
Comparison of classification methods

Logistic regression has a linear boundery:

log(
P(Y = 1|x)

1− P(Y = 1|x)
) = β0 + β1x

P(Y = 1|x) > 0.5 is equivalent to β0 + β1x > 0.
LDA has a linear log odds:

log(
P(Y = 1|x)

1− P(Y = 1|x)
) =

µ1 − µ0
σ2

x − 1

σ2
(µ1 − µ0)2 + log

π1
π0

The difference between LDA and logistic regression: The
linear coefficients are estimated differently. MLE for logistic models
and estimated mean and variance based on Gaussian assumptions
for the LDA. LDA makes more restrictive Gaussian assumptions
and therefore expected to work better than logistic models if they
are met.



KNN is a completely non-parametric approach: no assumptions
are made about the shape of the decision boundary. Therefore, we
can expect this approach to dominate LDA and logistic regression
when the decision boundary is highly non-linear. On the other
hand, KNN does not tell us which predictors are important; we
don’t get a table of coefficients with p-values.
QDA serves as a compromise between the non-parametric KNN
method and the linear LDA and logistic regression approaches.
Since QDA assumes a quadratic decision boundary, it can
accurately model a wider range of problems than can the linear
methods. Though not as flexible as KNN, QDA can perform better
in the presence of a limited number of training observations
because it does make some assumptions about the form of the
decision boundary.



Scenario 1: There were 20 training observations in each of two
classes. The observations within each class were uncorrelated
random normal variables with a different mean in each class.
Scenario 2: Details are as in Scenario 1, except that within each
class, the two predictors had a correlation of -0.5.
Scenario 3: We generated X1 and X2 from the t-distribution, with
50 observations per class. In this setting, the decision boundary
was still linear, and so fit into the logistic regression framework.
The set-up violated the assumptions of LDA, since the
observations were not drawn from a normal distribution.
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Scenario 4: The data were generated from a normal distribution,
with a correlation of 0.5 between the predictors in the first class,
and correlation of -0.5 between the predictors in the second class.
This setup corresponded to the QDA assumption, and resulted in
quadratic decision boundaries.
Scenario 5: Within each class, the observations were generated
from a normal distribution with uncorrelated predictors. However,
the responses were sampled from the logistic function using X 2

1 ,
X 2
2 , and X1 × X2 as predictors. Consequently, there is a quadratic

decision boundary.
Scenario 6: Details are as in the previous scenario, but the
responses were sampled from a more complicated non-linear
function. As a result, even the quadratic decision boundaries of
QDA could not adequately model the data.
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Lab: Logistic Regression, LDA, QDA, and KNN

The Smarket data set consists of percentage returns for the S&P
500 stock index over 1, 250 days, from the beginning of 2001 until
the end of 2005. For each date, we have recorded the percentage
returns for each of the five previous trading days, lag1 through
Lag5. We have also recorded Volume (the number of shares
traded on the previous day, in billions), Today (the percentage
return on the date in question) and Direction (whether the market
was Up or Down on this date)



> # The Stock Market Data

>

> library(ISLR)

> names(Smarket)

> dim(Smarket)

> summary(Smarket)

> pairs(Smarket)

> cor(Smarket[,-9])

> attach(Smarket)

> plot(Volume)



> # Logistic Regression

>

> glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,

+ data=Smarket, family=binomial)

> summary(glm.fit)

> coef(glm.fit)

> summary(glm.fit)$coef

> summary(glm.fit)$coef[,4]

> glm.probs=predict(glm.fit,type="response")

> glm.probs[1:10]

> contrasts(Direction)

> glm.pred=rep("Down",1250)

> glm.pred[glm.probs>.5]="Up"

> table(glm.pred,Direction)

> (507+145)/1250

> mean(glm.pred==Direction)



> #create test data

> train=(Year<2005)

> Smarket.2005=Smarket[!train,]

> dim(Smarket.2005)

> Direction.2005=Direction[!train]

> glm.fit=glm(Direction~Lag1+Lag2+Lag3+Lag4+Lag5+Volume,

+ data=Smarket, family=binomial,subset=train)

