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Nonparametric regression models are often used to check or suggest a parametric model. Several methods have been
proposed to test the hypothesis of a parametric regression function against an alternative smoothing spline model.
Some tests such as the locally most powerful (LMP) test by Cox et al. (Cox, D., Koh, E., Wahba, G. and
Yandell, B. (1988). Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized
spline models. Ann. Stat., 16, 113–119.), the generalized maximum likelihood (GML) ratio test and the
generalized cross validation (GCV) test by Wahba (Wahba, G. (1990). Spline models for observational data.
CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM.) were developed from the corresponding
Bayesian models. Their frequentist properties have not been studied. We conduct simulations to evaluate and
compare finite sample performances. Simulation results show that the performances of these tests depend on the
shape of the true function. The LMP and GML tests are more powerful for low frequency functions while the GCV
test is more powerful for high frequency functions. For all test statistics, distributions under the null hypothesis are
complicated. Computationally intensive Monte Carlo methods can be used to calculate null distributions. We also
propose approximations to these null distributions and evaluate their performances by simulations.

Keywords: Bayesian models for smoothing splines; Connections between linear mixed effects models and smoothing
splines; GCV test; GML test; F-test; LMP test; Symmetrized Kullback-Leibler test

1 INTRODUCTION

As a popular nonparametric regression method, spline smoothing has attracted a great deal of atten-

tion. Most research in the literature concentrates on estimation, while inference, especially hypothesis

testing, has received less attention. Several test procedures were developed only for simple hypoth-

eses of simple spline models. Their properties and performances are not well understood. The aim of

this study is to evaluate and compare some existing smoothing spline based tests using simulations.

Consider the univariate nonparametric regression model

yi ¼ f (ti) þ ei, i ¼ 1, . . . , n, 0 � ti � 1, (1)

where yi is the response, ei is the random error and ei �
iid
N (0, s2). f is assumed to be in an

infinite dimensional model space to be specified later.
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One of the most useful applications of the nonparametric regression models is to check or

suggest a parametric model. Parametric models, especially linear models, are preferred in

practice because of their simplicity and interpretability. Diagnostic investigations of the

departures from these parametric assumptions are necessary to avoid misleading results. If

some specific alternative form is suspected, a simple lack of fit test can be performed.

However, this kind of test would not perform well for other departures from the parametric

model, especially those orthogonal to the suspected alternative. For example, to detect depar-

ture from a linear model, one may consider a quadratic polynomial as the alternative. Then

the higher order departure may be missed. Tests performing well for general departures in a

large model space are desirable.

Most existing methods for testing general departures from a parametric model are based on

nonparametric regression models such as kernel estimation (Azzalini and Bowman, 1993),

local polynomial regression (Cleveland and Devlin, 1988) and smoothing spline. In this

paper we focus on the tests based on smoothing spline models. The connection between

smoothing spline models and Bayesian models (or mixed effects models) simplifies certain

hypothesis tests. Also, the general form of smoothing spline models allows us to consider

many different situations in a unified fashion.

Cox et al. (1988) showed that for the hypothesis of f being a polynomial of degree

m (m � 0) versus f being smooth, there is no uniformly most powerful (UMP) test. Thus

they proposed to use a locally most powerful (LMP) test. Wahba (1990) proposed two tests

based on the generalized maximum likelihood (GML) and the generalized cross validation

(GCV) scores. For nonGaussian data, Xiang and Wahba (1995) developed the symmetrized

Kullback-Leibler (SKL) test based on the SKL distance between the function estimated under

the null hypothesis and the function estimated under the alternative. We are going to examine

the performance of these tests for Gaussian data.

Raz (1990) developed a permutation test for the hypothesis of independence between the

response and the covariates without assuming any particular error distribution. Two general-

ized F tests were studied by Raz (1990) in the context of general nonparametric regression.

However, their performances were not discussed.

In Section 2, a brief introduction to smoothing splines is given. In Section 3, we review

some existing tests and develop approximations to null distributions. We evaluate and com-

pare these tests and approximations in Section 4. Section 5 concludes with some remarks and

potential research topics.

2 SMOOTHING SPLINE MODELS

In this section we briefly review smoothing spline models, their corresponding Bayesian

models and connections with linear mixed effects models (LMM). For simplicity, we limit

our discussions to polynomial splines on [0, 1]. All tests in this study can be written in

terms of general spline models on arbitrary domains (Wahba, 1990). Thus these tests can

be used to test more complicated hypothesis under general spline models.

In model (1), assume that f 2 Wm, where

Wm ¼ {gjg, . . . , g(m�1) are absolutely continuous, g(m) 2 L2[0, 1]}:

The smoothing spline estimate of f, f̂fl, is the minimizer of

1

n

Xn
i¼1

( yi � f (ti))
2 þ l

ð1

0

( f (m)(u))2 du, (2)
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where l is a smoothing parameter which controls the trade-off between the goodness-of-fit

and the smoothness of the estimate.

