M satisfies

∫ ℓ+1

ℓ

∫

M

|
◦

rg(t) |2dµg(t)dt −→ 0 (11)

holds when ℓ → +∞.

3.2 Obstruction

Let X be a closed oriented smooth 4-manifold with b+(X) ≥ 2. An element
a ∈ H2(X, Z)/torsion ⊂ H2(X, R) is called monopole class [32, 35, 27] of X

if there exists a spinc structure ΓX with cR

1(LΓX
) = a which has the property

that the corresponding Seiberg-Witten monopole equations have a solution
for every Riemannian metric on X. Here cR

1(LΓX
) is the image of the first

Chern class c1(LΓX
) of the complex line bundle LΓX

in H2(X, R). It is known
[27] that the non-triviality of BF∗ implies the existence of monopole classes.
LeBrun [34, 35] proved the existence of monopole classes implies several in-
teresting curvature bounds, which have many beautiful differential geometric
applications. By combining the new non-vanishing theorem proved in [28]
with the curvature bounds of LeBrun, we obtain the following result:

Theorem 19 ([28]) For m = 1, 2, 3, let Xm be a BF-admissible 4-manifold
and set as c2

1(Xm) = 2e(Xm) + 3sign(Xm). Suppose that N is a closed
oriented smooth 4-manifold with b+(N) = 0. Consider a connected sum

M :=
(

#n
m=1Xm

)

#N, where n = 2, 3. Then any Riemannian metric g on

M satisfies

1

4π2

∫

M

(

2|W+
g |2 +

s2
g

24

)

dµg ≥
2

3

n∑

m=1

c2
1(Xm). (12)

where W+
g denote the self-dual Weyl curvature of g.
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On the other hand, the Chern-Gauss-Bonnet formula and the Hirzebruch
signature formula for a closed oriented Riemannian 4-manifold X tell us that
the following formulas hold for any Riemannian metric g on X:

sign(X) =
1

12π2

∫

X

(

|W+
g |2 − |W−

g |2
)

dµg,

e(X) =
1

8π2

∫

X

( s2
g

24
+ |W+

g |2 + |W−
g |2 −

|
◦

rg |2

2

)

dµg,

where W+
g and W−

g denote respectively the self-dual and anti-self-dual Weyl

curvature of the metric g and
◦

rg is the trace-free part of the Ricci curvature
of the metric g. By these formulas, we get the following:

2e(X) + 3sign(X) =
1

4π2

∫

X

(

2|W+
g |2 +

s2
g

24
−

|
◦

rg |2

2

)

dµg, (13)

Then we obtain:

Theorem 20 Let N be a closed oriented smooth 4-manifold with b+(N) = 0.
For m = 1, 2, 3, For m = 1, 2, 3, let Xm be a BF-admissible 4-manifold.Assume
also that

∑n

m=1 c2
1(Xm) > 0 is satisfied, where n = 2, 3 and c2

1(Xm) =

2e(Xm)+ 3sign(Xm). Then, on a connected sum M := (#n
m=1Xm)#N, where

n = 2, 3, there is no non-singular solution to the normalized Ricci flow for
any initial metric if the following holds:

4n −
(

2e(N) + 3sign(N)
)

>
1

3

n∑

m=1

c2
1(Xm). (14)

Proof. By (12), we obtain the following bound which holds for any Rieman-
nian metric g on M:

1

4π2

∫

M

(

2|W+
g |2 +

s2
g

24

)

dµg ≥
2

3

n∑

m=1

c2
1(Xm). (15)

Suppose now that there is a non-singular solution {g(t)} to the normalized
Ricci flow on M. Then, we have the following bound by (15)

1

4π2

∫

M

(

2|W+
g(t)|

2 +
s2

g(t)

24

)

dµg(t) ≥
2

3

n∑

m=1

c2
1(Xm). (16)
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By (11) and (13), we are able to obtain

2e(M) + 3sign(M) = lim
ℓ−→∞

∫ ℓ+1

ℓ

(

2e(M) + 3sign(M)
)

dt

= lim
ℓ−→∞

1

4π2

∫ ℓ+1

ℓ

∫

M

(

2|W+
g(t)|

2 +
s2

g(t)

24
−

|
◦

rg(t) |2

2

)

dµg(t)dt

= lim
ℓ−→∞

1

4π2

∫ ℓ+1

ℓ

∫

M

(

2|W+
g(t)|

2 +
s2

g(t)

24

)

dµg(t)dt.

