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Summary. Neuroendocrine ensembles communicate with their remote and proximal target cells via an
intermittent pattern of chemical signaling. The identification of episodic releases of hormonal pulse sig-
nals constitutes a major emphasis of endocrine investigation. Estimating the number, temporal locations,
secretion rate, and elimination rate from hormone concentration measurements is of critical importance
in endocrinology. In this article, we propose a new flexible statistical method for pulse detection based
on nonlinear mixed effects partial spline models. We model pulsatile secretions using biophysical models
and investigate biological variation between pulses using random effects. Pooling information from different
pulses provides more efficient and stable estimation for parameters of interest. We combine all nuisance
parameters including a nonconstant basal secretion rate and biological variations into a baseline function
that is modeled nonparametrically using smoothing splines. We develop model selection and parameter es-
timation methods for the general nonlinear mixed effects partial spline models and an R package for pulse
detection and estimation. We evaluate performance and the benefit of shrinkage by simulations and apply
our methods to data from a medical experiment.
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1. Introduction
Hormones play an important role in regulating biological pro-
cesses. Through secretions of hormones, signals are sent to
the other organs enabling interaction within the human body
(Keener and Sneyd, 1998). There are two types of secretions:
pulsatile secretions that are bursts of hormone from glands
to bloodstream, and basal secretion that is a tonic pattern
secretion (Merriam and Wachter, 1982; Keenan and Veldhuis,
1997; Guo, Wang, and Brown, 1999). Since pulses act as sig-
nals to target organs for physiological communication within
the endocrine system, it is biologically and clinically impor-
tant to investigate the occurrence and/or frequency of pulses.
The identification of discrete hormonal pulse signals consti-
tutes a major emphasis of endocrine investigation (Merriam
and Wachter, 1982; Veldhuis and Johnson, 1986; Veldhuis,
Carlson, and Johnson, 1987; O’Sullivan and O’Sullivan, 1988;
Kushler and Brown, 1991; Guo et al., 1999; Johnson, 2003).

Experiments are typically conducted in such a way that
some hormone concentrations are measured from blood sam-
ples withdrawn at regular time intervals, say every 10 minutes,
for a period of time, say 24 hours, from a group of normal (or
sick) human subjects (or animals). For example, in an ex-
periment conducted at the University of Michigan, 10-minute

sampling for hormones adrenocorticotropic (ACTH) and cor-
tisol was performed for 24 hours in 36 patients with fibromyal-
gia and/or chronic fatigue syndrome and 36 age-matched
controls (Crofford et al., 2004). Figure 1 shows the profile
of ACTH concentrations over time from a patient. Pulse lo-
cations and a baseline function are estimated by the methods
proposed in this article.

The goal of the study was to investigate disease effects, if
any, on the secretion pattern. Statistical problems at the first
stage of the data analysis are to estimate the number and loca-
tions of pulses, parameters such as the mass (amplitude) and
half-life associated with each pulse, and the baseline (Crofford
et al., 2004). These problems are technically challenging due
to indirect observations, near confounding among several com-
ponents, and multiple sources of variation. “There are many
proposed pulse-detection algorithms, all based upon trying to
detect a point of rapid increase, but none has proven to be
completely acceptable” (Keenan, Sun, and Veldhuis, 2000).

Existing methods for pulse identification and characteri-
zation fall into two categories: criterion-based methods that
use test statistics to identify rises and/or falls in hor-
mone concentration, and model-based methods that assume
statistical models to approximate the secretion pattern.
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Figure 1. Profile of ACTH concentration of a patient with
chronic fatigue syndrome (broken line). Pulse locations iden-
tified by our method with the BIC criterion are marked below
as vertical arrows. The overall fit and estimated baseline func-
tion are plotted as solid lines.

Among criterion-based methods, CLUSTER compares the
concentrations at a peak location with concentrations at
the nearest nadir using a two-sample t-test (Veldhuis and
Johnson, 1986). In general, most criterion-based methods use
the assay’s coefficient of variance (CV) as the true CV. Other
sources of variation such as biological noises are ignored.
Therefore estimates of quantities related to variation such as
the threshold are biased, which leads to over-identifying the
numbers of pulses. Among the model-based methods, Veldhuis
et al. (1987) used a biophysical model that represents the hor-
mone concentration as the convolution of a secretion rate with
an elimination function (see Section 2.1 for more details).
O’Sullivan and O’Sullivan (1988) represented the hormone
concentration as a convolution of individual pulses with their
locations following a nonhomogeneous Poisson process. Guo
et al. (1999) proposed a state-space model that incorporates
a nonconstant baseline. In general, the model-based methods
are preferred to criterion-based methods based on the false
positive and false negative error rates (Mauger, Brown, and
Kushler, 1995). Model-based methods also provide estimates
for the parameters of interest. Criterion-based methods are
often used to identify initial pulses for model-based methods.