Let y ¼ ( y1, . . . , yn)
0, fn(t) ¼ tn�1=(n� 1)!, n ¼ 1, . . . , m, and R1(s, t) ¼Ðmin (s,t)

0
(s� u)m�1(t � u)m�1 du=((m� 1)!)2. Consider Tn�m ¼ {fn(ti)}

n
i¼1

m
n¼1 and Sn�n ¼

{R1(ti, tj)}
n
i¼1

n
j¼1. Kimeldorf and Wahba (1971) showed that the solution to Eq. (2) has the

form

f̂fl(t) ¼
Xm
n¼1

dnfn(t) þ
Xn
i¼1

ciR
1(t, ti),

where c ¼ (c1, . . . , cn)
0 and d ¼ (d1, . . . , dm)0 are solutions to

T Sþ nlI
0 T 0

� �
d

c

� �
¼

y

0

� �
: (3)

The system (3) is definite when T is of full column rank, which we assume to be true in this

paper. Thus f̂fl ¼ ( f̂fl(t1), . . . , f̂fl(tn))0 ¼ Tdþ Sc is always unique. Let

T ¼ Q1 Q2

� � R

0

� �

be the QR decomposition of T. One may check that f̂fl is a linear function of y: f̂fl ¼ A(l)y,

where A(l) is the ‘hat’ matrix. It can be verified that

A(l) ¼ I � nlQ2(Q0
2(Sþ nlI )Q2)�1Q0

2: (4)

Note that A(l) is symmetric, but usually not idempotent.

The smoothing spline estimate can be obtained from the Bayesian point of view. Assume

the following prior to f

F(t) ¼
Xm
n¼1

ynfn(t) þ b1=2X (t),

where h ¼ (y1, . . . , yn)0 � N (0, aI ), a and b are positive constants, and X (t) is a zero mean

Gaussian stochastic process independent of h with covariance EX (s)X (t) ¼ R1(s, t).

Consider

yi ¼ F(ti) þ ei, i ¼ 1, . . . , n, ti 2 [0, 1], (5)

where e ¼ (e1, . . . , en)0 � N (0, s2I ) and is independent of F. Wahba (1990) showed that with

l ¼ s2=nb,

lim
a!1

E(F(t)jy) ¼ f̂fl(t):

With a ! 1, diffuse priors are assumed for the coefficients of the polynomials of degree

less than m.
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Smoothing spline models can also be connected to certain LMM. Consider the

following LMM

y ¼ Tdþ uþ e, (6)

where d are the fixed effects, u are the random effects and u � N (0, bS), e are random errors

and e � N (0, s2I ), and u and e are independent. Wang (1998a) showed that the smoothing

spline estimate evaluated at the design points, f̂fl, is the same as the best linear unbiased pre-

diction (BLUP) estimate in Eq. (6).

3 EXISTING TEST METHODS

Let H0 ¼ span{fn,n ¼ 1, . . . , m}. Often we are interested in testing the hypothesis that f is a

polynomial of degree m� 1 or less

H0: f 2 H0, H1: f 2 Wm and f 62 H0: (7)

It is easy to see that l ¼ 1 in Eq. (2), or equivalently b ¼ 0 in the corresponding Bayesian

and mixed effects models, leads to f 2 H0. Thus the hypothesis (7) can be re-expressed as

H0: l ¼ 1, H1: l < 1, (8)

or

H0: b ¼ 0, H1: b > 0: (9)

Notice that y � N (0, aTT 0 þ bSþ s2I ) under the Bayesian model (5) and y � N (Td, bSþ

s2I ) under the mixed effects model (6). Let w ¼ Q0
2y, then w � N (0, bQ0

2SQ2 þ s2I ) under

both the mixed effects and the Bayesian models. It is clear that the transformation Q0
2y elimi-

nates contribution from the model under the null hypothesis. Thus w reflects signals, if any,

from Wm �H0.

Let the spectral decomposition of Q0
2SQ2 be UDU 0, where D ¼ diag(lnn,

n ¼ 1, . . . , n� m), and lnn’s are the eigenvalues of Q0
2SQ2 ordered so that

l1n � l2n � � � � � ln�mn. Let z ¼ U 0w, then

z � N (0, bDþ s2I ): (10)

Note that zn, the nth component of z, is the projection of w in the direction of the nth column

(eigenvector) of U (Q0
2SQ2).

3.1 LMP Tests

Cox et al. (1988) showed that the UMP test does not exist for hypothesis (9) under model (5).

