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A new nonparametric regression technique is proposed which involves the extension of local 
polynomial fitting to the empirical likelihood context, where the distribution of the stochastic error is 
not fully specified. The aim of this extension is to reduce the possible modelling bias of parametric 
likelihood and to allow one to use the auxiliary information about the stochastic error in the local 
polynomial fitting. The asymptotic bias and variance, consistency and asymptotic distribution of the 
proposed estimators are established. The proposed estimators are shown to inherit the main advantage 
of the local polynomial estimator based on the parametric likelihood over the Nadaraya-Watson 
kernel estimator near the boundaries. Moreover, the proposed estimators can be more flexible and 
efficient than the parametric likelihood based local polynomial estimator when the distribution of the 
stochastic error is misspecified. The new method is illustrated with applications to some simulated and 
real data sets. 

Keywords: empirical likelihood; local polynomial; nonparametric regression. 

1. Introduction 

The method of empirical likelihood, introduced by Owen (1988), is commonly employed to 
deal with the possible modelling bias of parametric likelihood. In the present paper, a new 
estimator for a nonparametric function is developed by incorporating this method into the 
framework of local polynomial modelling. By local polynomial expansion we reduce the 
nonparametric function estimation problem to several parametric estimation problems. Then 
the empirical likelihood approach can be applied to each parametric problem. Unlike the 
parametric likelihood based estimators (here 'parametric likelihood' means the likelihood 
based on the parametric model of the stochastic error in the regression case; see, for 
example, Fan and Gijbels 1996), the new estimator only requires one to specify some 
conditional estimating equations rather than the full probabilistic mechanism for the 
observations. It thus allows one to relax not only the assumptions imposed on the form of a 
regression function but also those imposed on the stochastic error. 

By way of illustration, we consider the regression model 

Y = 0(X) + E 

1350-7265 ? 2003 ISI/BS 
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with response Y, covariate X, regression function 0, and stochastic error E. Given X, e is 
assumed to be symmetrically distributed, that is, O(X) is the centre of symmetry of Y. This 
model is just the symmetric location model when 0 is restricted to a finite-dimensional 
parametric space, which has been well studied (see Bickel et al. 1993, pp. 75 and 400-405). 
Here we consider the nonparametric case where 0 is a nonparametric function from [0, 1] to 
R1 with p + 1 continuous derivatives. To use the information about e, we let 
0 = so <sl < ... < Sko and Sk = [Sk-l, Sk), 1 ~ k k0. Set Hk(y, (x)) = I(y- (x) 
E Sk) - I(y - 0(x) E -Sk), 1 < k < ko, where I(.) is the indicator of a set. Let 
H = (H1, ..., Hko)T. Then we have the conditional equations 

E{Hk(Y, O(X))IX} = 0, 1 < k < ko, (1.1) 

for 0. Note that as max1,k<ko(Sk - Sk-1) -+ 0, ko - 00, these equations are asymptotically 
equivalent to the assumption that E is symmetric. These kinds of constraints were introduced 
in Zhang and Gijbels (1999; 2003). 

Let (xi, yi), i = 1,..., n be independent and identically distributed (i.i.d.) observations 
from the above model. Given xo E (0, 1), if we have n i.i.d. observations yi, i = 1,..., n, 
with the same covariate xo, then the conditional nonparametric likelihood at 0(xo) is of the 
form 

Hn_1l 
pi, where pi is the mass we place at point (xo, yi). In practice, observations with 

the same covariate xo are rare. This problem can be solved by the local modelling technique 
(see Fan and Gijbels 1996): take all (xi, yi), weight the logarithm of the nonparametric 
likelihood in such a way that it places more emphasis on those observations with covariates 
close to xo, and at the same time approximate O(x) in (1.1) by its pth-order Taylor 
expansion at xo. More specifically, let K(-) be a bounded symmetric density function with 
support [-1, 1]. Set Kh() = K(./h)/h and X(t) = (1, t, ..., tP)T. Then the profile local 

polynomial empirical likelihood function at xo is defined as follows: 

l(l) 
= sup { Kh(xi 

- 

xo)logpiPiI > 
0, 1 

< 
i 

< 
n, pi = 1, piH(yi, xi, xo, ) = 0 

i= i=1 i=1 

(1.2) 

where 0 is the Kronecker product, # = (#0o, ... , #p)T, and 

H(yi, x, xo, ) = H 
(yi x(Xi 

- 
XO)T (xi - xo 

-- h ) ( " 

It is easily shown by the Lagrange multiplier method that 

l(f) 
= 

Kh(xi 
- 

x)log Kh(xi 
- 

xo) Kh(xj 
- 

x) i= 1 j=1 J 
n 

- Kh(xi - xO)log(1 + a(xo, 1)TH(yi, xi, Xo, )), 
i= 1 

where a,(xo, /) satisfies 
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Khi - H(yi, xi, 0.(13) 
SKh(xi - xo) 1 + an(xo, fl)TH(yi, xi, xo, /f) 

Choose an appropriate space, say Oo, for /. Let /= (/3o, ..., /p)T be the maximum 
estimator over Oo based on 1(#). Then the local polynomial empirical likelihood estimator 
of 0(xo) is given by 0O(xo) = fo. Through the coefficients of the higher-order terms in 
the polynomial fit,, provides an estimator for the higher-order derivative O(r)(xo), 
namely, Or(xo)= r!rfl/hr. # also provides an estimator for the conditional distribution of 
Y given X = xo, say Fylx=xo, with 

Fyx= ({y}) K(x= i xo) i = 1,..., n. (1.4) 
1 + an(xo, f)TH(y, Xi, 

Xi, x, 
) 

In this paper, we study these kinds of estimators under a more general set of conditional 
equations, which includes the conditional symmetric model as a special case. Under some 
regularity conditions, the above estimators are proved to be consistent and asymptotically 
normal. The asymptotic bias and variance are also derived, which have the same 
performance as the parametric likelihood based local polynomial estimator near the 
boundaries. It is shown that the new estimators can be more flexible and efficient than the 
parametric likelihood based local polynomial estimator. In particular, in the setting of 
the symmetric location model, the new estimators are nearly adaptive with respect to the 
unknown density function of e. That is, when the number of equations in (1.1) tends to 
infinity, we can estimate the regression function asymptotically equally well whether or not 
we know the density of E. This implies that the least squares based local polynomial 
estimator may be inefficient when the stochastic error is not normal. Note that the least 
squares based local polynomial estimator can be used under the assumption that the second 
moment of the stochastic error exists. 