In this article, we propose nonlinear mixed effects partial
spline models to detect pulse locations and estimate param-
eters. All current model-based methods except Guo et al.
(1999) assume a constant or zero baseline. These restrictive
assumptions may lead to biases in estimates of the param-
eters. We combine all nuisance parameters into a baseline
function and model it nonparametrically using smoothing
splines. All current model-based methods assume that pa-
rameters such as the decay rate are fixed and common for
all pulses. Thus all these methods ignore biological varia-
tions between pulses within a subject which may be of sci-
entific interest (Keenan et al., 2003; Keenan and Veldhuis,
2003). We introduce a general second-stage mixed effects
model for parameters that allows us to model variation be-
tween pulses and incorporate covariate effects and/or feed-
back mechanisms. Pooling information from different pulses,
our estimates have smaller mean-squared errors (MSE). We
also allow random errors to be correlated. We develop an esti-
mation procedure for a general form of pulse-shape function.

Therefore, our methods and software can be applied to fit
models with several different pulse-shape functions in the lit-
erature. Conditional on the number and locations of pulses,
we estimate all parameters using methods developed in Ke
and Wang (2001). We develop new model selection methods
for estimating the number and locations of pulses. We also de-
velop an R package to implement our estimation procedure.

The article is organized as follows. Section 2 introduces
the nonlinear mixed effects partial spline model. Section 3
describes methods for pulse detection and parameter estima-
tion. Section 4 presents simulation results. Section 5 presents
the analysis of the data set introduced in Section 1. Section 6
concludes the article with a brief discussion.

2. Nonlinear Mixed Effects Partial Spline Model
2.1 Biophysical Models for Hormonal Secretions

and Measurements
Usually observations are taken in a time period, typically
24 hours. Without loss of generality, we assume that the time
period has been transformed into an interval [0, 1]. The se-
cretion rate at time t can be represented by (Keenan and
Veldhuis, 1997; Keenan et al., 2003)

S(t) = ρ(t) +

K∑
k=1

αkψ(t− τk), (1)

where ρ(t) is the rate of basal secretion, K is the number of
pulsatile secretions and τ 1 < τ 2 < · · · < τK are successive
onset times, αk is the mass of the kth pulse, and ψ is the
waveform. Note that we allow a nonconstant basal secretion
rate. Concentration at time t, X(t), is (Keenan, Veldhuis, and
Yang, 1998)

X(t) = X(0)E(t) +

∫ t

0

S(u)E(t− u) du + g(t)

= X(0)E(t) +

∫ t

0

ρ(u)E(t− u) du + g(t)

+

K∑
k=1

αk

∫ t

0

ψ(u− τk)E(t− u) du, (2)

where X(0) is the concentration at time 0, E is an elimina-
tion function, and g represents microscopic biological varia-
tion. The central part of the model is convolutions of pulse
waveforms with elimination functions.

Observations measured from blood samples drawn at dis-
crete time points are

yj = X(tj) + εj , j = 1, . . . , n, (3)

where εj are usually assumed to be independent normal with
mean zero and a constant variance or a constant coefficient
of variation. We allow random errors to be correlated in this
article.

Technical challenges include: (1) the number and locations
of onset times are not observed, and (2) two modes of se-
cretions and eliminations are near confounded. Even for the
special case with X(0) = 0, g(t) = 0, ρ(t) = 0, αk = 1, and
the assumption that onset times follow a nonhomogeneous
Poisson process with intensity function h(t), the expected

concentration, E(X(t)) =
∫ t

0 (
∫ u

0 ψ(u− v)h(v) dv)E(t− u)du,
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involves two layers of convolutions. Thus the estimation of
the intensity function h involves two layers of deconvolutions
where the filter functions ψ and E depend on unknown param-
eters. The one-layer deconvolution with a single known filter
function is a well-known ill-posed problem (Wahba, 1990).