When s2 is known, they proposed an LMP test which rejects the null hypothesis for large

values of

tLMP ¼
Xn�m

n¼1

lnnz2
n : (11)
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When s2 is unknown they proposed an approximate LMP which rejects the null hypothesis

for large values of

tappLMP ¼

Pn�m
n¼1 lnnz2

nPn�m
n¼1 z2

n
: (12)

Let l(b, s2jz) denote the log-likelihood of b and s2 given z. Then

l(b, s2jz) ¼ �
n� m

2
log (2p) �

1

2

Xn�m

n¼1

log(blnn þ s2) �
1

2

Xn�m

n¼1

z2
n

blnn þ s2
:

Note that z is based on an orthogonal contrast of the original observations which elimi-

nates the fixed effects. Thus l(b, s2jz) is the so-called restricted log-likelihood in the

mixed effects literature.

It is not difficult to check that the LMP test is equivalent to the score test (Cox and

Hinkley, 1974) defined by

tscore ¼
Ub(0, s2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ibb(0, s2)

p , (13)

where Ub(b, s2) is the efficient score defined as ql(b, s2jz)=qb and Ibb(b, s2) is the Fisher

information of b. When it is unknown, s2 can be replaced by the maximum likelihood

estimate (MLE) under the null hypothesis (9), ŝs2 ¼
Pn�m

n¼1 z2
n=(n� m), which leads to the

approximate LMP test.

The test statistic tappLMP does not follow a simple distribution under H0. It is straight-

forward to simulate the null distribution (Wahba, 1990). The p-value, P(tappLMP > tobs
appLMP) ¼

P(
Pn�m

n¼1 (lnn � tobs
appLMP)z2

n > 0), can also be calculated numerically using the algorithm in

Davies (1980). We find that this nonsimulation-based approximation method is very fast and

agrees with the results from the Monte Carlo method.

3.2 GML Test

Since b ¼ s2=nl, the log-likelihood from z can be re-expressed as

l(l, bjz) ¼ �
1

2
(n� m)log b�

1

2

Xn�m

n¼1

log(lnn þ nl) �
1

2b

Xn�m

n¼1

z2
n

lnn þ nl
þ C,

where C is a constant.

For fixed l, maximizing the log-likelihood with respect to b, we have

b̂bl ¼
1

n� m

Xn�m

n¼1

z2
n

lnn þ nl
:

Then the profiled likelihood of l is

L(ljz) ¼ exp(l(l, b̂bljz)) ¼ C1

Pn�m
n¼1 z2

n=(lnn þ nl)Qn�m
n¼1 (lnn þ nl)�1=ðn�mÞ

 !�ðn�mÞ=2

, (14)

where C1 is a constant.
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The GML estimate of l, l̂lGML, is the maximizer of Eq. (14). Wahba (1990) defined the

GML test statistic for the hypothesis (8) as

tGML ¼
L(l̂lGMLjz)

L(1jz)

" #�2=ðn�mÞ

¼

Pn�m
n¼1 z2

n=(lnn þ nl̂lGML)Qn�m
n¼1 (lnn þ nl̂lGML)�1=ðn�mÞ

1Pn�m
n¼1 z2

n
: (15)

The null hypothesis is rejected when tGML is too small.

It is difficult to derive the null distribution for tGML. The standard theory for likelihood

ratio tests does not apply because the parameter is on the boundary under the null hypothesis.

The nonstandard asymptotic theory, developed by Self and Liang (1987), which states that

�(n� m) log tGML has an asymptotic null distribution of a 50:50 mixture of w2
1 and w2

0

does not apply either because of the lack of replicated observations. Crainiceanu et al.

(2003) reported the same finding for P-spline models. In a subsequent paper, Crainiceanu

and Ruppert (2003) provided the asymptotic distributions of likelihood ratio tests for linear

mixed models. Monte Carlo methods are used to obtain quantiles of these asymptotic

distributions.

The direct Monte Carlo method simulates l samples of �(n� m)log tGML under the null

hypothesis. Denote �(n� m) log tGML based on data as x0 and suppose that x0 > 0. Then

the true p-value is

p ¼ P(�(n� m)log tGML > x0jH0):

We generate l samples of z from N (0, I ) (without loss of generality, we set s2 ¼ 1), calculate

l̂lGML for each sample, and construct tGML for each sample. Let x1, . . . , xl denote the l sam-

ples of �(n� m) log tGML. Then p is estimated by

p̂p ¼
1

l

Xl
i¼1

I (xi > x0),

where I (�) is the indicator function. Then Ep̂p ¼ p and Var( p̂p) ¼ p(1 � p)=l. This approach

usually requires a very large l. For example, to have a margin of error 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var( p̂p)

p
bounded

by 0.005, l has to be at least 40,000. Note that l̂lGML is computed for each sample.

Therefore, this approach is computationally intensive.

Our simulation results suggest that the null distribution of �(n� m) log tGML can be well

approximated by a mixture of w2
1 and w2

0, denoted by rw2
0 þ (1 � r)w2

1. However, the ratio r is

not fixed. It depends on the order m, sample size n and the design points ti. Thus we propose

an alternative method that estimates the ratio r first and then calculates the p-value based on

the mixture of w2
1 and w2

0 with the estimated r. The motivation behind this approach is that a

relatively small sample size k is required to estimate r.