This and the bound (16) imply

2e(M) + 3sign(M) = lim
ℓ−→∞

1

4π2

∫ ℓ+1

ℓ

∫

M

(

2|W+
g(t)|

2 +
s2

g(t)

24

)

dµg(t)dt

≥ lim
ℓ−→∞

2

3

∫ ℓ+1

ℓ

n∑

m=1

c2
1(Xm)dt =

2

3

n∑

m=1

c2
1(Xm).

Since a direct computation tells us that 2e(M)+3sign(M) =
∑n

m=1 c2
1(Xm)−

4n+
(

2e(N)+3sign(N)
)

, the desired result now follows from the above bound

by contraposition.

As a corollary of Theorem 20, we get:

Corollary 21 For m = 1, 2, let Xm be a BF-admissible 4-manifold. Con-
sider a connected sum

M := (#j
m=1Xm)#(Σg × Σh)#ℓ1(S

1 × S3)#ℓ2CP2,

where j = 1, 2, ℓ1, ℓ2 ≥ 0, and g, h are odd integers ≥ 1. Then there is no
non-singular solution to the normalized Ricci flow on M if

4(j + ℓ1) + ℓ2 >
1

3

(

j∑

m=1

2e(Xm) + 3sign(Xm) + 4(1 − h)(1 − g)
)

.

Proof. Theorem A particularly tells us that Σg × Σh is BF-admissible.
Notice also that we have 2e(N) + 3sign(N) = 4 − 4ℓ1 − ℓ2 by setting as
N := ℓ1(S

1 × S3)#ℓ2CP2. By taking n = 3 in the inequality (14), we have

the desired result.
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3.3 Proof of Theorem C

For the definition and the fundamental properties of Gromov’s simplicial
volume, see [16, 8]. In particular, notice that any simply connected manifold
M satisfies ||M|| = 0. We begin with:

Lemma 22 Let Xm be a closed 4-manifold and consider a connected sum:

M := (#j
m=1Xm)#k(Σh × Σg)#ℓ1(S

1 × S3)#ℓ2CP2,

where g, h ≥ 2, j, k ≥ 1 and ℓ1, ℓ2 ≥ 0. Then the simplicial volume of M is
given by

||M|| = 24k(g − 1)(h − 1) +

j∑

m=1

||Xm||. (17)

On the other hand, we have

2e(M) + 3sign(M) =
(

j∑

m=1

2e(Xm) + 3sign(Xm)
)

+ 4k(g − 1)(h − 1)

− 4(j + k − 1 + ℓ1) − ℓ2,

2e(M) − 3sign(M) =
(

j∑

m=1

2e(Xm) − 3sign(Xm)
)

+ 4k(g − 1)(h − 1)

− 4(j + k − 1 + ℓ1) + 5ℓ2.

Proof. It is known [16, 8] that the simplicial volume of the connected sum
satisfies ||M1#M2|| = ||M1||+ ||M2|| Since it is also known that ||S1×S3|| = 0

and ||CP2|| = 0 hold, we have ||M|| = k||Σh×Σg||+
∑j

m=1 ||Xm||. On the other
hand, by [10], ||Σh × Σg|| = 24(g − 1)(h − 1) holds. Therefore, we have the
formula (17). One can also deduce the formulas on 2e(M) + 3sign(M) and

2e(M) − 3sign(M) by direct computations.

Lemma 23 Let Xm be a closed oriented smooth 4-manifold and consider the
following connected sum:

M := (#j
m=1Xm)#(Σh × Σg)#ℓ1(S

1 × S3)#ℓ2CP2,

where j = 1, 2. For any pair (g, h) of positive integers ≥ 2, define the
following positive number:

κ(g, h) := 4(1 − h)(1 − g) −
24(1 − h)(1 − g)

1296π2
> 0. (18)
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Then, there are infinitely many sufficiently large integers g, h, ℓ1, ℓ2 for which
the following three conditions are satisfied simultaneously:

j∑

m=1

(

2e(Xm) − 3sign(Xm)
)

> −κ(g, h) +
||X||

1296π2
+ 4(j + ℓ1) − 5ℓ2, (19)

j∑

m=1

(

2e(Xm) + 3sign(Xm)
)

> −κ(g, h) +
||X||

1296π2
+ 4(j + ℓ1) + ℓ2, (20)

4(j + ℓ1) + ℓ2 >
1

3

(

j∑

m=1

(

2e(Xm) + 3sign(Xm)
)

+ 4(1 − h)(1 − g)
)

, (21)

where set as ||X|| :=
∑j

m ||Xm|| ∈ [0,∞).