> glm.probs=predict(glm.fit,Smarket.2005,type="response")

> glm.pred=rep("Down",252)

> glm.pred[glm.probs>.5]="Up"

> table(glm.pred,Direction.2005)

> mean(glm.pred==Direction.2005)

> mean(glm.pred!=Direction.2005)



> #With two predictors

> glm.fit=glm(Direction~Lag1+Lag2,data=Smarket,

+ family=binomial,subset=train)

> glm.probs=predict(glm.fit,Smarket.2005,type="response")

> glm.pred=rep("Down",252)

> glm.pred[glm.probs>.5]="Up"

> table(glm.pred,Direction.2005)

> mean(glm.pred==Direction.2005)

> 106/(106+76)

> predict(glm.fit,newdata=data.frame(Lag1=c(1.2,1.5),

+ Lag2=c(1.1,-0.8)),type="response")



> # Linear Discriminant Analysis

> library(MASS)

> lda.fit=lda(Direction~Lag1+Lag2,data=Smarket,

+ subset=train)

> lda.fit

> plot(lda.fit)

> lda.pred=predict(lda.fit, Smarket.2005)

> names(lda.pred)

> lda.class=lda.pred$class

> table(lda.class,Direction.2005)

> mean(lda.class==Direction.2005)

> sum(lda.pred$posterior[,1]>=.5)

> sum(lda.pred$posterior[,1]<.5)

> lda.pred$posterior[1:20,1]

> lda.class[1:20]

> sum(lda.pred$posterior[,1]>.9)



> # Quadratic Discriminant Analysis

>

> qda.fit=qda(Direction~Lag1+Lag2,data=Smarket,

+ subset=train)

> qda.fit

> qda.class=predict(qda.fit,Smarket.2005)$class

> table(qda.class,Direction.2005)

> mean(qda.class==Direction.2005)



> # K-Nearest Neighbors

>

> library(class)

> train.X=cbind(Lag1,Lag2)[train,]

> test.X=cbind(Lag1,Lag2)[!train,]

> train.Direction=Direction[train]

> set.seed(1)

> knn.pred=knn(train.X,test.X,train.Direction,k=1)

> table(knn.pred,Direction.2005)

> (83+43)/252

> knn.pred=knn(train.X,test.X,train.Direction,k=3)

> table(knn.pred,Direction.2005)

> mean(knn.pred==Direction.2005)



> # An Application to Caravan Insurance Data

>

> dim(Caravan)

> attach(Caravan)

> summary(Purchase)

> 348/5822

This data set includes 85 predictors that measure demographic
characteristics for 5,822 individuals. The response variable is
Purchase, which indicates whether or not a given individual
purchases a caravan insurance policy. In this data set, only 6 % of
people purchased caravan insurance.



> standardized.X=scale(Caravan[,-86])

> var(Caravan[,1])

> var(Caravan[,2])

> var(standardized.X[,1])

> var(standardized.X[,2])

> test=1:1000

> train.X=standardized.X[-test,]

> test.X=standardized.X[test,]

> train.Y=Purchase[-test]

> test.Y=Purchase[test]

> set.seed(1)

> knn.pred=knn(train.X,test.X,train.Y,k=1)

> mean(test.Y!=knn.pred)

> mean(test.Y!="No")

> table(knn.pred,test.Y)

> 9/(68+9)



> knn.pred=knn(train.X,test.X,train.Y,k=3)

> table(knn.pred,test.Y)

> 5/26

> knn.pred=knn(train.X,test.X,train.Y,k=5)

> table(knn.pred,test.Y)

> 4/15

> glm.fit=glm(Purchase~.,data=Caravan,family=binomial,

+ subset=-test)

> glm.probs=predict(glm.fit,Caravan[test,],

+ type="response")

> glm.pred=rep("No",1000)

> glm.pred[glm.probs>.5]="Yes"

> table(glm.pred,test.Y)

> glm.pred=rep("No",1000)

> glm.pred[glm.probs>.25]="Yes"

> table(glm.pred,test.Y)

> 11/(22+11)