We now compare sample sizes required by these two approaches. For the alternative

approach, let x01, . . . , x0k be k random samples of �(n� m) log tGML under the null hypothesis.

We estimate r by

r̂r ¼
1

k

Xk
i¼1

I (x0i ¼ 0):

Then Er̂r ¼ r and Var(r̂r) ¼ r(1 � r)=k. Note that w2
0 represents a point mass at zero. Thus the

p-value is estimated by

~pp ¼ (1 � r̂r)P(w2
1 > x0):
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Assuming that the null distribution of nonzero �(n� m) log tGML is exactly w2
1, we have

E ~pp ¼ p and Var( ~pp) ¼ rp2=(k(1 � r)).

For Var( p̂p) ¼ Var( ~pp), we need k ¼ rpl=((1 � r)(1 � p)). Based on our simulations with

m ¼ 2, n ¼ 100 and a uniform design in [0, 1], r is usually around 0.7. It is easy to check

that for p ¼ 0:05 and r ¼ 0:7, we have k � 0:12l. Thus about k ¼ 5000 samples are needed

for the alternative method if l ¼ 40,000.

Simulation results in Section 5 indicate that approximations based on the alternative

approach are accurate when the sample size is large.

3.3 F-type Tests

For the hypothesis (7) under model (1), the usual F test statistic will not follow an F distribu-

tion because the hat matrix A(l) is not idempotent. Two F-type tests were mentioned by Raz

(1990) for the following hypothesis

H0: f ¼ constant, H1: f 6¼ constant (16)

in the context of general nonparametric regressions. They were used to derive the permuta-

tion test and their performances were not investigated. In this section, we first extend these

two F-type statistics for our hypothesis (7). Then we compare them with the GCV test pro-

posed by Wahba (1990) and the SKL test proposed by Xiang and Wahba (1995).

Let f̂f0 be the maximum likelihood estimate of the regression function under the null

model. Then f̂f0 ¼ Hy, where f̂f0 ¼ ( f̂f0(t1), . . . , f̂f0(tn))0 and H ¼ T (T 0T )�1T 0. Note that H is

an idempotent hat matrix and A(l)H ¼ HA(l) ¼ H .

Define

S1 ¼
Xn
i¼1

( f̂fl(ti) � f̂f0(ti))
2,

S2 ¼
Xn
i¼1

( yi � f̂fl(ti))
2,

S3 ¼
Xn
i¼1

( yi � f̂f0(ti))
2,

(17)

where S1 measures the difference between f̂f0 and f̂fl, S2 is the residual sum of squares under

H1 and S3 is the residual sum of squares under H0.

In terms of the hat matrices, Eq. (17) can be re-expressed as S1 ¼ y0(A(l) � H)2y, S2 ¼

y0(I � A(l))2y and S3 ¼ y0(I � H)y. In terms of z, we have

S1 ¼
Xn�m

n¼1

lnn=nl
1 þ lnn=nl

� �2

z2
n ¼ S2 þ S3 � 2

Xn�m

n¼1

z2
n

1 þ lnn=nl
,

S2 ¼
Xn�m

n¼1

z2
n

(1 þ lnn=nl)2
,

S3 ¼
Xn�m

n¼1

z2
n :

(18)
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Contrary to the parametric case, the equality S1 þ S2 ¼ S3 usually does not hold. Similar

to Raz (1990), we consider two generalizations of the standard F test statistic

F1 ¼
(n� g1)S1

(g1 � m)(S3 � S1)
with g1 ¼ tr(A2(l)), (19)

and

F2 ¼
g	1(S3 � S2)

(n� g	1 � m)S2

with g	1 ¼ tr((I � A(l))2): (20)

When l is fixed, the permutation test statistic in Raz (1990), (n� 1)S1=S3, is equivalent

to F1. Cantoni and Hastie (2002) considered a different hypothesis where l (or b) was fixed

under the alternative. Their F test statistic is equivalent to F2 when s2 is estimated under

their alternative hypothesis. They used approximation methods for linear combinations of w2

variables to compute p-values (Davies, 1980). Contrary to the LMP test, this method cannot

be used here because the smoothing parameters are not fixed under the alternative hypothesis.

In Section 5, we investigate the performances of F1 and F2 tests with a data-based choice of l.

3.3.1 The SKL Test

For nonGaussian data, Xiang and Wahba (1995) proposed the SKL test based on the SKL

distance between f̂fl and f̂f0:

tSKL ¼
1

n
E
f̂f0

log
f̂f0

f̂fl

 ! !
þ E

f̂fl
log

f̂fl

f̂f0

 ! !" #
:

For Gaussian data, it reduces to

tSKL ¼
1

ns2
k f̂fl � f̂f0k

2 ¼
1

ns2
S1: (21)

When s2 is estimated by S3=(n� m), tSKL ¼ (n� m)S1=nS3. Thus tSKL is equivalent to F1

for fixed l. The performance of the SKL test is compared with F-type tests and other tests in

Section 5 with l estimated from data.