2.2 Nonlinear Partial Spline Models
All current methods except Guo et al. (1999) assume that the
basal secretion rate ρ(t) is a constant function. Some methods
even require that ρ(t) = 0. We assume that ρ(t) is a smooth
function and treat it as a nuisance parameter. Keenan et al.
(1998) used a one-fold integrated Wiener process to model
microscopic biological variation g in (2) which is equivalent
to a linear spline (Wahba, 1990). We note that both X(0)
and g are unknown. They are nuisance parameters and are
ignored by most of the current methods. These restrictive
assumptions and omissions may lead to large bias in estimates
of the parameters. We combine all three nuisance parameters
into a baseline function

f(t) = X(0)E(t) +

∫ t

0

ρ(u)E(t− u) du + g(t). (4)

We then consider the following general class of nonlinear par-
tial spline models

yi = f(ti) +

K∑
k=1

αkp(γ k; ti − τk) + εi, i = 1, . . . , n, (5)

where yi is the concentration measurement at time ti , f is the
baseline function, p(γ ; ·) is the pulse-shape function with pa-
rameters γ , K is the number of pulses, αk, γ k, and τk are the
mass (or amplitude), pulse-shape parameters, and onset (or
peak) times associated with the kth pulse, and εi ’s are random
errors. We allow random errors to be correlated. Specifically,
let ε = (ε1,. . .,εn)T . We assume that ε ∼ N(0, σ2Λ). We now
discuss how to model the pulse shape p and the baseline func-
tion f.

We will consider general pulse-shape function p in our esti-
mation procedure and software implementation. Several pro-
totype pulse-shape functions are used in the literature. One
simple and useful pulse-shape function is the following double
exponential pulse function (O’Sullivan and O’Sullivan, 1988)

p(γ ; t− τ) =

{
exp{γ1(t− τ)}, t < τ,

exp{−γ2(t− τ)}, t ≥ τ.
(6)

For the double exponential pulse function, τk and αk repre-
sent the peak time and amplitude of the kth pulse. In practice
the ability to distinguish between different pulse-shape func-
tions is limited by the sampling rate. The double exponential
pulse functions usually provide good approximations. There-
fore, even though our methods apply to the general pulse
functions, we use the double exponential pulse function in
our simulations and data analysis.

As indicated in (4), the baseline function f combines all
nuisance parameters. It is reasonable to assume that f varies
slowly over time. However, it is usually difficult, if not impos-
sible, to specify a parametric model for f. Thus we model it
nonparametrically using a polynomial spline with the model
space (Wahba, 1990; Green and Silverman, 1994)

Wm =

{
f : f, f ′, . . . , f (m−1) absolutely continuous,∫ 1

0

(
f (m)

)2
dt < ∞

}
. (7)

Here m = 2 corresponds to the well-known cubic spline that
is used in our simulations and data analysis. We note that
our methods apply to general spline models defined in Wahba
(1990).

2.3 Mixed Effects Models for Parameters
Keenan et al. (1998) provided biological justifications for
modeling the mass parameter as random effects

αk = β1 + bk, bk
iid∼ N

(
0, σ2

b

)
, (8)

where random effects bk model the biological variation. To al-
low mass to depend on the preceding inter-pulse interval, we
may add β2 × (τk − τk−1) in model (8) which assumes a con-
stant rate of mass accumulation (Keenan et al., 1998, 2003).
Pulses may also be modulated by circadian rhythms (Keenan
and Veldhuis, 1997). Specifically, masses vary in a system-
atic circadian pattern. To quantify the underlying pulsatile
secretion-generating mechanisms, we may add a simple peri-
odic function such as β3 sin 2πτk + β4 cos 2πτk to model (8).

All existing methods ignore variations in the shape param-
eters and assume that γ k = γ for all pulses within a sub-
ject. Recent studies indicate that γ k may vary during the day
(Keenan et al., 2003; Keenan and Veldhuis, 2003). It is of
scientific interest to model the variation between pulses. Ran-
dom effects models discussed above for the mass parameter
can also be constructed similarly for γ k.