The idea of using the local polynomial fit to the parametric likelihood based regression 
models appeared, for example, in Stone (1977), Cleveland (1979), Tibshirani and Hastie 
(1987) and Fan and Gijbels (1996). Carroll et al. (1998) developed an alternative method 
called the local moment method. It is known that the empirical likelihood has the advantage 
over the moment method that a weaker restriction is imposed on the model (see Hanfelt and 
Liang 1995; Kitamura 1997; and Qin and Lawless 1994). In a similar setting, Zhang and 
Gijbels (1999; 2003) introduced an approximate empirical likelihood for a nonparametric 
function and gave the global convergence rate of the corresponding maximum estimator. 
Unlike the above estimators, our new one are based on local weighting of logarithms of 
empirical likelihoods. 

The rest of this paper is organised as follows. In Section 2 we investigate the asymptotic 
properties of the proposed estimators. Applications to both simulated and real data sets are 
presented in Section 3. The technical conditions are given in Section 4. The proofs of the 
main results can be found in the Appendix. 
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2. Asymptotic theory 

In what follows, we consider a general nonparametric regression model with response Y, 
covariate X, and a general constraint function G = (GI, ..., Gko)T. Assume that the 
regression function 0(.) has p + 1 continuous derivatives. Adopt the same notation Af, O(xo), 

(r)(xo), an(xo, f), 1(#), and 0o as in Section 1, and the associated estimators #, 0(xo), 
Or(xo) and an(xo, f), but replace H (and H) by the general function G (and G), which 
satisfies 

E[Gk(Y, 0(X))IXI = 0, k = 1, 2, ..., ko. (2.1) 

Note that the general nonparametric regression model reduces to the ordinary nonparametric 
mean regression model and the median regression model if we set G = Y - 0(X) and 
G = I(Y < 0(X)) - ?, respectively. To keep our proofs simple, we assume that G has a 
continuous derivative with respect to 0. 

2.1. Bias, covariance and normality 

Let Ao = (0(xo), h(')(xo),..., hPO(P)(xo)/p!) be an inner point of o0. We begin by show- 
ing in the following theorem that O(xo) is weakly consistent. 

Theorem 1. Under Conditions Al-A8 in Section 4, for 2 < al < ao (with ao defined in 
Condition A2), as h = hn -+ 0, hnl-2/al/log n -+ oo and hP+l nl/al - 0, we have 

A3- 'o = op(n-1/a'), an(xo, 3) = op(n-1/a). 

For the next theorem, we set 

Pj+I_ - 
tJ+'K(t)dt, Vj+1 = tJ+1K2(t)dt, 

S = (/+l)0 j,1 p, S* = 
(Vj+l)0-j,'1p, 

VG(xo) = E[G(Y, O(xo))GT(Y, O(xo))IX = xol, 

DG(XO) = E[OG(Y, O(xo))/OOlX = xol]. 
Let f be the density of X, and define 

VaG(xo) 
= I 

VG(x)-I 
- 

VG(xO)-DG(XO)(DG(Xo)T VG(xO)-IDG(X0))-1 f(xo) 

X DG(xo)TVG(xo)-l] 0 S-1S*S-1, 

1 
VpG(XO) = [DG(Xo0)T VG(xO)-1DG(xO)I-1S-1S*S-1. f(xo) 
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If f and O(P+I) have continuous derivatives, then we define 

bias = hp+lS-l(+u 

p+l,1, ., 

2p+l)T 0(p+l)(x) hp+2S-I'(p+2, U2p+2)T (p + 1)! 

O(p+2)(xo) 0 (P+')(xo) f'(xo) (2.2) 
(p + 2)! (p + 1)! f(xo) f 

Let _-) stand for convergence in distribution. The next theorem establishes the asymptotic 
normality of 3 and an(xo, /). 

Theorem 2. Suppose that Conditions Al-A8, B 1 and B2 in Section 4 hold. Suppose that f 
and 0(p+I) have continuous derivatives. Then as h = hn -+ 0, hnl-2/ao/log n -+ oc with ao 
defined in Condition A2 and hP+1 nl/ao -+ 0, 

Vn 
hVG0(xo)-1/2{ 

A- 0 
- bias(1 + o(1))} -*N(0, Ip+1). 

Furthermore, if nh2p+3 -+ 0, then 

VnhVaG(xo)-a/2an(xo, 
1/ ) I-) N(O, Iko(p+l)), 

where Ip+l and Iko(p+1) are the p X p and ko(p + 1) X ko(p + 1) unit matrices, and 
N(0, Ip+l) and N(O, Iko(p+l)) are normal distributions. 

Remark 1. an(xo, /) is useful in developing some asymptotic theories for the estimated 
conditional distribution Fy•X=xo as shown in (1.4) and for the nonparametric likelihood ratio 
statistics investigated in Fan and Zhang (2000). 

Remark 2. The requirement that G is differentiable in 0 can be relaxed by imposing some 
entropy condition on G (see Condition A4' in Section 4). Then Theorems 1 and 2 can cover 
the special example in (1.1). For example, suppose G is bounded. Then, under Conditions 
Al, A4', and A5-A8, as h = h, - 0, nh/log n o00, 

A - Ao = o,(1), an(xo, fl) = o(1). 

Furthermore, asymptotic normality still holds if we impose second-order differentiability on 
E{G(Y, t)IX} with respect to t. Here DG(XO) should be defined as OE[G(Y, 
0(xo))IX = xo]/Ot. A rigorous justification of the statement is tedious but very similar to 
that given in Zhang and Gijbels (1999) and so not pursued here. 

Remark 3. Let er+l denote the unit vector with 1 in the (r + l)th position. Then, from 
Theorem 2, we obtain the asymptotic value of bias{0((xo)} (defined as the leading term of 
the bias of Or(xo)): for odd p - r, 

bias{0Or(xo)} 
= 

e,+1S 
-(p+1, 

... 
,/2p+l)T ( - 

(p+l)(xo)hp+l-'(1 + o(1)); (2.3) 
( p + 1)! 
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for even p- r, 

bias{Or(xo)} = , S-l( , 
! [)T(p+2)(xo) 

(2.4) 

+ (p + 2)0(P+')(xo) 
x) 

hp+2-r(1 
+ o(1)). f(XO) - 

This is exactly the same as in the case of the standard local polynomial fit (Fan and Gijbels, 
1996, p. 62), where there is a theoretical difference between the cases p - r odd and p - r 
even. For p - r even, the leading term O(hP+l) in the bias expression (2.2) is zero due to the 
symmetry of the kernel K and thus the second-order term is presented in (2.4). For p - r 
odd, the asymptotic bias has a simpler structure and does not involve f'(xo), a factor 
appearing in the asymptotic bias when p - r is even. 