3.3.2 GCV Test

The GCV test is based on the following GCV score (Wahba, 1990):

V (l) ¼
nk(I � A(l))yk2

(tr(I � A(l)))2
:

The GCV estimate of l, l̂lGCV, is the minimizer of V (l).

Wahba (1990) defined the GCV test statistic as

tGCV ¼
V (l̂lGCV)

V (1)
¼ (n� m)2

Pn�m
n¼1 z2

n=(1 þ lnn=nl̂lGCV)2

[
Pn�m

n¼1 1=(1 þ lnn=nl̂lGCV)]2

1Pn�m
n¼1 z2

n
:
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H0 is rejected when tGCV is too small. It is easily seen that tGCV is equivalent to F2 if the

smoothing parameter is fixed instead of being estimated from the GCV score. Again, the per-

formance of the GCV test is compared with F-type tests and the other tests in Section 5 with

l estimated from data.

4 AN OVERALL COMPARISON

All tests except F1 and F2 can be written in the form
Pn�m

n¼1 anz
2
n=
Pn�m

n¼1 z2
n , where coefficients

for the approximate LMP, GML, GCV and SKL tests are aLMP
n ¼ lnn, aGML

n ¼
Qn�m

n¼1 (lnnþ
nl̂lGML)1=ðn�mÞ=(lnnþnl̂lGML), aGCV

n ¼ (n� m)2=[(1þlnn=nl̂lGCV)2
Pn�m

n¼1 1=(1þlnn=nl̂lGCV)2]

and aSKL
n ¼ (n� m)(lnn=nl̂l)2=[n(1 þ lnn=nl̂l)2] with l̂l being an estimate of l.

Note that aLMP
n and aSKL

n decrease while aGML
n and aGCV

n increase. This is because the rejec-

tion regions for the approximate LMP and SKL tests are on the right hand side while the

rejection regions of the GML and GCV tests are on the left hand side. Notice that

tGML � 1 and tGCV � 1. For comparison, we use the equivalent test statistics 1 � tGML and

1 � tGCV as the GML and GCV test statistics in this section.

The differences between the approximate LMP, GML, GCV and SKL lie in the differences

between weights. The weights depend on the smoothing kernel matrix S, the design matrix T

and the smoothing parameter l except for the approximate LMP test. We now compare these

weights for a cubic smoothing spline with n ¼ 100 and a uniform design in [0, 1]. Note that

ans are not directly comparable because their scales are different and the corresponding sta-

tistics have different distributions. In the following, we scale the four null test statistics so that

they have the same 95% quantiles. We first generate 40,000 sets of z under the null hypoth-

esis. Note that all the test statistics are transformation invariant with respect to s2, so it is

taken as 1 in the simulation. For each set of z, the smoothing parameters l̂lGML and l̂lGCV

are calculated and l̂l in aSKL
n is replaced by l̂lGCV. Based on the 40,000 null test statistics

of tappLMP, 1 � tGML, 1 � tGCV and tSKL, we find that tappLMP, 0.464(1 � tGML), 0.199

(1 � tGCV) and 0:083tSKL have approximately the same 95% quantiles. Therefore we define

wLMP
n ¼ aLMP

n , wGML
n ¼ 0:464(1 � aGML

n ), wGCV
n ¼ 0:199(1 � aGCV

n ) and wSKL
n ¼ 0:083aSKL

n .

All the four tests are equivalent to
Pn�m

n¼1 wnz
2
n=
Pn�m

n¼1 z2
n , where wn denotes one of the

wLMP
n , wGML

n , wSKL
n and wGCV

n . Let �wwn be the average of the 40,000 realizations of wn. Note

that �wwLMP
n ¼ wLMP

n since wLMP
n does not depend on the smoothing parameter l.

In Figure 1 we show the comparison of �wwn for n ¼ 1, . . . , 10. Except for the SKL test, the

weights for all the tests decrease very quickly. The SKL test puts almost equal weights on

all zns. Although not shown in Figure 1, the weights of the SKL test are larger than those of

other tests when n � 15. We observe that on average, the approximate LMP test has the largest

weight on z1. Thus the LMP is more powerful in the direction of the first column of U, which is

the first eigenvector of Q0
2SQ2. The localness is by no means defined in terms of the distance in

Wm or the L2 distance. It is easy to find two directions, such as sin(2pt) and cos(2pt), such that

the powers are very different even when they have the same distances to the null space. The

GCV test has the largest weights on zn, 2 � n � 10. Thus it is more sensitive to changes in

these directions. The GML is a compromise between the LMP and the GCV tests.

Figure 2 plots the first four columns of U. If we consider the number of modes as the fre-

quency of a function, then the columns of U represent functions with increasing frequencies.