In this article, we consider a general second-stage model
for the mass αk and shape parameters γ k which include mod-
els discussed above as special cases. Let α = (α1,. . .,αK)T ,
γ = (γT

1 , . . . ,γT
K)T , and φ = (αT , γT )T . Then, we assume

the following linear mixed model for all parameters φ

φ = Aβ + Bb, b ∼ N(0, σ2D ), (9)

where β and b are fixed and random effects, and A and
B are design matrices for the fixed and random effects,
respectively.

3. Pulse Detection and Estimation
The nonlinear mixed effects partial spline model (NMPSM) is
the combination of the first-stage model (5) and the second-
stage model (9). Let y = (y1, . . . , yn)

T , f = (f(t1), . . . ,

f(tn))
T , and η = (

∑K

k=1 αkp(γ k; t1 − τk), . . . ,
∑K

k=1 αkp×
(γ k; tn − τk))

T . Then the NMPSM can be written in a matrix
form

y = f + η + ε, ε ∼ N(0, σ2Λ),

φ = Aβ + Bb, b ∼ N(0, σ2D ). (10)

In the following we assume that Λ and D depend on an un-
known parameter vector θ . We need to estimate the number
of pulses K, pulse locations τ = (τ 1, . . . , τK)T , β , f , θ , σ2,
and b. Since the total number of parameters depends on the
unknown parameter K, it is difficult to estimate all the pa-
rameters simultaneously. Our estimation procedure consists
of two stages
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� pulse detection: estimate K and τ .� parameter estimation: conditional on the estimates of K
and τ , estimate β , f , θ , σ2, and b.

3.1 Parameter Estimation and Inference
We present the second stage of our estimation procedure first.
At this stage, we assume that K and τ are known and develop
methods for estimating β , f , θ , σ2, and b. The NMPSM (10)
is a special case of the semiparametric nonlinear mixed effects
models (SNMM) proposed in Ke and Wang (2001). Thus, the
same estimation method can be used. Specifically, the estima-
tion procedure iterates between two steps. At the first step,
for fixed σ2 and θ , we estimate β , f , and b by minimizing the
following double-penalized log-likelihood:

min
f∈Wm,β,b

{
(y − f − η)TΛ−1(y − f − η) + bTD−1b

+nλ

∫ 1

0

(
f (m)(u)

)2
du

}
, (11)

where the first two terms are the Laplace approximation to
the log-likelihood of the NMPSM, the third term is a penalty
to the roughness of the function f, and λ is a smoothing pa-
rameter that controls the trade-off between the goodness-of-
fit and the smoothness of the function f. We choose λ using
a data-adaptive criterion such as the generalized cross vali-
dation (GCV) and generalized maximum likelihood (GML)
methods (Wahba, 1990; Ke and Wang, 2001; Wang and Ke,
2002).

At the second step, fixing β , f, and b at their current es-
timates β , f , and b , we estimate θ and σ2 by maximizing
the approximate profile-likelihood

log |σ2V | + σ−2(y − f − η + Z b )TV −1

× (y − f − η + Z b ), (12)

where V = Λ + Z D Z T and Z = ∂η/∂b|β ,b . Detailed
implementation of this procedure can be found in Ke and
Wang (2001).

Inferences on parameters, random effects, and the non-
parametric baseline function are based on a linear mixed
effects partial spline approximation at convergence. Specif-
ically, denote φ̂ as the estimate of φ and X̂ = ∂η/∂φ |φ̂.
Then, at convergence, we approximate model (10) by y ≈
f + η(φ̂) + X̂ (φ − φ̂) + ε. Let ỹ = y − η(φ̂) + X̂ φ̂ . Then, we
approximate the original NMPSM (10) by the following linear
mixed effects partial spline model:

ỹ = f + X̂ Aβ + X̂ Bb + ε. (13)

Combining the parametric fixed effects, X̂ Aβ , with the bases
of the null space of f, model (13) is a special case of the non-
parametric mixed effects model in Wang (1998) and Wang
and Ke (2002). Covariance matrices of the best linear un-
biased prediction (BLUP) estimates given in Theorem 1 of
Wang (1998) are used for inferences.

3.2 Pulse Detection
We now present the first stage of our estimation procedure.
The number of pulses is never known in practice. We propose
methods for estimating K and τ in this subsection. This stage
of our estimation procedure consists of two phases

phase 1: identify potential pulse locations.
phase 2: create a nested sequence by eliminating pulses one

by one and then decide the final model.