We also have the asymptotic variance of 0: 

T 
-1 -1 (r!)2[DG(xo)T VG(XO)-I DG(XO)]-1 varr(x = er+1S 

S*S 
er+l 

f(xo)nh2r+l (1 + o(1)). (2.5) 

As a result of Theorem 2, we obtain 

var~{,(xo)}-1/2 Or(xo) - Or(xO)- biasI{,(xo)}(1 + o(1))} l-I)N(0, 1). 

Remark 4. Note that the kernel function K has support [-1, 1]. Then for each xo, the local 
neighbourhood of xo in our procedure is [xo - h, xo + h]. Since we assume for simplicity that 
the covariate X has support [0, 1], this neighbourhood can lie outside [0, 1] as xo is close to 
the boundary. When this happens, xo is called a boundary point. More specifically, xo is 
referred to a left (or right) boundary point if xo - h < 0 (or xo + h > 1). We consider only 
the left boundary points of the form xo = ch and the right boundary points of the form 
xo = 1 - ch, with c > 0. For c < 1, the ch and 1 - ch are the boundary points, whereas for 
c > 1 they are interior points. Like Fan and Gijbels (1996, p. 69), we wish to address the 
question of whether our procedure suffers boundary effects, that is, whether the orders of 
the asymptotic biases and variances of our estimators are different at the boundary and in the 
interior. For this purpose we derived the following asymptotic bias and variance formulae for 
our estimators. These formulae are derived in a way analogous to those for a fixed interior 
point. Let 

j,c= 
uJK(u)du, S = (j+l,c)Oj,l~p, K*c(t) = 

e• 
S;'(1, t, ..., tP)TK(t). --C 

Then for xo = ch, 

bias{0r(xo)} = tp+ K (t)dt (p + 1)!(P+)(O)hP+-r(1 + o(1)). (2.6) 

and 
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var{r(xo)} = Kc(t)dt2 (r!)2[D(0+)T V(0+)-1 D(0+)]-f v 
arr(xo)=-cKrc(t)dt f(O+)nh2r+1 (1 + o(1)). (2.7) 

For right boundary points xo = 1 - ch, the asymptotic bias and variance expressions are 
similar to those provided in (2.6) and (2.7), but with the integral interval [-c, 1] replaced by 
[-1, c] and 0+ by 1-. For even p - r, a comparison of (2.4) and (2.5) with (2.6) and (2.7) 
shows that the order of the asymptotic bias is different at the boundary and in the interior. In 
contrast, for odd p - r, the asymptotic bias and variance are of the same order at the 
boundary and in the interior, and are continuous in c. This means that our procedure adapts 
automatically to estimation at the boundaries if we choose odd p - r. 

Remark 5. The odd-degree fit is better than the even-degree fit. The reason is that for even 
p - r not only the unknown derivative OfP+l)(xo) but also unknown f'(xo) and o(P+')(xo) are 
involved in the asymptotic bias. Moreover, the proposed procedure will suffer boundary 
effects. In contrast, for odd p - r only O(P+l)(xo) is unknown in the asymptotic bias. 
Furthermore, the proposed procedure does not suffer boundary effects, as shown in Remark 4. 

2.2. Efficiency and adaptiveness 

Note that it follows from Theorem 2 that the bias of 3 is asymptotically free of the 
constraint function G. This leads to a simple criterion, the asymptotic covariance V#G(xo), 
for the comparison of the efficiencies of the above local estimators derived from a class of 
constraint functions which satisfy the regularity conditions Al-A8, B1 and B2 in Section 4. 
Let 1(z, xo) = log felx=j/az, where felx=4 is the conditional density of E given X = xo. 
It follows directly from Bhapkar (1991) that 

DG(xo)T VG(xo)-1DG(xo) < El(z, XO)2 

for any estimating function G such that 

E[G(Y, O(X))IX = xo] = 0, VG(XO) < 00, 
and DG(xo) exists. Thus 

VPG(xo) >3 Vp(z,4)- 
When equality holds, 3 is efficient. 

As pointed out by a referee, the usual notion of adaptiveness appears to be limited to 
semi-parametric models. For instance, if 0 is a parametric function parametrized by a finite- 
dimensional vector, say y, and if the model is Y = O(X, y)+ e, where E is symmetric 
conditional on X, then we know that adaptive estimation of y is possible, as shown in 
Bickel et al. (1993). It is also possible to generalize this notion to local polynomial models 
by defining a local efficiency bound. We conjecture that in the parametric case this bound 
can be achieved by appropriately choosing a sequence of functions for G. For example, in 
the setting of the symmetric location model mentioned in Section 1, we let G = H defined 
in (1.1) and ko converge to 00 with increasing sample size. A more detailed description of 
this notion and the proofs of the related results are beyond the scope of this paper. 
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3. Numerical examples 

3.1. Bandwidth selection 

When we apply the local polynomial empirical likelihood estimator to a finite sample, we 
must first select the bandwidth. This smoothing parameter plays a very important role in the 
trade-off between reducing bias and variance, so we need to choose it carefully instead of 
randomly. There are different kinds of bandwidth selection method (Fan and Gijbels 1996, 
Chapter 4). We follow Carroll et al. (1998), viewing the mean square error (MSE) as a 
function of h. Ideally, we should choose the optimal bandwidth by minimizing the MSE 
function with respect to h, where 

MSE(xo, h) = var(xo, h) + bias2(xo, h) 

with var(xo, h) and bias(xo, h) being the variance and bias of O(xo), respectively. In practice, 
the MSE is unknown and estimated by the empirical bias bandwidth selection (EBBS) 
method and the sandwich method. 

