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This article discusses extensions of generalized linear models for the analysis of longitudinal data. 
Two approaches are considered: subject-specific (SS) models in which heterogeneity in regression 
parameters is explicitly modelled; and population-averaged (PA) models in which the aggregate 
response for the population is the focus. We use a generalized estimating equation approach to fit 
both classes of models for discrete and continuous outcomes. When the subject-specific parameters 
are assumed to follow a Gaussian distribution, simple relationships between the PA and SS parameters 
are available. The methods are illustrated with an analysis of data on mother's smoking and children's 
respiratory disease. 

1. Introduction 

This article considers statistical methods for longitudinal data where the broad scientific 
objective is to describe an outcome, y,, , for subject i at time t as a function of covariates, 
x,,. Longitudinal data are characterized by the fact that repeated observations for a subject 
tend to be correlated. This correlation presents additional opportunities and challenges for 
analysis. 

With independent observations, generalized linear models (GLMs) (McCullagh and 
Nelder, 1983) and quasi-likelihood (Wedderburn, 1974; McCullagh, 1983) have recently 
unified regression methods for a variety of discrete and continuous variables. Linear, 
logistic, and Poisson regression as well as some parametric survival analysis models are 
special cases. The objective of this article is to discuss approaches to the analysis of 
dependent, longitudinal data with similarly diverse types of outcome variables. 

The GLM can be extended for time-dependent data in a variety of ways. Zeger 
and Qaqish (1988) and Kaufmann (1987) discuss generalized linear models for the con- 
ditional distribution of an outcome given its past. Alternatively, the parameters in a 
GLM can be assumed to vary across time as a stochastic process and/or across subjects 
according to a mixing distribution. We focus on the case where there is heterogeneity 
across subjects. 

There are two distinct approaches to longitudinal data analysis in this case. First, the 
heterogeneity can be explicitly modelled; we will refer to this as the "subject-specific" (SS) 
approach. The mixed model is an example where the subject-specific effects are assumed 
to follow a parametric distribution across the population. Mixed linear models (Laird and 
Ware, 1982; Ware, 1985) for continuous longitudinal data are in common use. Mixed 
generalized linear models for non-Gaussian outcomes have recently become a research 
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focus. See Stiratelli, Laird, and Ware (1984), Anderson and Aitkin (1985), and Gilmour, 
Anderson, and Rae (1985) for applications to binomial data. 

Second, the population-averaged response can be modelled as a function of covariates 
without explicitly accounting for subject to subject heterogeneity. The regression coefficients 
have interpretation for the population rather than for any individual and hence we will use 
the term "population-averaged" (PA) model in this case. Liang and Zeger (1986), Zeger 
and Liang (1986), Stram, Wei, and Ware (1988), and Moulton (unpublished Ph.D. 
dissertation, The Johns Hopkins University, 1986) have previously discussed examples of 
PA models. 

This article first contrasts SS and PA models in more detail, indicating their respective 
domains of application. The mixed GLM is used as a basis for discussion. A generalized 
estimating equations approach (Liang and Zeger, 1986) useful for fitting both SS and PA 
models is then discussed in Section 3. This approach is an extension of quasi-likelihood to 
the analysis of dependent data. The methodology is illustrated with an analysis of respiratory 
infection data from the Harvard Study of Air Pollution and Health (Ware et al., 1984). 

2. Subject-Specific and Population-Averaged Models 

This section distinguishes between SS and PA models for longitudinal data, indicating their 
domains of application. While extra nomenclature can be a nuisance, we believe it is useful 
in this case to differentiate two distinct extensions of GLMs for longitudinal data analysis. 

We begin with the mixed generalized linear model, an example of a subject-specific 
model. Let y,, be an outcome random variable and x,, a p x 1 vector of fixed covariates at 
time t for subject i, where t = 1, . . . , n, and i = 1, . . . , K. Let z,, be a q x 1 vector 
of covariates (typically a subset of x,,) associated with a q x 1 random effect, b,, and let 
u,, = E( y,, I b,). Under the mixed GLM, the responses for subject i are assumed to satisfy 

where b, is an independent observation from a mixture distribution, F. The functions h 
and g are refened to as the "link" and "variance" functions, respectively. The objective of 
analysis is to estimate the fixed effects coefficients, j3, parameters of F, and possibly the 
scale parameter. 4. An example is the logistic Gaussian mixed model studied by Stiratelli 
et al. (1984), in which it is assumed that logit(u,,) = xAj3 i-z: b,, var( y,, I b,) = u,,(l - u,,), 
and b, is an independent Gaussian random vector with mean 0 and covariance D, i.e., 
b, - G(O, D). 