At the first phase, we want to find all possible pulses and
not be concerned with false identifications. Many detection
methods are available in the endocrinology and statistical lit-
erature. One may use any existing pulse detection method
such as the CLUSTER method (Veldhuis and Johnson, 1986).
When pulse locations are peaks of the double exponential
function (6), the mean function has change points in the
first derivative at these positions. Thus, existing methods
for detecting change points in the first derivative can also
be used (Yang, 2002). Simulations (not shown) indicate that
both CLUSTER and change points methods perform well.
The change point method tends to have a smaller false neg-
ative rate. Therefore, it is used in our simulations and data
analysis. Other methods such as wavelet and local polynomi-
als may also be used (Yang, 2002). We note that users can
always add or eliminate pulse locations at this phase based
on visual inspection. More details, R functions, and examples
can be found in Yang, Liu, and Wang (2004b).

Let the number of potential pulses identified in the first
step be set as Kmax. Denote the minimal number of pulses as
Kmin. A simple choice of Kmin is zero. In phase 2, we create a
nested sequence of pulse locations by fitting the NMPSM (10)
and eliminating the least significant pulse location one by one
from Kmax to Kmin. We then select the final model using a
model selection criterion.

We now discuss model selection methods involved in phase
2 in some detail. For a fixed K, Kmin ≤ K ≤ Kmax, we fit the
NMPSM (10) using the method discussed in Section 3.1. We
define t-statistics

tk = α̂k/
√

v̂ar(α̂k), k = 1, . . . ,K,

where v̂ar(α̂k) is the approximate variance of α̂k after lin-
earization. Specifically, we compute α̂k using Theorem 1 in
Wang (1998) based on the approximated linear mixed effects
partial spline model (13). We then eliminate the pulse loca-
tion with the smallest |tk |. Simulations in Section 4 indicate
that this simple procedure works very well: false pulse loca-
tions are correctly eliminated before true pulse locations in
most simulations.

Denote models corresponding to the resulting nested se-
quence of pulse locations as MKmin , . . . ,MKmax . We need to se-
lect the final model among this sequence of models. Model (5)
contains two additive components: the nonparametric base-
line function and the parametric pulses. Usually as K in-
creases, the complexity of the parametric component increases
while the complexity required for f decreases. Therefore both
λ and K act as tuning parameters and they usually com-
pensate each other. Although pulse locations of the sequence
created in the first step are nested, MKmin , . . . ,MKmax are
not necessarily nested since λ are different for different K.
Consequently, the residual sum of squares is not necessar-
ily decreasing as K increases. We will select the final model
using a model selection criterion such as the Akaike infor-
mation criterion (AIC; Akaike, 1973), Bayesian information
criterion (BIC; Schwarz, 1978), risk inflation criterion (RIC;
Foster and George, 1994), and GCV (Craven and Wahba,
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1979). To be able to use these model selection procedures,
we need to define a measure of complexity for the model
MK ,K = Kmin, . . . ,Kmax. For an additive model, it is reason-
able to take the addition of degrees of freedom for each com-
ponent as a measure of complexity. However, when a selection
procedure is involved in the estimation, extra degrees of free-
dom are required (Hinkley, 1971; Friedman and Silverman,
1989; Friedman, 1991; Luo and Wahba, 1997). Let H̃ (λ̂) be
the smoother matrix for the nonparametric function f where λ̂
is an estimate of λ by the GCV or the GML method (Wahba,
1990; Wang and Ke, 2002). A commonly used measure of com-
plexity for f is trH̃ (λ̂). Let dfP (K) be the number of parame-
ters associated with pulses. As in Luo and Wahba (1997), we
define an inflated degree of freedom (IDF) to account for the
extra cost for selecting pulse locations. Specifically, we define
the total degrees of freedom for MK as

dfK ≡ trH̃ (λ̂) + IDF × dfP (K). (14)

Simulations show that a good choice of IDF is around 1.2; the
same value is suggested in Luo and Wahba (1997). IDF = 1,
that is no inflation, leads to poor performance.

Let RSS(K) be the residual sum of squares of model MK .
Note that RSS(K) depends on both K and λ. For a fixed K,
as discussed in Section 3.1, we estimate λ by a data-driven
method such as the GCV or GML method. Therefore, λ̂ de-
pends on K and λ is essentially profiled in RSS(K). Now con-
sider the following selection criteria:

RSS (K) + aσ2 dfK , (15)

where a = 2, a = logn, and a = 2 log dfKmax correspond to the
AIC, BIC, and RIC criteria, respectively. We estimate σ2

based on the biggest model with K = Kmax. The GCV crite-
rion is defined as

RSS (K)/(1 − dfK/n)2.

