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Web Appendix A

Since «; is independent of N;, we have

o0 o0

E(y(t)) =~ + aE/ p(t — x)dN;(z) = v+ a/ p(t — x)h(x)dx.

Let A(t) be the unique compensator for N;(t) in the extended Doob-Meyer Decomposition
theorem (Theorem 2.2.3 of Fleming & Harrington (1991)). Then E(A(t)) = E(N;(t)) =
ffoo h(z)dr and M(t) = N;(t) — A(t) is a martingale with predictable quadratic variation
< M,M > = A. From Theorem 2.4.4 of Fleming & Harrington (1991),

E/_oo p(s — 2)dM () /OO p(t — 2)dM (z)

o0 — 00

= E/_Oop(s—x)p(t—:c)d<M,M>(:C)

o0

_E / " p(s — 2)p(t — 7)dA(2)

o0

= /_OO p(s — 2)p(t — z)h(z)dx.
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Also,
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Cov(y(s),y(t))

Therefore,



Web Appendix B

We show the derivation for the mean only. The derivation for the covariance is similar. The

mean formula is a direct result of the following equation.

/_OO p(t — z)h(x)dx

o0

- / exp(—Ba(t — z))h(z)dx + /too exp(—pi(z — t))h(x)dz

— 00

- /OOO exp(—Bay)h(t — y)dy + /UOO exp(—Pfry)h(t + y)dy

00 k+1 00 k+1
= Z/ exp(—Sy)h(t — y)dy + Z/ exp(—Gy)h(t + y)dy
k=0 vk k=0 Fk

= Z/ exp(—F2(y + k))h(t —y — k)dy + Z/ exp(—0i(y + k))h(t +y + k)dy
k=0 v 0 k=0 "0

1
0

= Zexp(—ﬁgk)/ exp(—ﬁzy))h(t—y)dy+Zexp(—ﬁ1k)/ exp(—1y)h(t + y)dy
k=0 k=0 0

= /0 exp(—[F2y))h(t — y)dy/(1 — exp(—32)) + /0 exp(—biy)h(t +y)dy/(1 — exp(=p1)),

where we used the periodic property of h.

Web Appendix C

The minimization problem (6) in the paper is solved iteratively using the extended Gauss-
Newton method in Ke & Wang (2004b). Note that @ is fixed for the problem (6) and W;’s

are fixed at each iteration. Let

Nip=&(t) =7 +a / " p(8,t — 2) exp(n(x))de,

which is a non-linear functional in 7. At each iteration, we approximate N;n by its first-order

Taylor expansion at previous estimate n_ (Lusternik & Sobolev 1974):

Nip = Nyn— +Dy(n —n-),
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where Dy = ON;/0nl|,—, is the Fréchet differential. It is easy to check that (Debnath &

Mikusinski 1999)

Dy = a / P8yt — @) exp(n(x)n(a)de.

[e.9]

Let Min_ = (Mi1n—’ T 7Mirzi 77—)T7 Dtﬂ?— = (Dtﬂn—v T 7,Dtmi77—)T> Dtﬂ? = (Dti1777 T 7Dtm,-

and ¥; = y; — Ny,n— + Dy, n—. We update n by solving

Tin {Z(ﬁ — Do) W (§i = Do) + NA/O (n"(t))th} : (1)

neWa(per) -
i=1

Since Dy,;’s are linear bounded functionals, the solution to (1) has the form (Wahba 1990,
Wang 1998a)

a0 =d+ 303 ey, Ra 1), @

i=1 j=1

where R;(s,t) = —By([s — t])/24, [s — t] is the fractional part of s — ¢, and By(z) = 2* —
22% + 2% —1/30. Ry is the reproducing kernel for the space Wy(per) & {1}. The minimization

problem (1) reduces to

min {(y —dz — X)TWN§ — dz — Se) + N)\CTZC} , (3)

where Sf = (S’{7 75}71;):’17 Zij = O‘ffoooop(ﬁjij - I) eXP(U—@»d% Z; = (Zﬂ?'" 7zim)T7