The basic idea behind EBBS is as follows. For fixed xo and ho, according to the 
asymptotic results in our asymptotic theories, bias(xo, ho) should be of the form 
bias(xo, ho) = f(ho, y) = ylhf'+1 ... + yth+t', where t > 1 and y = (y , ..., yt) is 
unknown. The local polynomial estimator O(xo, ho) should be well described by 
Yo + f(ho, y) + op(ho+t), where yo = 0(xo) in the limit. Then let 

("o, y) minimize 
1 {O0(xo, hk)- (o0 + f(hk, 

-))}2, 
in which {hj,..., hK} is a grid of bandwidths in a 

neighbourhood, Ho, of ho with K ;> t + 1. It is obvious that if Ho is small enough, the bias 
should be well estimated at ho by f(ho, g). In practice, we need to choose K and t. See 
Carroll et al. (1998) for specific selection techniques. In our simulation and real data fitting, 
we take t = 1 and K = 3. We are most attracted by the EBBS property of avoiding the 
direct estimation of the higher-order derivatives arising in the asymptotic bias formulae, 
which might limit the range of applications because of its complications. 

The sandwich formula for the asymptotic covariance matrix of #f is analogous to that in 
Carroll et al. (1998), that is, 

{{1D(xo)}{ V(xo)}' {1(xo)} }, 
where 

(xo) = , 
Kh(Xi - Xo) 

( - / X((xi - xo)/h)XT((xi 
- xo)/h) 

i=1 

and 

V(xo) = 
K2h(xi 

- xo)[G(yi, X((xi - Xo)/h)T )GT(yi, X((xi - xo)/h)T ) 
i=1 

0 
X((xi - xo)/h)XT((xi - xo)/h)]. 
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It is easily seen from our asymptotic results that the sandwich formula provides consistent 
variance estimators. 

3.2. Curve construction 

In practice, to construct the estimator of the curve 0, we often begin by estimating the 
values of 0 at xo = tj, j = 1,..., m, as shown in Section 1, where 0 = tl < ... < tm = 1 
are equispaced grid points. Denote these estimators by 0(t), j = 1, ..., m. Then, a naive 
approach for constructing a curve estimator is to simply connect these point estimators by 
lines. Unfortunately the resulting curve might not be smooth, especially when m ;> n, 
where n is the sample size. We can use the moving average technique to improve the 
smoothness of the resulting curve. The basic idea behind this technique is that for any io 
with a prespecified constant m,, we have 0(ti) O(tio), provided Ij - iol I mw. For those 

j, we can write 0(ti) = 0(tio) + ej, where ej is a random error. This leads to using 

j-iiiol<mw(tj)/(2mw + 1) rather than 0(tio) to estimate 0(tio). We choose mw = 1 and 
m = n in our examples below. 

3.3. Simulation 

In the following examples the xi were generated from the uniform distribution on [0, 1]. 
Local linear empirical likelihood fitting (i.e., p = 1) is used to estimate the regression 
functions. 

Example 1. The regression model is 

Y = 1 - 48X + 218X2 - 315X3 + 145X4 + . 

Given X, e follows the t distribution with 3 degrees of freedom and the constraint function is 

G(y, O(x)) = y - O(x). 
Generate a sample of size 200. Figure 1 shows the performance of the local linear empirical 
likelihood fit when E has heavy tails. 

Example 2. Use the same notation as in Example 1, except that we now assume that, given 
X, E follows the normal distribution N(0, o(X)2), 9a(X)2 = 1 + X2. Generate a sample of 
size 200. Figure 2 shows the performance of the local linear empirical likelihood fit when E is 
heteroscedastic. 

3.4. Application 

Example 3. Great Barrier Reef data. In a survey of the fauna on the sea bed in an area lying 
between the coast of northern Queensland and the Great Barrier Reef, a sample of size 155 
was collected from a number of locations. In view of the large numbers of types of species 
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1 +x. (-48+x. (21 8+x. (-31 5+145 x))) 
5 

4 

3 

2 

0- 

-2 

0-3 

-4 

-51 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

x 

Figure 1. The smoother curve denotes the underlying regression function, while the other is the 
estimated curve derived from the local linear empirical likelihood fit under the first moment constraint. 
The data plotted, are sampled from the conditional model that given X, e - 

t3, the t distribution with 
3 degrees of freedom, where X is uniformly distributed on [0, 1]. 

1-+x. (-48-+x. (218+x. (-315+145 x))) 
3 

2 

0 

-2- 

-3 
0 

0,1 
0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 

Figure 2. The smoother curve denotes the underlying regression function, while the other is the 
estimated curve derived from the local linear empirical likelihood fit under the first moment constraint. 
The data plotted, are sampled from e - 

N(O, or(X)2) with a(X)2 = 1 + X2, where X is uniformly 
distributed on [0, 1]. 
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captured in the survey the response variable is expressed as a score, on a log-weight scale, 
which combines information across species. The relationship between the catch score and the 
spatial coordinates (i.e., latitude, longitude and depth) was analysed in Bowman and Azzalini 
(1997, pp. 53-55 and p. 81) via ordinary nonparametric regression. Here we use our 
proposed method to analyse these data. We let p = 1, E(x) = y - 0(x), and either 

G(y, O(x)) = e(x) (3.1) 

or 

G(y, 0(x)) = (e(x), E(x)3)T. (3.2) 

In Figures 3, 4 and 5, we present the fitted results for the relationship between the catch 
score and the spatial coordinates (i.e., latitude, longitude and depth). In these figures, the 
solid, dashed and dotted curves stand for the results based on the least squares local linear 
fit, the local linear empirical likelihood fits with the restriction function in (3.1) and with 
the restriction function in (3.2), respectively. They show that there is little evidence of 
change with latitude, whereas there are marked changes in the catch score with longitude 
and depth. Note that in all figures, the corresponding curves differ from one another. It is 
natural to ask which one is better for interpreting the data. With this aim in mind, some 
goodness-of-fit tests for these restrictions are needed. The details can be found in Fan and 
Zhang (2000). 
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Figure 3. Relationship between catch score and latitude. The solid, dashed and dotted curves are, 
respectively, the local linear least squares fit, the local linear empirical likelihood fit under the first 
moment constraint, and the local linear empirical likelihood fit under the first and third moment 
constraints. 



590 J Zhang and A. Liu 

2.5 

2- 

1.5 

0 - 
0.5 

142.8 143 143.2 143.4 143.6 143.8 144 
Longitude 

Figure 4. Relationship between catch score and longitude. The solid, dashed and dotted curves are, 
respectively, the local linear least squares fit, the local linear empirical likelihood fit under the first 
moment constraint, and the local linear empirical likelihood fit under the first and third moment 
constraints. 
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Figure 5. Relationship between catch score and depth. The solid, dashed and dotted curves are, 
respectively, the local linear least squares fit, the local linear empirical likelihood fit under the first 
moment constraint, and the local linear empirical likelihood fit under the first and third moment 
constraints. 
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4. Technical conditions 

We begin with some notation. Suppose there exists Z(y, x) (independent of h) such that 

Z(y, x) > sup G(y, XX 
- 

xo )I(x - 
xoI h). 