Estimate of K is the minimizer of one of those criteria which
also decides τ and the final model. Simulations show that all
four model selection procedures work very well. BIC and RIC
perform slightly better.

3.3 Algorithm
Combining all steps in two stages, we have the following
algorithm.

1. Initialize: identify potential pulse locations and provide
initial values. Denote the total number of potential pulses
as Kmax. Specify a low bound for the number of pulses
Kmin.

2. Pulse detection:

(a) For K = Kmax, Kmax − 1, . . . ,Kmin, repeat

i. fit the model (10) and compute t-statistics tk ,
k = 1, . . . ,K.

ii. delete the location with the smallest |tk |.
(b) Select the final model using one of the AIC, BIC,

RIC, and GCV criteria.

3. Parameter estimation: fit the final model.

We use the estimation methods for the general SNMM
to accomplish step 3. However, the R function developed

for fitting SNMM (Wang and Ke, 2002) cannot be ap-
plied directly due to the complicated structure of the
parametric part in (10). Therefore, we developed a new
user-friendly R package, PULSE, for hormone pulse detec-
tion and estimation. PULSE consists of three main func-
tions, pulini, puldet, and pulest, for steps 1, 2, and
3, respectively. The manual of PULSE contains more de-
tails and examples. It can be downloaded from http://

www.pstat.ucsb.edu/faculty/yuedong/software.html.
Due to the complexity of the NMPSM, there may be mul-

tiple local optimal solutions. Good initial values are critical
to the performance of our algorithm. We have developed sev-
eral methods and R functions for finding good initial values
(Yang, 2002; Yang et al., 2004b).

When desirable, a fixed effect model can be assumed for
all parameters φ . Then, the second-stage model (9) contains
the fixed effects part only. Estimation and software can be
developed similarly (Yang, 2002). R functions in the PULSE

package allow parameters to be specified as fixed, random, or
mixed. Even when φ is considered as deterministic, it may be
advantageous to estimate them using the penalized likelihood
(11). For example, model (8) corresponds to shrinking αk to-
ward the common mean. Pooling data from different pulses,
the resulting shrinkage estimates have smaller variances. This
is especially important for the estimation of decay rates. Usu-
ally there are only a few observations on each pulse, which
makes the maximum likelihood estimates of the decay rates
unreliable. All existing methods are forced to assume a com-
mon decay rate for all pulses. Our simulations in Section 4
indicate that the shrinkage estimates are more efficient.

4. Simulation
4.1 Performance of Pulse Detection
In this subsection, we conduct simulations to evaluate the
performance of our methods for pulse detection. We gener-
ate data from model (5) with n = 144, ti = i/n, and f(t) =
0.5 cos (2πt) + 2. We consider two choices for the number
of pulses, K: K = 5 or K = 10. For a fixed K, we generate
pulse locations according to a nonhomogeneous Poisson pro-
cess with intensity function λ(t) = 35(0.26 − (t − 0.5)2). We
use the double exponential function (6) as the pulse-shape
function with a fixed infusion rate, γ1 = 100, and random
amplitudes αk and random decay rates γ2k. Specifically, we

generate pulse amplitudes such that logαk
iid∼ N(1, σ2

1) and

pulse decay rates such that log γ2k
iid∼ N(3.66, σ2

2). We gener-

ate random errors according to εi
iid∼ N(0, σ2). We consider

four settings for variance parameters σ, σ1, and σ2: (I) (σ, σ1,
σ2) = (0.3, 0.3, 0.18); (II)(σ, σ1, σ2) = (0.5, 0.3, 0.18); (III)
(σ, σ1, σ2) = (0.3, 0.5, 0.27); and (IV) (σ, σ1, σ2) = (0.5, 0.5,
0.27). We repeat 100 times for each simulation setting.