Proof. First of all, notice that the inequality (19) is always satisfied by
taking sufficiently large ℓ2 for any fixed ℓ1, g, h. On the other hand, the
inequality (20) is equivalent to

cj + κ(g, h) −
||X||

1296π2
> 4(j + ℓ1) + ℓ2, (22)

where cj :=
∑j

m=1

(

2e(Xm) + 3sign(Xm)
)

. Therefore, by (21) and (22), it

is enough to prove that there exist infinitely many sufficiently large positive
integers ℓ1, ℓ2, g, h satisfying

cj + κ(g, h) −
||X||

1296π2
> 4(j + ℓ1) + ℓ2 >

1

3

(

cj + 4(1 − h)(1 − g)
)

. (23)

We set as

A := cj + κ(g, h) −
||X||

1296π2
, B :=

1

3

(

cj + 4(1 − h)(1 − g)
)

,

namely, (23) is nothing but A > 4(2 + ℓ1) + ℓ2 > B. Notice that both A and
B can become sufficiently large positive integers by taking sufficiently large
g or h. We also have

A − B =
2

3
cj +

(8

3
−

24

1296π2

)

(1 − h)(1 − g) −
||X||

1296π2
.
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From this, we see that A − B can become a large positive integer by tak-
ing large g or h. Since there are infinitely many choices of such g and h,
we are able to conclude that there are also infinitely many ℓ1, ℓ2 satisfying
A > 4(j + ℓ1) + ℓ2 > B. By taking sufficiently large g or h, we are also able
to find a sufficiently large ℓ2 satisfying the inequality (19), where notice that

κ(g, h) > 0 and also that we can take as 4(j + ℓ1) − 5ℓ2 < 0.

Lemma 22 and Lemma 23 imply:

Proposition 24 Let Xm be a closed oriented smooth 4-manifold and con-
sider the a connected sum:

M := (#j
m=1Xm)#(Σh × Σg)#ℓ1(S

1 × S3)#ℓ2CP2,

where j = 1, 2. Then, there are infinitely many sufficiently large integers
g, h, ℓ1, ℓ2 for which the following two conditions are satisfies simultaneously:

2e(M) − 3|sign(X)| >
||M||

1296π2
, (24)

4(j + ℓ1) + ℓ2 >
1

3

(

j∑

m=1

(

2e(Xm) + 3sign(Xm)
)

+ 4(1 − h)(1 − g)
)

. (25)

Proof. Notice that (25) is nothing but (21). On the other hand, by Lemma
22, we have 2e(M)+3sign(M) = (

∑j

m=1 2e(Xm)+3sign(Xm))+4(g−1)(h−

1) − 4(j + ℓ1) − ℓ2. By (17), we also obtain

||M||

1296π2
=

24

1296π2
(g − 1)(h − 1) +

1

1296π2

j∑

m=1

||Xm||.

Therefore, the inequality (20) is nothing but

2e(M) + 3sign(X) >
||M||

1296π2
. (26)

Similarly, since Lemma 22 tells us that 2e(M)−3sign(M) = (
∑j

m=1 2e(Xm)−

3sign(Xm)) + 4(g − 1)(h − 1) − 4(j + ℓ1) + 5ℓ2, the inequality (19) is nothing
but

2e(M) − 3sign(X) >
||M||

1296π2
. (27)
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By (26) and (27), we obtain (24) as desired.