Z = (Z1T, T ,ZZI)T7 Y = (Dtithi,j,Rl(v '))?le.lﬂ;l, Y= (En")?}/:p ci = (Ci1, - 7Cz‘ni)T, Cc=
(c

> = W-128W~1/2 and & = W'2c. The minimization problem (3) reduces to

=N

c)T and W = diag(Wy, - -+, W,,). Furthermore, let y = W25, z = W-1/2g

7...7’)’)’1/

min {Ilff —dz — X¢|)? + NA&:-TS&} , (4)

which is computed by the R function ssr in the ASSIST package (Ke & Wang 2004a). We
estimate the smoothing parameter A at each iteration using the generalized cross-validation
(GCV) method which minimizes

LN — A2
YO = m et — AP
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or the generalized maximum likelihood (GML) method which minimizes

where A(A) is the hat matrix (Wahba 1990, 7).

We now discuss how to compute '/\/tij n—, Di;n-s zij, W and

D Duy Bl = [ [ 0Bty = 2)0(8, iy — ) explon (o) + - () P )y

A naive application of Gaussian quadrature to approximate involved integrals directly is
computational intensive since the integrands depend on observation time points and, con-
sequently, the approximations have to be done for every unique time point. In addition, a

relatively large number of points is needed to approximate these integrals over large intervals.

Let t(;,5 = 1,---, N', be the sequence of the ordered unique observation time points from
all subjects, where N’ denotes the total number of unique observation time points. After
some tedious algebra (one example shown below), when the pulse shape function p is double
exponential function, these integrals can be computed from integrals ftt(iil)“) INT, (z)dz and
J Far) ' faatn) TN Tao(x, y)dzdy for some integrands INT; and INTy. For example, to calculate

1) t(jg)

the integral in N;n_, we use the following equation

[2o p(B,t = x) exp(n_(x))dzx
= T Jo XP(—Bam)h(t — w)dr + 5 Jy exp(=Bix)h-(t + z)dx
= o o P(=Ban)h(t — w)dr + ks ) exp(—Ba)h(t — w)dx
+ oA Jo "exp(=pra)h_(t + x)dx + oo [l exp(=piz)h_(t + z)da
= oo ) i exp(=Ba(t — y))h_(y)dy + oo [l exp(=Ba(1 +t —y))h_(y — 1)dy
e S (=B y — )W) dy + ok Jy XP(=Bi(y — t+ 1)h_(y + 1)dy
= B [T exp(Bay)h-(y)dy + SESEEE [Texp(Bay)h(y)dy
+ 22 [ exp(—ry)h(y)dy + S2EED [Lexp(—Biy)h(y)dy.
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The above derivation used results in Web Appendix B and the periodicity of the func-
tion h_. Note that the integrands are independent of observation time points. The in-
tegrals in the last step are computed by cumulating integrals ftt(;“) exp(Bay)h_(y)dy and
ﬁ(““’ exp(—/y)h_(y)dy, j = 1,--- , N, which are approximated numerically by a three-
point Gaussian quadrature. Integrals in Dy, 7, z;; and W are approximated similarly. The
term Dy, Dy, , (-, ) involves double integrals fti(““) [0 INTy(x, y)dady which are ap-

(jg)

proximated by a nine-point Gaussian quadrature.

The total number of observations N is very large in our real example and simula-
tions. Therefore, solving the minimization problem (6) is computational intensive. Note
that observation time points are the same for all subjects in our real example and sim-
ulations. Therefore, n;, t;;, § and W; are all independent of i. To save computational
time, we used average observations across subjects as the response vector. Specifically, let
y=0"" ya/m,--- 3" yi/m). Then the minimization problem (6) in the paper reduces

to

1
win {5 -5 - 9 1o [ 6oy,
neWs(per) 0

where the subscript ¢ in n;, £, and W; are dropped. The extended Gauss-Newton procedure

discussed above was applied with m = 1. An alternative approach for saving computational

time is to use a subset of basis functions as in Kim & Gu (2004).
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