Let 

Wn(xo, ) = 
Kh(Xi - xo)G(yi, 

Xi, 
X, )T(yi , 0, 

). in 

To establish the consistency of 3, we impose the following eight regularity conditions 
when xo E (0, 1): 

Condition Al. There exists a constant co such that, for x E [0, 1] and x + A E [0, 1], 

If(x + A) - f(x)I < colAl. 

Condition A2. For some 2 < ao < oo, 

sup E{Z(Y, X)a IX = x} < oo. 
xE[O,1] 

Here ao = oo means Z(Y, X) is bounded by some constant. 

Condition A3. For 1 < j < k0, as h = hn 0 O, uniformly for #3 E Oo and I tI < 1, 

E G { Y, X hx ) IX-= xo + th = 0(1). 

Condition A4. There exists Vhl(Y, x) such that, for fl/ E 6o, j = 1, 2 

Ehl(Y, X)K(X 
- 

O 
= O(1), EZ(Y X)Vhl(Y, X)KX 

- xo 

O(1), 

and for Ix - xol < h, 

G y,X xX 1 - G y,ZX 
x 

2 
O 2 ) h(Y, x)111 -# 211 

Condition AS. The function 0 has a (p + 1)th continuous derivative and there exists Ph2(x) 
such that 
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E{Kh(X -xo)lh2(X) X xo) }=O(1), 

E [G ( Y (X xo)1) - G(Y, 6(X)) X x X Vh2(x)1 1 +I 1x, XO) - 6(WII) 

for Eo 00, Ix - xoI I h where 

(x, 
xo)-=(X 

x- lo T 

Condition A6. As n - oo, h = hn - 0, 

P{ Wn(xo, f) > 0o, E I Oo} - 1, 

where Wn(xo, 3) > 0 means that Wn(xo, [3) is positive definite. 

Condition A7. For 1 t kl, jl j ko, as h = hn - 0, 

E{G21(Y, #(X, xo))G2j1(Y, 1#(X, xo))lX = xo + th} = O(1), 

uniformly for E 00o and Itl < 1. As 6 
-*• 

and h = h, n 0, uniformly for I|I - A{oll o 6, 

E G Y,9X(X h ) )#GT YX X 
)T)X =xo + th - VG(XO) 

is of order o(1) Moreover, we suppose VG(xo) and S are positive definite. 

Condition A8. For any fixed constant p > 0 there exists a positive constant c(p) such that, as 
h = h -* 0, 

inf IIEKh(X - xo)G(Y, X, xo, 1)11 >9 c(p). 
II-A0111>•p 

In addition, there exists a fixed positive constant c such that as II3 - oll + h -* 0, GE o, 
IIEKh(X - xo)G(Y, X, xo, #)11 is bounded below by cllj - 'oll + O(hP+'), where c and 
O(hP+1) are independent of f. 

When G is not smooth, we need to replace Condition A4 by the following condition: 
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Condition A4'. Set 

g(y, x, l) = Kx X 
Gi, y,G 

x - x 
), P x(i1, 11) = 

{g(, *, /3): / 0o}, 

gl(y, x, ) = K(x 

-~i, y 

( 
x, )Tx 

- 
xo / 

(x - x 

x Gk1, y, X ) ) (x 
-X0s1, F(il, ji, kl, Si) = {gl(-, , 3f): e o0}. 

There exist positive constants cl, c2, wl and w2 such that 

N(6, L2(P,), 7(il, jl)) < c16-w', 

N(6, L2(P,), 7(i, jl, kl, si)) < c26-W2 

where P, is the empirical distribution of (xi, yi), i = 1, ..., n, and N(d, L2(Pn), T) is 
called the covering number of T, which is defined in Pollard (1984). 

To obtain asymptotic normality, we need two additional conditions. 

Condition BI. For small 60 > 0, there exists a function UI (y, x) satisfying 

EKh(X - xo)Ul(Y, X) = 0(1), 

EKh(X - xo)Z(Y, X)UI(Y, X) = 0(1), 

sup 
(y 

x, xo, )I(x - xo < h) < 
UI(y, x). 

There exists a function U2(y, x) satisfying 

EKh(X - xo)U2(Y, X) = O(1), 

OG(y, x, xo, fl) OG(y, x, xo, 'o) 
<U2(y, 

x)II- - 
0U2(y, x) 0 o 

Furthermore, 

OG(Y, X, xo,o) 2 
EKh(X - xo) 0(9T = O(1), 

-OG(Y, X, xo, 
0o) EKh(X- xo) T = f(xo)DG(xo) 0 S + o(1). 

Condition B2. For some small 
6o 

> O, there exists a function U3(y, x) such that 
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EKh(X - xo)U3(Y, X) = 0(1), 

sup U3y, x). 

For U1 (y, x) defined in Condition B1, 

EKh(X - xo)UI(Y, X)2 = 0(1). 

When G is not smooth, we need to impose some conditions similar to those in Zhang 
and Gijbels (1999). The details are not pursued here. 

For xo = 0 or 1, conditions similar to Al-A8, B1 and B2 can be imposed by restricting 
the value of t (or (x - xo)/h)) to [0, 1] or [-1, 0] in the above. 

Appendix: Proofs of theorems 

We first introduce three lemmas which will be used in the proof of Theorem 1. Let 
Zi = Z(yi, xi), 1 < i < n. Denote 

AnI(xo, ) = - 
Kh(Xi 

- 
Xo)G(yi 

, XOi, 
, 
fl)I(Zi < n/a~'), (A.1) 

i=1 

An(xo, ) = Kh(xi 
- 

Xo)G(yii XO, 0). 