Thus we can expect that the approximate LMP test is the most powerful when the true function

has frequency 1 and the GCV test is more powerful for higher frequency functions. These

observations are confirmed by our simulation results in Section 5. In theory, one can con-

struct new tests in the form
Pn�m

n¼1 wnz
2
n=
Pn�m

n¼1 z2
n with weights chosen to achieve specific
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purposes. We have also studied weights for other smoothing spline models such as the linear

spline and the periodic spline. The results remain the same.

5 SIMULATIONS

Wahba (1990) conducted a small scale simulation to compare the LMP, GML and GCV

tests. Since data were generated from the stochastic Bayesian model (5), it was not clear

if these results hold when the data are generated from the deterministic model (1). In

this section, we conduct simulations to evaluate and compare the relative powers of the

LMP, GML, GCV, F1, F2 and SKL tests. Cubic splines (m ¼ 2) are used throughout

this section.

5.1 Power Comparisons

We conduct three simulations to compare powers of these tests. 100 observations were gen-

erated from model (1) with the following three f functions:

f (t) ¼ 1 þ t þ at2, (22)

f (t) ¼ 1 þ t þ 3a(t � 0:5)3, (23)

f (t) ¼ 1 þ t þ
ffiffiffi
2

p
a cos (6pt): (24)

FIGURE 1 Weight comparisons among the approximate LMP, GML, SKL and GCV tests.
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The first function is close to the first eigenvector, the second function is close to the second

eigenvector and the third function is a high frequency function. The design points are

ti ¼ (i� 1)=99, i ¼ 1, . . . , 100. We use ei �
iid
N (0, 0:22) for the first two models and

ei �
iid
N (0, 1) for the last one. For Eq. (22), a takes one of the following five values: 0, 0.2,

0.5, 0.7 or 1. For Eq. (23), a takes one of the following four values: 0, 0.5, 1 or 1.3. For

Eq. (24), a takes one of the following four values: 0, 0.3, 0.5 or 1. For all three models,

we test hypothesis (7) with m ¼ 2.

We repeat each setting 1000 times. The null distributions are generated by the Monte Carlo

method described in Section 4 with a simulation sample size of 40,000. The smoothing para-

meters in the test statistics are estimated for each simulation sample. The proportion of rejec-

tions with significance level 0.05 for each test is obtained by counting the percentage of

rejection in the 1000 repetitions. Results are shown in Tables I–III. Figure 3 shows the pro-

portion of rejections for combinations of four tests and three models.

Generally speaking, all tests hold their levels properly. As expected from discussions in

Section 4, the approximate LMP test is the best under model (22) but the worst under models

TABLE I Proportion of Rejections in 1000 Replications under Model (22).

a¼ 0 a¼ 0.2 a¼ 0.5 a¼ 0.7 a¼ 1

LMP test 0.055 0.103 0.483 0.759 0.978
GML test 0.051 0.093 0.454 0.734 0.969
GCV test 0.051 0.083 0.325 0.582 0.9
F1 test 0.052 0.102 0.441 0.702 0.931
F2 test 0.049 0.1 0.436 0.7 0.934
SKL test 0.049 0.047 0.104 0.245 0.554

FIGURE 2 The first four columns of the U matrix.
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(23) and (24). This confirms that the approximate LMP test is the most powerful only in the

direction of the first eigenvector. The GML test performs well for low frequency functions

[models (22) and (23)]. The lack of power under model (24) when a ¼ 0:3 and 0.5 is caused

by a combination of bad choices of smoothing parameters (the GML method tends to over-

smooth in these cases) and small weights of the GML test for higher frequency functions.

The GCV method has similar performance as the GML test under model (23) and is the

best under model (24), again as expected. The F1 and F2 tests perform similarly as the

GML test. The SKL test lacks the power to detect lower frequency functions. None of

these tests perform consistently well for all simulation settings. The best method to use in

practice depends on the shape of the true function. To detect departure in the form of the first

eigenvector of U, the approximate LMP method is recommended. To detect low frequency

departure, the GML method is recommended and to detect departure of higher

frequencies, the GCV method is recommended.

Simulations are also conducted for other functions and spline models. The results obtained

are similar.

5.2 Approximation to Null Distribution of the GML Test

Comparing with the Monte Carlo null distribution, we now investigate the accuracy of the

mixture of the Chi-square approximation proposed in Section 3.2. We consider two sample

sizes, 100 and 200, with design points evenly spaced in [0, 1]. Monte Carlo null distributions

are generated as described in Section 4 with a simulation size of 40,000.