We are now in a position to prove Theorem C: First of all, by (17)
in the case where k = 1, we have ||M|| 6= 0 for any g, h > 1. On the
other hand, by Corollary 14, under c

j
g,h > 0, we have λ̄(M) < 0. Notice

that c
j
g,h > 0 is always satisfied for sufficiently large odd integers g, h > 1

because c
j
g,h :=

∑j

m=1(2e(Xm)+3sign(Xm))+4(1−h)(1−g) holds. Moreover,
Proposition 24 tells us that there are infinitely many sufficiently large integers
g, h, ℓ1, ℓ2 for which (24) and (25) are satisfied simultaneously. By (24), M

satisfies the strict case of the inequality (5). On the other hand, under (25),
there is no non-singular solution to the normalized Ricci flow on M for any
initial metric by Corollary 21. Hence, Theorem C follows.

On the other hand, we are able to prove a slight stronger version of
Theorem C by taking a sequence of homotopy K3 surfaces. Let Y0 be a
Kummer surface with an elliptic fibration Y0 → CP1. Let Yℓ be obtained
from Y0 by performing a logarithmic transformation of order 2m + 1 on a
non-singular fiber of Y0. Then, Ym are simply connected spin manifolds with
b+(Ym) = 3 and b−(Ym) = 19. By the Freedman classification [13], Ym

must be homeomorphic to a K3 surface. And Ym is a Kähler surface with
b+(Ym) > 1 and hence a result of Witten [48] tells us that ±c1(Ym) are
monopole classes of Ym for each m. Notice also that Ym is BF-admissible.
By using Ym and Theorem C, we obtain:

Theorem 25 Let X be a BF-admissible closed oriented smooth 4-manifold
and consider the following connected sum:

Mℓ1,ℓ2

g,h := X#K3#(Σh × Σg)#ℓ1(S
1 × S3)#ℓ2CP2, (28)

where ℓ1, ℓ2 ≥ 1, and g, h ≥ 3 are odd integers. Then, there are infinitely
many sufficiently large integers g, h, ℓ1, ℓ2 for which Mℓ1,ℓ2

g,h has the following
properties.

1. X has ||X|| 6= 0 and satisfies the strict case of the inequality (5):

2e(X) − 3|sign(X)| >
1

1296π2
||X||.

2. X admits infinitely many smooth structure for which the values of Perel-
man’s λ̄ invariants are negative and there is no non-singular solution
to the normalized Ricci flow for any initial metric.
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Proof. First of all, notice that X has at least one monopole class c1(X)

because X is BF-admissible. Consider the following connected sum which is
homeomorphic to (28) for any m:

Zℓ1,ℓ2

g,h (m) := X#Ym#(Σh × Σg)#ℓ1(S
1 × S3)#ℓ2CP2.

For each g, h, ℓ1, ℓ2, the connected sum Zℓ1,ℓ2

g,h (m) has non-trivial stable coho-
motopy Seiberg-Witten invariants by the new non-vanishing theorem in [28].
In particular, X has monopole classes which are give by

±c1(X) ± c1(Ym) +

b2(N)∑

i=1

±Ei, (29)

where we set N := ℓ1(S
1×S3)#ℓ2CP2 and E1, E2, · · · , Ek is a set of generators

for H2(N, Z)/torsion relative to which the intersection form is diagonal and
the ± signs are arbitrary and independent of one another.

Then, for each g, h, ℓ1, ℓ2, we show that V := {Zℓ1,ℓ2

g,h (m)}m∈N contains
infinitely many diffeo types. In fact, suppose that the sequence V contains
only finitely many diffeomorphism types. Namely, suppose that there exists a
positive integer m0 such that Zℓ1,ℓ2

g,h (m0) is diffeomorphic to Zℓ1,ℓ2

g,h (m) for any
integer m ≥ m0. Then, by taking m → ∞, we see that the set of monopole
classes of 4-manifold Zℓ1,ℓ2

g,h (m0) is unbounded by (29). However, this is a
contradiction because the set of monopole classes of any given smooth 4-
manifold with b+ > 1 must be finite [27]. Therefore, the sequence V must
contain infinitely many diffeomorphism types. Then, we get immediately the
desired result by using Theorem C.

3.4 Generalization of the FZZ conjecture

One of the motivations of FZZ conjecture is coming from a result [30] on
Einstein 4-manifolds because a typical example of non-singular solution of
the normalized Ricci flow is an Einstein metric.