For discussion, suppose x,, = z,, - (1, t) '  and let b, = (bo,, bl,)' and j3 = (Po, PI) ' .  Then 
in the logistic mixed model, the log-odds of a positive response for subject i at time t is the 
linear function of time (Po + bo,)+ (PI + b,,)t. Thus, exp(P1 + b],) is the odds ratio of a 
positive response at time t + 1 relative to time t for subject i. Since E(b,) = 0, the parameter 
pl describes on average how an individual's probability of positive response depends on 
time. 

In the population-averaged approach to longitudinal analysis, the marginal expectation, 
p,, = E( y,, ), is the focus. That is, we assume 

h*(p,,) = x:ij3* and var(y,,) = g*(p,O . 4 

for some link function h* and variance function g*. Here, j3* describes how the population- 
averaged response rather than one subject's response depends on the covariates. In the 
logistic case with x,, = (1, t j', PT is the change on a logit scale in the fraction of positive 
responses per unit time, rather than the typical change for an individual subject. 
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The principal distinction between SS and PA models is whether the regression coefficients 
describe an individual's or the average population response to changing x. A secondary 
distinction is in the nature of the assumed time dependence. PA models only describe the 
covariance among repeated observations for a subject; SS models explain the source of this 
covariance. In PA models, the covariance matrix must be positive-definite but is otherwise 
unrestricted. In SS models, the time dependence arises solely from the shared subject 
effects, b,, in the conditional mean. The covariance matrix is thus fully determined by the 
choices of g(u,,) and F. For example, in a logistic model with Gaussian random intercept, 
only positive correlation is possible. 

SS models are desirable when the response for an individual rather than for the population 
is the focus-for example, in studies of growth curves. Effective use of SS models is limited, 
however, by the information available per subject. In many longitudinal studies, each 
subject has few observations and it is not possible to estimate separate regression coefficients, 
j3 + b,. Assuming the b,'s follow a particular distribution, as is done in the mixed model, 
is a vehicle for borrowing strength across subjects to estimate @, the typical SS parameter. 
However, inferences about j3 may depend on the assumed form of the distribution of the 
b,'s, which cannot be checked without extensive data per subject. 

PA models are most effectively used in population studies such as in epidemiology. Here 
the difference in the population-averaged response between two groups with different risk 
factors is more the focus than is the change in an individual's response. For example, if x,, 
indicates whether subject i smokes at time t, and y,, is the presence/absence of respiratory 
infection, the PA model estimates the difference in infection rates between smokers and 
nonsmokers; the SS model estimates the expected change in an individual's probability of 
infection given a change in smoking status. 

An advantage of PA models is that the population-averaged response for a given covariate 
value, x,, , is directly estimable from observations without assumptions about the hetero- 
geneity across individuals in the parameters. PA parameters are in this sense one step closer 
to the data than SS parameters. On the other hand, PA parameters depend on the degree 
of heterogeneity in the population (F). The same process in two populations with different 
degrees of heterogeneity will lead to different PA parameter values. 

Under the mixed GLM in (2. I), 

Note that p,, depends only on x,, and on F. When h is a nonlinear function and we assume 
h(u,,) = xLj3 + zLb,, it is usually not true that h(,u,,) = x,:@. Trivially, if there is 
no heterogeneity, i.e., b, = 0 for all i, then PA and SS models are the same and h(u,,) -
h(p,,) = x i@.  Also, if h is the identity link, h(p,,) = p,, = xA@. But in general, the link 
function that transforms u,, into a linear function of x,, does not also do the same 
for p,,. This is illustrated in Figure 1, where we have assumed 

logit(u,,) = q,, + b,, b, - G(0, D), 

and display the marginal mean, p,,, as a function of q,, for several values of D. Note the 
dependence of the marginal expectation on the random effects variance. There is attenua- 
tion of the effect of the covariates, as is well known in the context of errors-in-variables 
regression (e.g., Stefanski, 1985). 

For mixed models with identity link, the distinction between subject-specific and popu- 
lation-averaged models is less important. In addition, inferences about the regression 
coefficients are robust to misspecification of the model for time dependence, a principal 
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rl - Linear P r e d i c t o r  

Figure 1. E(Y) vs 7, where Y satisfies logit[E(Y I b ) ]= 7 + b and h - G(0,D). 

difference between the PA and SS approaches in linear models. To develop these points, 
briefly consider the linear mixed model (Laird and Ware, 1982), which in vector notation 
is given by 

where 

Z l =YI  = ( Y I I ,. . . 7Yllil)', (~11,. . . 7 Xiti,)', (~11,. . . , Zlli,)', El=(cl17 . . . ,Erll,)') 

and where E(b,) = 0, cov(b,) = D, cov(e,) = a21, and cov(bl, el) = 0. For simplicity of 
notation, we assume XI = Z,; extension to the general case is automatic. Note that the 
subject-specific coefficient for the ith individual is B + b,. Since E(b,) = 0, ,63 has 
interpretation as the typical SS parameter. Alternatively, (2.3) can be expressed as 

E(Y,) = X,B, COV(Y~)a21+ X,DX,' V,. (2.4)= = 

Here, B has the interpretation as the rate of change in the population-averaged Y with X. 
The random effects in the linear mixed model do not alter the marginal expectation of Y, 
only the marginal covariance matrix. Hence, B has both a SS and PA interpretation. 