Lemma A.1. Under Conditions A1-A4, for 2 < al < ao, as h = hn -0 and 

hnl-2/al/logn 
- oo, there exists a sequence of constants (dnl)' 1, 0 d~ 0, such 

that, uniformly for f# E 0o, 

A,(xo, /) = EKh(X - xo)(Y, X, xo, fl) + op(n-1/al)dni, (A.2) 

Al(xo, f) = EKh(X - xo)G(Y, X, xo, fl) + Op(n-1/a')dn. (A.3) 

Furthermore, under Condition A5, 

EKh(X - xo)G(Y, X, xo, 0 ) = O(hP+I + II - Aoll). (A.4) 

Proof Without loss of generality, we assume xo E (0, 1). Write A,(xo, f#) as 

A n(xo, #) = A nl(xo, 3) + A n2(Xo, P), 

with 

A n2(XO, ) = 
Kh(xi 

- 
x o)G(yi, xi, 

xo, 
)I(Zi > n/al). 

i=1 
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It follows from Conditions Al and A2 that, for 2 < a1t ao, 

E sup |IAn2(xo, /)II < EKh(X - xo)Z(Y, X)I(Z(Y, X) > nl/al)Vp + lf(xo + th)dt 
PEOo 

= o(n-1/a), 

which implies 

An(xo, /) = EKh(X - xo)G(Y, X, xo, 0) 

+-nh {fi(fl) - Efni(#)} ?+ op(n-1/aI), (A.5) 
i=i 

where 

fni(fl) =K(Xih )G(yxi, x, fl)I(Zi < ni/al). 

Set 

g(y, x, 
fl) -= 

n-/a K(X -XO) 
Gil, 

Y(,(x -xo)T) 

X I(Z(y, 
x) < 

n1/a) 

F(i, jl) = {g(-, , fl): 3E o}. 

Then, by Conditions Al and A3, we have 

sup Eg2(Y, X, #) = O(hn-2/a'). 
/3Oo 

For g(/#j) = g(y, x, #j) z(iI, ji), j = 1, 2, by Condition A4, we have 

g(10) - 
g(8l2)1 < nl-/a'lK 

h 
(X 

i)h(YX)I, x/1) 
- 211 

Let u = hn1-2/a' and d21 = (log n/u,)1/2. By Lemma 7.2 in Zhang and Gijbels (2003), 
there exist positive constants cj, 1 < j < 4, and wo, such that, for any positive constant Mo, 

P sup 1 E[g(yi, x, ) - Eg(Y, X, fl)] > Mon-/aldni 

M2nh2n-4/ald2 
c ci(nl/al h-l dnl)wo 

exp 
- 

C3hn-2/al 

J 

+ 
c2(hn-2/al)-wo 

exp {-c4nhn-2/al }. (A.6) 
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As h = hn - 0, un/log n -* oo, we have 

log un + log n = 
o{(u, log n)1/2} 

= 
o(ud2,1), 

thus (A.6) tends to zero. This, together with (A.5), completes the proofs for (A.2) and (A.3). 
Finally, (A.4) follows from Condition A5 and the equality 

||EKh(X - xo)G(Y, X, 
xo, 

fl) = E{Kh(X- xo)M(0) ?X(X 
- x 

where 

W(fl) 
= 

EG(Y,x 
- X 

Tf) 
- G(Y, O(X))IX 

. 

Write 

1 
Wn(xo, #) = 

Kh(xi 
- xo) G(yi, x, xo, fl)GT(yi, x, xo, #)I(Zi < ni/a). i=1 

Lemma A.2. Under Conditions Al and A2, as h = hn 0, 

sup II Wnl(xo, i)l| = Op(l). (A.7) 
#E Oo 

Under Conditions Al, A2, A4 and A7, as h = hn 0 and nh - o00, 

Wn(xo, fl) 
= f(xo) VG(XO) 0 S + op(1) (A.8) 

uniformly for l|I - lo|| I< 6 -0. 

Proof Equation (A.7) follows from the fact that, under Conditions Al and A2, 

E sup II Wn,(xo, i)|| < (p + 1)EKh(X - xo)Z(Y, X)2 = O(1). 
PEO0 

Note that, by Condition A4, 

II Wn(xo, ) - Wn(xo, lAo)ll < - Kh(xi - o)ZiOhl(Yi Xi) ll 
i= 

= Op(1)|| - )oll. 
In order to prove (A.8), it suffices to show that 

Wn(xo, 'lo) = f(xo) VG(xo) 0 S + o,(1). (A.9) 

To this end, we calculate the mean and covariance of W,(xo, )o). It is easily seen that, under 
Conditions Al and A7, 
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EWn(xo, fl) = f(xo) VG(xo) 9 S + op(l). (A. 10) 

For k = (p + 1)(kl - 1) + k2 and j = (p + 1)(j0 - 1) + j2 with I < kl, 
ji < ko, 

1 <t k2, j2 < p + 1, we obtain that the variance of the (k, j)th element of Wn(xo, lo) is 
smaller than or equal to 

I EKh(X - xo)2 G 2 (Y, (X, xo))G 2•J(Y, 3(X, xo)) - 

0(f(xo) o(1), - 
nh 

by Condition A7. This, together with (A.10), leads to (A.9). [ 

Lemma A.3. Under Conditions Al-A7, if both VG(xo) and S are positive definite, then, for 
any 2 < al < ao, as h = hn 

- 0, hn1-2/a'/log n cc0, hP+ nl/ao = o(1), there exists a 
sequence of constants (dnl)~l1, 0 < dnl 

- 0, such that 

an(xo, fl) = op(n-1/a')dni + O(hp+1l + 1/ f- )Oo1) 
uniformly for i|f - )Ao011 O(n-l/ao). 

Proof. Without loss of generality, we assume xo E (0, 1). By Condition A2, we have 

max Zi = op(nl/ao). 
l<isn 

It follows from Lemma A.1 that, as h = hn - 0, 
hn1-2/a• 

/log n 00o, 

IIAn(xo, /M)1 = op(n-1/a')dni + O(hp+l + 1i? - ol11) (A.11) 
for some 0 < dnl --+ 0 and uniformly for |if - )oll < O(n-1/ao). Thus, we have 

IIAn(xo, f) max 
Zip +|1 = Op(1) (A.12) 

uniformly for || - lo|| O(n-1/ao). It follows from Lemma A.2 that there exists a positive 
constant c such that, as h = hn, 0, hn o00 and 6 - 0, 

sup {Pn(xo, fl): 1if - Aoll < 6} > c, (A.13) 

where pn(xo, fl) is the minimum eigenvalue of Wn(xo, fl). Finally, by (A.11)-(A.13) and by 
using the technique of Owen (1988), we have 

Ilan(x0, )l 
<• 

IIAn(xo, ))II 
Pn(xo, )- IIAn(xo, )1 max ZiVp + 1 

lni<n 

= Op(||An(xo, ) M1) 