We use the change point method to identify initial pulse lo-
cations and then apply our elimination procedure with Kmin =

K/2. We assume the second-stage models logαk
iid∼ N(β1, σ

2
α)

and log γ2k
iid∼ N(β2, σ

2
γ2

). Note that instead of using model
(8) which was assumed in Keenan et al. (1998), we use
log transformations to relax positive constraints on αk and
γ2k. For K = 10 and setting III, Figure 2 shows profiles
of the AIC, GCV, BIC, and RIC criteria with IDF = 1.2
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Figure 2. Four columns correspond to the AIC, GCV, BIC, and RIC criteria. The upper panel plots scores of these four
criteria versus the number of pulses. The lower panel plots histograms of the estimated K.
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(b) K = 10

Figure 3. False positive and false negative rates.

and histograms of the estimated K based on these four
criteria. Plots for other simulation settings are similar.
Figure 3 plots the false positive rates and false negative
rates for each setting. All four criteria provide good esti-
mates of pulse numbers and pulse locations while BIC and
RIC perform slightly better except for setting IV where vari-
ances are large. The performance depends on the choice
of IDF: a larger IDF may improve the performance of the
AIC and GCV. Overall, we recommend BIC and RIC with
IDF = 1.2. We note that the performances of our methods
in terms of false positive rates and false negative rates are
comparable to those in Mauger et al. (1995) even though
our simulation settings are more difficult with a slower sam-

pling rate, multiple sources of variations, and a nonconstant
baseline.

We treat the baseline function f as a nuisance parame-
ter. Nevertheless, MSEs of f̂ (not shown) indicate that our
methods estimate the baseline function very well. See Yang,
Liu, and Wang (2004a) for more references and simulation
results.

4.2 Efficiency of Shrinkage Estimates
For linear regression models, it is well known that the shrink-
age (also known as ridge) estimators reduce variance while
increasing bias. With the right amount of shrinkage, it is al-
ways possible to reduce the MSE (Efron and Morris, 1975;
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Table 1
MSEs and efficiencies of the estimates for the amplitudes and decay rates

Number of pulses Parameters Setting Shrinkage Standard Efficiency

K = 5 Amplitudes I 0.06 0.09 1.55
II 0.14 0.22 1.62

III 0.10 0.14 1.38
IV 0.18 0.25 1.37

Decay rates I 0.12 0.42 3.52
II 0.32 1.17 3.66

III 0.20 0.67 3.41
IV 0.30 1.28 4.22

K = 10 Amplitudes I 0.15 0.45 3.00
II 0.32 0.88 2.72

III 0.23 0.59 2.55
IV 2.73 4.24 1.55

Decay rates I 0.26 2.23 8.61
II 0.50 3.82 7.65

III 0.41 2.23 5.45
IV 1.75 10.51 6.02

Gruber, 1998). In this section, we evaluate performance of the
shrinkage methods for our nonlinear models. The simulation
settings are the same as in Section 4.1. Instead of estimat-
ing the pulse locations, we now use true pulse locations and
evaluate our estimation methods.

In this subsection we consider all parameters including
αk and γ2k as deterministic and our estimates based on the
NMPSM as the shrinkage estimates. Specifically, the shrink-
age estimates are minimizers of the following penalized least
squares:

||y − f − η ||2 + λ1

K∑
k=1

(logαk − β̄1)
2 + λ2

K∑
k=1

(log γ2k − β̄2)
2

+nλ

∫ 1

0

(
f (m)(u)

)2
du, (16)

where β̄1 =
∑K

k=1 logαk/K, β̄2 =
∑K

k=1 log γ2k/K, and λ1 and
λ2 are two shrinkage parameters. We shrink logαk and log γ2k

toward their grand means. Now consider a nonlinear mixed ef-
fect model with (5) as the first-stage model and random effects

logαk
iid∼ N(β1, σ

2/λ1) and log γ2k
iid∼ N(β2, σ

2/λ2). Then, it is
not difficult to check that the penalized least squares (16) is

Table 2
Summary of the elimination procedure and criteria scores. The column DROP lists initial locations eliminated

at each iteration. DF is defined in equation (14) with IDF = 1.2.