Let X be a closed oriented Riemannian manifold with smooth metric g,
and let M̃ be its universal cover with the induced metric g̃. For each x̃ ∈ M̃,
let V(x̃, R) be the volume of the ball with the center x̃ and radius R. We set

µ(X, g) := lim
R→+∞

1

R
log V(x̃, R).
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Thanks to work of Manning [38], it turns out that this limit exists and is
independent of the choice of x̃. We call λ(X, g) the volume entropy of the
metric g and define the volume entropy of X to be

µ(X) := inf
g∈R1

X

λ(X, g),

where R1
X means the set of all Riemannian metrics g with unit volume volg =

1. Then, it is known [31] that any closed Einstein 4-manifold X satisfies

2e(X) − 3|sign(X)| ≥
1

54π2
µ(X)4. (30)

The inequality (5) can be derived from (30) because nn/2||M|| ≥ n!µ(M)n

holds, where n is the dimension of a given manifold M. Hence, the inequality
(30) is more stronger than the inequality (5). Based on this result on Ein-
stein case, it is natural to propose the following conjecture which includes
Conjecture 4 as a special case:

Conjecture 26 Let X be a closed oriented smooth Riemannian 4-manifold
with µ(X) 6= 0 and λ̄(X) < 0. Suppose that there is a non-singular solution
to the normalized Ricci flow on X. Then the following holds:

2e(X) − 3|sign(X)| ≥
1

54π2
µ(X)4. (31)

In the following, we shall show that the converse of this conjecture also does
not hold in general. In [15], Gompf showed that, for arbitrary integers α ≥ 2

and β ≥ 0, one can construct a simply connected symplectic spin 4-manifold
Xα,β satisfying

(

e(Xα,β), sign(Xα,β)
)

=
(

24α + 4β,−16α
)

. (32)

Notice also that this implies that b+(Xα,β) = 4α + 2β − 1, 2e(Xα,β) +

3sign(Xα,β) = 8β and 2e(Xα,β) − 3sign(Xα,β) = 8(12α + β). In the fol-
lowing, we shall call Xα,β the Gompf manifold of degree (α, β). We have
b+(Xα,β) ≡ 3 (mod 4) if 4α + 2β − 1 ≡ 3 (mod 4) is satisfied. The Gompf
manifold Xα,β is simply connected, we get b1(Xα,β) = 0. In particular, Xα,β

is BF-admissible in the case where 4α + 2β − 1 ≡ 3 (mod 4).

Lemma 27 Let X be a closed oriented smooth 4-manifold and consider the
following connected sum

M := X#Xα,β#(Σh × Σg)#ℓ1(S
1 × S3)#ℓ2CP2.
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Then, there are infinitely many integers α, β, g, h, ℓ1, ℓ2 for which the follow-
ing conditions are satisfied simultaneously:

4α + 2β − 1 ≡ 3 (mod 4), (33)

2e(X) − 3sign(X) + 8(12α + β) > (
128

27
− 4)(g − 1)(h − 1) + 4(2 + ℓ1) − 5ℓ2,(34)

2e(X) + 3sign(X) + 8β > (
128

27
− 4)(g − 1)(h − 1) + 4(2 + ℓ1) + ℓ2, (35)

4(2 + ℓ1) + ℓ2 >
1

3

(

2e(X) + 3sign(X) + 8β + 4(1 − h)(1 − g)
)

. (36)

Proof. First of all, notice that the inequality (34) is always satisfied by
taking sufficiently large β for any fixed α, ℓ1, ℓ2, g, h. And notice also that
there are infinitely many integers α, β, for which (33) is satisfied.

On the other hand, the inequality (35) is equivalent to

c + 8β − (
128

27
− 4)(g − 1)(h − 1) > 4(2 + ℓ1) + ℓ2. (37)

where c := 2e(X) + 3sign(X). Therefore, by (36) and (37), it is enough
to prove that there exist infinitely many positive integers α, β, ℓ1, ℓ2, g, h

satisfying D > 4(2 + ℓ1) + ℓ2 > E, where we set as

D := c + 8β − (
128

27
− 4)(g − 1)(h − 1), E :=

1

3

(

c + 8β + 4(1 − h)(1 − g)
)

.

Notice that both D and E can become sufficiently large positive integers by
taking sufficiently large β. We also have

D − E =
2

3
c +

16

3
β − (

128

27
+

4

3
− 4)(g − 1)(h − 1).