The results are shown in Figure 4. The estimates of r, r̂r are obtained by simulating 5000 of

�(n� m)log tGML under the null hypothesis and counting the proportion of zeros out of the

5000. Approximations are better for sample size 200.

To further assess the accuracy of the approximation, we repeat the power calculations for

the test under model (22) in Section 5.1 using the approximate null distribution. Table IV

TABLE III Proportion of Rejections in 1000 Replications under
Model (24).

a¼ 0 a¼ 0.3 a¼ 0.5 a¼ 1.0

LMP test 0.053 0.054 0.058 0.047
GML test 0.054 0.094 0.229 0.985
GCV test 0.055 0.362 0.872 1.000
F1 test 0.052 0.076 0.483 1.000
F2 test 0.053 0.161 0.699 1.000
SKL test 0.045 0.327 0.849 1.000

TABLE II Proportion of Rejections in 1000 Replications under
Model (23).

a¼ 0 a¼ 0.5 a¼ 1.0 a¼ 1.3

LMP test 0.049 0.070 0.096 0.136
GML test 0.048 0.165 0.538 0.826
GCV test 0.048 0.161 0.553 0.840
F1 test 0.048 0.118 0.425 0.720
F2 test 0.044 0.155 0.507 0.806
SKL test 0.041 0.080 0.261 0.525
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shows the results. For the LMP test under the same model, Table IV also lists power

computations based on the simulation and Davies’s methods. We see that for the LMP

test, the powers based on the simulation method and Davies’s method are very close; for

the GML test, the Chi-square mixture approximation works reasonably well for sample

size 200. For sample size 100, the approximated level is slightly lower than the nominal

level 0.05. Nevertheless, the difference is smaller than twice of the standard deviation

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05 � 0:95=1000

p
¼ 0:014:

FIGURE 3 The left column of panels corresponds to model (22), the center column to model (23), and the right
column to model (24). Top row: f (t) for each model for one of the simulation a values. Bottom row: Proportion of
rejections in each of 1000 replications for each of the models versus a. A line is drawn for each of the tests. Crosses
indicate results using the simulated null distributions.

FIGURE 4 QQ plot of quantiles of the rw2
0 þ (1 � r)w2

1 distribution against quantiles of the Monte Carlo null
distribution of �(n� m) log tGML.
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5.3 Robustness of the Tests

The approximate LMP, GML and SKL tests are derived based on the assumption that obser-

vations follow iid normal distributions. To check the robustness of the tests to the iid normal

assumption, we generate observations from

yi ¼ 1 þ ti þ ati exp(�2ti) þ ei, i ¼ 1, . . . , 100, (25)

where ti ¼ (i� 1)=99. We consider four choices of a: 0, 0.1, 0.3 and 0.5, and five choices of

random errors: ei �
iid
N (0, 0:22), ei �

iid
t3 (t distribution with three degrees of freedom; samples of

random errors in this case were multiplied by a factor of 0.14 to match their 5% percentile

with that of the normal random errors), ei �
iid

50:50 mixture of N (� 2, 22) and N (2, 1),

ei � AR(1) with autoregression coefficient 0.25, and e � N (0, W ) where W is a diagonal

matrix with diagonal elements evenly spaced between 0.04 and 0.22. Data are scaled to

match variances except for the case with t3 random errors which has a larger variance

(0.059). For each setting, we repeat the simulation 1000 times. Null distributions are calcu-

lated by the Monte Carlo method.

Table V shows that all tests hold the levels except when random errors are correlated. The

powers are similar when random errors are from iid distributions. When the random errors

are from the t3 distribution, the powers are a little bit lower than those from N (0, 0:22), partly

due to the larger variance. The mixture distribution is asymmetric with a slightly heavier tail

on the left. It can be seen that the powers for the mixture distribution are similar to those of

N (0, 0:22). Results with other asymmetric distributions such as Gamma remain the same.

When random errors are from N (0, W ), the powers are significantly lower than those in

the iid cases. Comparative results of the different tests remain the same. We conclude that

the tests are relatively robust to the violation of the normality assumption, but not to the inde-

pendence assumption. For independent data with heterogeneous variances, the tests can

approximately maintain their levels but lack power. We also conducted simulations under set-

tings as in Section 5.1. The results remain the same.

5.4 Summary of Simulation Results

In summary, the LMP, GML and GCV tests outperform other tests. Which one to use in prac-

tice depends on the shape of the true function: the LMP and GML are more powerful for

detecting departure in forms of low frequency functions while the GCV test is more powerful

TABLE IV Comparison of Powers Obtained via the Simulated Null Distribution
(Denoted as ‘Simu’) and Davies’s Method for the LMP Test; the Simulated and the
Approximated Distribution (Denoted as ‘Approx’) for the GML Test, Based on Model (22).

Size Null a¼ 0 a¼ 0.2 a¼ 0.5 a¼ 0.7 a¼ 1

LMP
100 Simu 0.055 0.103 0.483 0.759 0.978

Davies’s 0.050 0.106 0.459 0.756 0.960
200 Simu 0.047 0.392 0.991 1 1

Davies’s 0.047 0.383 0.987 1 1

GML
100 Simu 0.051 0.093 0.454 0.734 0.969

Approx 0.041 0.087 0.395 0.673 0.94
200 Simu 0.044 0.156 0.704 0.946 1.000

Approx 0.040 0.146 0.697 0.938 1.000
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for high frequency functions. Overall, the GML test is recommended. These tests are applic-

able even when the normality assumption is violated. However, they should not be used when

observations are correlated.