= op(n-1/a')dni + O(hp+• + li1 - )o11) 
uniformly for Ifl - 

2o0I 
<a O(n-1/ao). [] 
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Proof of Theorem 1. Without loss of generality, we assume xo E (0, 1). We first establish 
some facts. Let 2 < a1 < ao, 

dn2 > 0, 
dn2 

= 
hp+I n1/al, and d, = max{d,1, dn2}, 

where 

d,1 is defined in Lemma A.3. Then, by Lemmas A.1 and A.3, we have 

an(xo, Lo) = Op(n-l/al)dn, An(xo, Lo) = 
O-p(n-l/al)dn- 

Our first fact is that 

In 
0 >in Kh(xi - xo)log(1 + an(xo, )o)TG(yi, xi, xo, lo)) 

i=1 

> -a (xo, go)TAn(xo, 2o) 

= -O p(n-2/a1)Id2,. (A.14) 

Let uo = uo(#) e Rko(p+1), uol| = 1, satisfying 

uo IEKh(X - xo)G(Y, X, xo, #3)I = EKh(X - xo)G(Y, X, xo, 3). 
Denote 

T,1 = - Kh(i - x)log (1 + n-1/adnUTG(,i, x, /xo, l))I(Zi n/a) 
i=1 

Then we have 

Tnl 
= n-1/a'dnuTfAnl(xo, ) - n-2/a'd2, W*(xo, /). (A.15) 

Here Anl(xo, 3) is as given in (A.1), and 

1 1 
W,(xo, n)= 

1 
Khi - 

X)) 
2 t2 (u (yi, xi, 

xo, 
P))2I(Zi nl/al), i= (1 + t1i) 

where, for 1 ~i~ n, ti lies between 0 and n-1/aldnu G(yi, xi, xo, /3). When 
maxiZi t n1/a~, maxilti| ! 

vp 
+ ldn uniformly in fl. This leads to 

W*,(xo, /) u1 W uo 
2(1 - Jp + 1dn)2 nlO 

By Lemma A.2, we obtain that W*,(xo, fl) is uniformly bounded in # E 0. This, in 
conjunction with (A.15) and Lemma A.1, leads to our second fact, namely that, uniformly for 

TOI = n-1/a'dnuoE{Kh(X - xo)G(Y, X, xo, 3)} + 
Op(n-l/a')d2. (A.16) 

Furthermore, 

P(max Zh>i 
1/al) 

- o(1), (A.17) 

our third fact. 
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Denote 
n 

Tn(xo, 3) = 
Kh(xi - xo)log(1 + an,(X, I3)TG(yi , Xi, 

o,)), i=1 

E {a: 1 + aTG(yi, xi, xo, 3 1) > 0, 1 i n}. 

Then, when 

1 ZKh(xi 
- xo)G(yi, Xi, X), )1T(yi, x, xo, ) > 0, 

ni= 

we have our final fact, 

- Tn(xo, 3) = min 
- 

1 
Kh(xi 

- xo)log(1 aT+G(yi, xi, xo, /)). (A.18) 
aE2 

n_= 

Now combining the facts (A.14), (A.16), (A.17), (A.18) and Condition A8, we obtain 
that, for any fixed positive constant p, as n -+ 00, 

P sup (- Tn 
(xo, 

9)) > - 
Tn,(xo, Alo). 

<1 
psup 

(-T,(xo, ))> -op(n-2/a')|ld} 

•P 
• 

sup (-Tn) > -op(n-2/a')ld2} +P{max Zi > nl/a} + o(1) 

{P c inf IIEKh(X- xo)G(Y, X, 
xo, /)1 <- IOp(n-1/a')dnl + o(1), 

which implies 

II - 1o II = 
op(1). (A. 19) 

Similarly, for any constants 0 < p, -* 0 and 6 small enough, we have 

P{6 > I1/ - Aoll I pn,} - P{c inf |11 - oll + O(hP+') < |Op(n-'/a1'dn} + o(1). 
6>11.8-•.o 

II >-Pn 

(A.20) 

It follows from (A.19) and (A.20) that 

AO - = Op(n-1/a')dn + O(hP+') 

= Op(n-1/al). 

Using Lemma 3.1 again, we obtain a,(xo, f/) = 
Op(n-1/al). - 
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We now turn to some technical lemmas for the proof of Theorem 2. For this purpose, we 
first introduce some additional notation. Let 

1 n 
G(yi, xi, xo, /) 

BnI(3, ) -n Kh(Xi - Xo) 1 + aTG(yi, xi, xo, /3)' 

I 
na TG(yi, xi, xo, 

#)/19#T" 
Bn2(f i=a) 1Kh(xi - xo) 1 + aTG(yi, xi, xo, ) n i=1 

OBnli(3, a) OB(Onl(, a) 
Cnil(3, a) -= OaT , Cnl2(3, a) - 3T 

OBn2(,f a) OBn2(f, a) 
Cn21(fl, a))- 

OaT Cn22(fl, a)=- OfT 

Lemma A.4. Under Conditions Al, A2, A4 and A7, as h = h, - 0, and nh -0 oC, for any 
random vectors j1 = ilo + o,(l) and a1 = o,(l), we have 

CnI1(~1, al) = -f(xo) VG(XO) 0 S + op(l). 

Proof. Note that 

Cn11(~1, a1) = -Wn(xo, 1) + Rnll, 

where 

1 
- 

aT G(yi, xi, xo, 1)(2 aTG(yi, x 
xo, 09)) 

Rn= - Kh(xi - xo) ( 
aTG(yx 

XOx,1))2 
n 

i=1 (1 + a (yi, xi, xo, _ ,))2 

X G(yi, xi, x0o, S1GT(yi, xi, x, X01)- 

Note that, under Condition A2, 

max Zi = Op(n-1/ao), 

which implies 

max|aT G(yi, xi, xo, i1)| 
-= 

op(l) 

by the assumption that a1 = op(n-1/ao). Therefore, 

(pP+ 
1)|op(1)|(2 + 

|op(1)|)1-In 

2 ||R 2 ? 
!) Kh(x i 

- 
X0) Z2 

n(1 - |op(1)|)2 ni=1 

= Op(1). 

Now Lemma A.2 and the assumption that 51 = 
0o 

+ o,(1) complete the proof. O 
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Lemma A.5. Under Conditions Al, A2 and B1, as h = h, - 0 and nh ? oo, for any 
random vectors i1 = 0o + o,(l) and al = Op(n-l/ao), we have 

Cnl2(~1, ai) = f(xo)DG(xo) 0 S + op(1), 

Cn21(~1, aI)T = f(xo)DG(XO) 0 S + Op(1). 