Number of pulses BIC RIC AIC GCV DROP DF

13 82.673 106.897 52.847 62.965 10:30 pm 40.334
12 80.275 102.983 52.316 61.358 9:50 am 37.809
11 78.252 99.593 51.975 60.219 9:20 pm 35.534
10 76.133 96.032 51.631 59.087 5:40 pm 33.134
9 73.760 90.818 52.757 59.767 11:00 am 28.402
8 72.349 87.297 53.945 60.596 7:10 pm 24.889
7 73.652 89.228 54.475 61.680 11:50 am 25.934
6 75.068 89.202 57.666 65.513 2:30 am 23.534
5 79.926 92.618 64.298 73.722 1:00 pm 21.134

equivalent to the penalized likelihood (11) with β̄1 and β̄2

replaced by β1 and β2. Therefore, we approximate the shrink-
age estimates by the estimates of the corresponding nonlinear
mixed effects model.

For comparison, we also calculate the least squares (LS)
estimates of αk and γ2k using the gnls function in the nlme

package. We repeat the simulation 100 times. Define MSE of
α̂k as MSE =

∑S

s=1

∑K

k=1(α̂
(s)
k − α

(s)
k )2/(SK), where α̂

(s)
k are

the LS or shrinkage estimates of the true parameters α
(s)
k in

the sth simulation and S is the number of simulations. The
MSEs of γ̂2k are defined similarly. Table 1 lists the MSEs of
the LS and shrinkage estimates of αk and γ2k. The efficien-
cies, ratios between the MSE of the LS estimates and the MSE
of the shrinkage estimates (Efron and Morris, 1975), are also
listed in Table 1. Shrinkage estimators are obviously more ef-
ficient, especially for the decay rates. From our experiments,
the comparative superiority becomes less obvious when the
variation of a parameter becomes larger or error variance be-
comes smaller.

5. Application
We now show the analysis of the data introduced in
Section 1. We used the double exponential function (6) to
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Table 3
Estimates of αk and γ2k on log scale and their standard errors

Location αk SE γ2k SE

11:50 am 0.641 0.056 5.770 0.496
1:00 pm 1.074 0.012 2.272 0.076
4:00 pm 1.827 0.005 4.003 0.023
7:10 pm 0.458 0.041 2.632 0.172
2:30 am 0.801 0.040 4.038 0.140
4:50 am 1.934 0.004 3.961 0.021
7:00 am 1.987 0.005 4.268 0.026
8:30 am 1.351 0.028 4.117 0.113

model the pulse-shape function and a cubic spline to model
the baseline function. Amplitudes and pulse decay rates
are modeled using random effects. Specifically, we assume

that logαk
iid∼ N(β1, σ

2
α), log γ2k

iid∼ N(β2, σ
2
γ2

), and they are
mutually independent.

The change point method identified Kmax = 13 and poten-
tial pulse locations at 9:50 am, 11:00 am, 11:50 am, 1:00 pm,
4:00 pm, 5:40 pm, 7:10 pm, 9:20 pm, 10:30 pm, 2:30 am, 4:50
am, 7:00 am, and 8:30 am. We then applied our elimination
procedure with Kmin = 5. Table 2 shows the resulting se-
quence of pulse locations that are eliminated one by one. The
estimates of the number of pulses based on the BIC, RIC,
AIC, and GCV criteria are 8, 8, 10, and 10, respectively. The
identified pulse locations using BIC, overall fit, and estimate
of the baseline are shown in Figure 1. Table 3 lists estimates
of the amplitudes and decay rates based on the final model
selected by the BIC criterion.

6. Discussion
The NMPSM provides more efficient and stable estimates of
parameters by allowing different shape parameters for pulses
within each subject and combining all nuisance parameters
into a baseline function. The general form of the second-stage
mixed effects model will also allow researchers to investigate
patterns of biological variation including circadian rhythms
and feedback/feedforward control mechanisms (Keenan et al.,
2003; Keenan and Veldhuis, 2003). The challenge lies in de-
tecting the number and locations of pulses masked by indirect
observations and multiple sources of variations. It requires a
sophisticated model selection procedure such as the one pro-
posed in this article.

Like all existing methods in the literature, our procedure in
this article detects hormone pulses for each subject separately.
Variations between subjects are usually accounted for in the
second-stage analysis. One of our future research topics is to
construct integrated models for all subjects, which will allow
us to model both variations between subjects and variations
between pulses within a subject.

We limited our discussions to the problem of hormone pulse
detection. However, as a general model, the NMPSM has
other potential applications when observations are in a form
of signals plus slow changing baseline (Hunt, 1998; McBride,
2002; Yang, 2002). With slight modifications, our methods
can be applied to these situations.
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