From this, we see that D − E can become a large positive integer by taking
large β. Since there are infinitely many such a β, we are able to conclude
that there are also infinitely many ℓ1, ℓ2 satisfying D > 4(2 + ℓ1) + ℓ2 > E.

From these observations, we are able to obtain the desired result.
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A connected closed manifold X of dimension n is called essential [17] if
there exists a map X → K to an aspherical complex K that does not contract
to the (n−1)-skeleton of K. It is known that every simply connected manifold
is nonessential. Furthermore, a product of arbitrary manifolds with simply
connected manifolds is also nonessential. And it is also known that any
nonessential manifold has zero volume entropy. Let X and Y be two connected
closed oriented manifolds. If Y is nonessential, then it is proved in [9] that

µ(X#Y) = µ(X) (38)

By Lemma 27 and (38), we get:

Proposition 28 Let Xm be a nonessential closed oriented smooth 4-manifold
and consider the following connected sum

M := X#Xα,β#(Σh × Σg)#ℓ1(S
1 × S3)#ℓ2CP2.

Then, there are infinitely many integers α, β, g, h, ℓ1, ℓ2 for which the follow-
ing conditions are satisfied simultaneously:

4α + 2β − 1 ≡ 3 (mod 4), (39)

2e(M) − 3|sign(M)| >
1

54π2
µ(M)4 6= 0, (40)

4(2 + ℓ1) + ℓ2 >
1

3

(

2e(X) + 3sign(X) + 8β + 4(1 − h)(1 − g)
)

. (41)

Proof. First of all, notice that CP2 and S1×S3 is nonessential (see also [9]). X

is also nonessential by the assumption. By (38), we have µ(M) = µ(Σh×Σg).
Moreover, Corollary 2.2 in [9] tells us that we also have 16(g − 1)(h − 1) ≤
µ(Σh × Σg)

4 ≤ 256π2(g − 1)(h − 1). Therefore, we obtain

16

54π2
(g − 1)(h − 1) ≤

1

54π2
µ(M)4 ≤

127

27
(g − 1)(h − 1) (42)

This particularly tells us that µ(M)4 6= 0 whenever g, h ≥ 2. On the other
hand, notice that (41) is nothing but (36). Moreover, by Lemma 22, we have
2e(M)+3sign(M) = 2e(X)+3sign(X)+8β+4(g−1)(h−1)−4(2+ ℓ1)− ℓ2.
Therefore, the inequality (35) is nothing but

2e(M) + 3sign(M) >
1

54π2
µ(M)4. (43)
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Similarly, since Lemma 22 also tells us that 2e(M) − 3sign(M) = 2e(X) −

3sign(X)+ 8(12α+β)+ 4(g− 1)(h− 1)− 4(2+ ℓ1)+ 5ℓ2, the inequality (34)
is equivalent to

2e(M) − 3sign(M) >
1

54π2
µ(M)4. (44)

By (43) and (44), we obtain (40).

Finally, we obtain the following result:

Theorem D Let X be a BF-admissible, nonessential closed oriented smooth
4-manifold, Xα,β is the Gompf manifold with degree (α, β) and consider the
following connected sum:

M := X#Xα,β#(Σh × Σg)#ℓ1(S
1 × S3)#ℓ2CP2

where ℓ1, ℓ2 ≥ 1, and g, h ≥ 3 are odd integers. And α ≥ 2 and β ≥ 0.
Then, there are infinitely many integers α, β, g, h, ℓ1, ℓ2 for which M has the
following properties.

1. M has µ(M) 6= 0 and satisfies the strict case of the inequality (31):

2e(M) − 3|sign(M)| >
1

54π2
µ(M)4.

2. M admits at least one smooth structure for which no for which Perel-
man’s λ̄ invariant is negative and there is no quasi-non-singular solu-
tion to the normalized Ricci flow for any initial metric.

Proof. By Proposition 28, there are infinitely many integers α, β, g, h, ℓ1, ℓ2

for which (39), (40) and (41) hold. Notice that Xα,β is BF-admissible under
(39). Since X is also BF-admissible, under (41), there is no non-singular so-
lution to the normalized Ricci flow on M for any initial metric by Corollary
21. Moreover, we also obtain λ̄(M) < 0 by Corollary 14.
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