Proof. 
We only need to consider Cn12( 1, al) because Cn12( 1, al) = Cn21(1, al)T. For 

simplicity, we write G(yi, xi, x0, 1) as Gi. Note that 

Cnl2(~1, a•) 
- Dn(1) + Rnl2, 

where 

1 qn 
oG(yi, xi, xo,fl) 

Dn(fl) - Kh(xi - x 

1n aTGi Gi 1 --. GiaTOGi/O/fT 
Rnl2 -- K h(i - XO) T T - n i=1 1+ i=G1(1+aG)2 

By Condition B1, we have, as h = hn, 0 and nh - 0 oo, 

|Dn(50) - Dn(0o)ll| - Kgh(xi- xo)U2(Yi, xi)0 Il - O11 
i=1 

= Op(11|i -lo11) = o,(1) (A.21) 
and 

Dn(0o) 
= f(xo)DG(xo) @ S + o,(1). (A.22) 

Observe that under Condition A2 and the assumption that al = op(n-1/ao), we have 

maxlaT G1i = op(1) 

which, with Condition B , implies 

I_ 
nIop()1 

! 

Z(iUl(Yi, 

I) 

I|Rnl211 
Io(1)l 

1 Kh(Xi - 
xo)UI(Yi, xi) 

+ o(1 
- oUl))2 nix) 1 - op(1)l| n 

/= 
1(I 

- |op ()|) 
2 i 

= op(l). (A.23) 

Now combining (A.21), (A.22) and (A.23), we obtain the desired result. O 

Lemma A.6. Under Conditions Al, A2 and B2, as h = hn, 0, for any random vectors 

51 = Ao + o,(l) and al = Op(n-1/ao), we have 

Cn22( 1, al) = Op(1). 

The proof of this lemma is similar to the proof of Lemma 4.5 and thus omitted. 



602 J. Zhang and A. Liu 

Denote 

C = C21 C12 ) C22.1 = C22 - 
C21Cl11C12, 

where 

Cll = -f(xo)VG(xo) 0 S, C22 = 0, C12 C1 = f(xo)DG(xo) 0 S. 

Lemma A.7. Suppose Conditions Al, A4, A7, B1 and B2 hold. Then, as h = h,- 0, we 
have 

nh var(BI(Alo, 0)) = f(xo) VG(xo) 0 S* + o(1). 

If O(x) has a (p + 1)th continuous derivative O(P+')(x), then 

C-2 C21C-lEBfI(0o, 0) = bias*(1 + o(l)) 

with 

bias* = hP+'S-(ip+1, ..., 2p+lP+(p + )!. 

In addition, if f and O(P+l)(x) have continuous derivatives, then 

C11 C21 
CllEBnl(Ao, 

0) = bias(1 + o(l)), 

where bias is defined in Section 2. 

Proof Note that 

EBnl(Qo, 0) 

EKh(X -xo)E |(X)-(X-o) p+ 1)(X xo) X +o_ )__ 

-EKh(X-x?)E[(GY, 

O(X) - 
(X-x?)p+l O(P+l)(p1) 

- Op(hp+l) 
i x 

X?X(X'-hO) S(p + ! h)!h 

--EKh(X- 
xO)E{OG(Y 

O(X)) 

xo)P+lI?O(p+I)XO(p_) 

10 
xXX "+op(hp+x 

-+ I0( 
-T 

(P++)(x0o) 

= - f(xo)DG(xo)hP+l 0 (/p+, ..., 2p+l)T OP+I 
1) Op)). (P + 1). 

Note that K is symmetric and the (r + 1)th element of 
S-l(p+l1, ..., 

2 
p+1)T is zero. To 

obtain the non-zero bias when p- r is even, we expand EB,1(Ao, 0) up to order hP+2: 
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EBnl(oO, 
0)= EKh(X - xo)E [G(Y, 0(X) - (X - 

xo)P+lY(P 

1)! 

- (X - xo)p+2 0(p+2)(po)- o (hp+2) x X - x 
(p + 2)! (+ 

= - f(xo)DG(xo) 
p+l(, 

T...2(p+T 

O )hp+1 
(p + 1)! 

+ 
(p+, 

- - - 2p+ 
1 (XO) f(XO) 

(p+ 1)! f(xo) 

+ (Itp+2, .., 6( P+2)(xo) ]hP+2](1 + Op(l)). (p + 2)! 

Similarly, we have 

cov(Bn,1((A, 0)) = - 

[EK2,(X 
- xo)G(Y, X, xo, 

o).YT(Y 
, X, xo, Ao)) n 

- EKh(X - xo)G(Y, X, xo, ,o) 

x EKh(X - xo)GT(Y, X, xo, o)] 

f(xo) { VG(xo) 
S 
S* + O(h2p+3)}. 

nh 

Proof of Theorem 2. Write & = a,(xo, /f). Then, applying Theorem 1, we have 

- = o(1), & = 
op(1), 

which, by the assumption, implies that as n is large, P is an inner point of 00. Since / is the 
maximum estimator, we have 

Bn1(3, &) = 0, Bn2(3, &) = 0. 

By virtue of a Taylor expansion, these become 

0 = Bl(Ao, 0) + Cn11(jI, al)& + Cn12( 1, al)(# - )o), (A.24) 

0 = Bn2(0, 0) + Cn21(~, al) + Cn22(61, al)(# - ,o), (A.25) 

where the (?j, aj), j = 1, 2, are between (fl, &) and (Ao, 0). Write 

C Cnl(-1, al) Cnl2(1l, al) C 

n 

- 

Cn21( 1, al) Cn22( 1, 
1)" 
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Applying Lemmas A.4-A.6, we have 

Cn(lI, ai) = C + o,(l), 

which, in conjunction with (A.24) and (A.25), implies that 

( 
a = -C- BnBl(o, 0) 

- C' Bnt(0o, 

) 
)(1 + op(1)). 

Combining this with (A.24) and (A.25), we have 

V-(p - h o) = C211 C21 C-1- BnI,(Aio, 0)(1 + op(1)), 

/ -= -(Cl 
1 + C I1C2211C21 

C-1)VnhBnl(,o, 
0)(1 + Op(l)). 

Finally, according to the Crambr-Wold device and Lemma A.7, to establish the asymptotic 
normality of 3, it suffices to check Lyapunov's condition for any one-dimensional projection 
of C-l, C21 ClllyjV X Bnl( (o, 0), which is straight forward. 

We can prove the result for a^ analogously. O 
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