Null distributions of all the tests can be obtained through Monte Carlo simulations. Since

the LMP test does not involve smoothing parameters, its null distribution simulation is easy

and fast. Davies’s (1980) method works equally well in this case. The null distribution simu-

lation for other tests require the calculation of smoothing parameters for all simulation

samples, which is computationally intensive. For the GML test, a null distribution approxi-

mation method using a mixture of Chi-square distributions is proposed and evaluated. It is

relatively fast and provides satisfactory approximations when the sample size is large.

6 DISCUSSION

The connection between smoothing spline models and the Bayesian models (the mixed

effects models) transfers the hypothesis on parametric regression to a much simpler hypo-

thesis on a variance component. The approximate LMP, GML and GCV tests derived from

the Bayesian model (or the mixed effect model) work well under the deterministic models.

The good properties of the tests make them desirable for more complicated models. The

hypothesis (7) can be written more generally as

H0: f 2 M0, H1: f 2 M1 and f 62 M0,

TABLE V Proportion of Rejections in 1000 Replications.

LMP GML GCV F1 F2 SKL

a¼ 0
N(0, 0.22) 0.049 0.047 0.048 0.047 0.046 0.052
t3 0.043 0.043 0.039 0.034 0.038 0.033
Mixture 0.047 0.049 0.048 0.047 0.050 0.042
AR(1) 0.128 0.176 0.540 0.089 0.147 0.574
N(0, W ) 0.055 0.055 0.051 0.056 0.056 0.037

a¼ 0.1
N(0, 0.22) 0.063 0.064 0.061 0.075 0.071 0.045
t3 0.060 0.058 0.050 0.061 0.061 0.041
Mixture 0.073 0.083 0.085 0.082 0.087 0.065
AR(1) 0.110 0.173 0.498 0.090 0.149 0.545
N(0, W ) 0.041 0.047 0.062 0.062 0.046 0.063

a¼ 0.3
N(0, 0.22) 0.134 0.128 0.102 0.120 0.115 0.049
t3 0.112 0.114 0.098 0.101 0.108 0.056
Mixture 0.138 0.135 0.108 0.132 0.131 0.066
AR(1) 0.168 0.219 0.550 0.092 0.175 0.595
N(0, W ) 0.069 0.067 0.064 0.062 0.063 0.054

a¼ 0.5
N(0, 0.22) 0.417 0.398 0.289 0.403 0.393 0.095
t3 0.317 0.310 0.232 0.306 0.299 0.082
Mixture 0.414 0.403 0.300 0.385 0.378 0.107
AR(1) 0.212 0.262 0.553 0.130 0.185 0.587
N(0, W ) 0.104 0.103 0.090 0.110 0.106 0.069

Note: Random errors are generated from independent N(0, 0.22), t3 distribution, mixture of normal
distributions, AR(1) process and N(0, W ).
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where M0 is the model space under the null hypothesis, and M1 is a bigger model space

which contains a substantially large family of plausible functions. M0 could be a linear or

nonlinear parametric model, or a simple nonparametric model. For example, to test a non-

linear regression model M0, one can use nonlinear partial splines (Wahba, 1990) or non-

linear nonparametric regression models (Ke and Wang, 2002) as M1. To test an additive

model M0 (Hastie and Tibshirani, 1990), one can use smoothing spline analysis of

variance (SS ANOVA) models (Wahba, 1990) as M1 and the test interaction components

equal zero. This approach can also be employed to test the functional form of fixed effects

in a mixed effects model. For example, to test LMM, one may use the semiparametric

mixed effects models in Wang (1998b) as M1. To test nonlinear mixed effects models,

one may use the semi-parametric nonlinear mixed effects models in Ke and Wang (2001)

as M1. Another direction is to extend the current test methods for nonGaussian data,

which will allow us to test the generalized linear models (McCullagh and Nelder, 1989;

Liu et al., 2003), the generalized additive models (Hastie and Tibshirani, 1990) and the gen-

eralized LMM (Breslow and Clayton, 1993). All current methods are sensitive to the inde-

pendence assumption. Thus new methods need to be developed for correlated data. Some

research has been done in these directions. Guo (2002) generalized the GML test to the

mixed effect SS ANOVA models. Zhang and Lin (2003) generalized the score test, which

is equivalent to the approximate LMP test, to the semiparametric additive mixed models

with nonGaussian data. The SKL test was initially developed for smoothing spline models

with nonGaussian data by Xiang and Wahba (1995). These generalizations all showed

good performances. We are currently working on extensions of the approximate LMP,

GML and GCV tests for SS ANOVA model with nonGaussian data. Preliminary results

are encouraging. Tests for more complicated models as described above will be pursued in

the future.
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