The second point about the linear case is that consistent inferences about 8 can be 
obtained by least squares given only correct specification of the marginal expectation of Y 
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and the usual regularity conditions. The least squares estimating equations for 6 have the 
form 

Note that even when V, is misspecified, E[U(B)] = 0 and hence the root of (2.5) is 
consistent. In addition, the robust variance estimate (White, 1982; Royall, 1986), 

is also consistent given only that E(Y,) = XI@. Thus, for large K, consistent inferences 
require correct specification of only the first moment. In the linear case, the specification 
of the first moment is the same in subject-specific and in population-averaged models. 
Hence, this distinction is less important. 

3. Generalized Estimating Equations for PA and SS Models 

In this section, we describe an estimating equation approach for fitting either PA or SS 
models to longitudinal data. To introduce the method, we briefly discuss PA models. See 
Liang and Zeger (1986) and Zeger and Liang (1986) for details. We then focus on the SS 
case. 

3.1 Estimating Regression Coeficients 

To model the marginal expectation, p,,,we assume h*(p,, ) = xl\B* and var( y,,) =g*(p,,)4. 
Let p, = E(Y,) = {h*-I(x:,/3*), . . . , h*-'(x;,,/3*))' and A, = diag(g*(pil),. . . , g*(p,,,)). 
For independent observations, cov(Y,) = A, . 4. As we expect correlation among repeated 
observations for a subject, let R,(a) be a "working" correlation matrix perhaps depending 
on an s X 1 vector of unknown parameters, a .  We estimate a *  by solving the "generalized 
estimating equation" (GEE) 

d p f
u ( 8 * )  = C +V , l ( a ) ( ~ ,- p,) = 0, 

, = I  d a  

where V,(a)  = Liang and Zeger (1986) show that j * ,  the solution of (3. l), A , " ~ R , ( ~ ) A : ' ~ .  
is consistent and asymptotically (K +a)Gaussian given only correct specification of the 
mean and the usual regularity conditions. A robust variance estimate 

Vj* = M c l M I M i l ,  (3.2) 

where 
K d * '  

M - h $ r ; l -

- = d@* da*  

and 

;,a 


is also consistent even when cov(Y,) # V,. 
The GEE can also be used to fit the mixed generalized linear model, as has previously 

been discussed by Gilmour et al. (1985) for a probit model of binomial responses in the 
animal breeding context. Below, we consider the GLM class of outcomes, give consistent 
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variance estimates, and establish connections between PA and SS parameters when the 
random effects distribution is Gaussian. 

To use the GEE approach for the mixed GLM, we calculate the marginal moments, p, 
and V,, from the conditional moments and the random effects distribution, F. We then 
solve the GEE (3.1) as discussed in Liang and Zeger (1986). Given the conditional moments 
in (2.1) and a distribution, F, for the random effects, the marginal expectation, p,, has the 
form of (2.2). The marginal covariance matrix is 

V, = cov[E(Yi I b,)] + E[cov(Y, I b,)] (3.3) 

with s, t element 

where ui, = h-'(x,; + z,; b,) and I(s = t )  is the indicator function with value 1 if s = t 
and 0 otherwise. Having evaluated pi and V, for each subject, we solve the GEE given in 
(3.1) for 8.Note that the GEE is a function of F, which is assumed to be known at a given 
iteration. 

If F is the Gaussian distribution with mean 0 and covariance matrix D, the expression 
for the marginal mean simplifies or is easily approximated for the standard link functions. 
For the identity link [h(u) = u], we have trivially p,, = E(yil) = x,;@. For the log link 
[h(u) = log(u)], pi, = exp(x,', + zl~Dzi,/2). That is, the random effect leads to a 
simple offset, zl;Dzi,/2, in the marginal mean. When h(u) = W1(u),  the probit link, 
pi, = (P(a,(D) . x,;B), where a,(D) = I Dz~,z,;+ I and q is the dimension of b,. This 
expression for a,(D) is a generalized form of the parameter s in Gilmour et al. (1985). For 
the logit link, an exact closed-form expression for the marginal mean is unavailable. 
However, using a cumulative Gaussian approximation to the logistic function (Johnson 
and Kotz, 1970, p. 6) leads to the expression logit(p,,) = al(D) . xi,B, where al(D) = 
I c2Dz,,z,', + I 1 -q'2 and c = 16 a l ( l . 5 ~ ) .  Figure 2 shows the quality of this approximation 
for different values of D when q = 1. Note that the mixed models on the logit and probit 
scales lead to a rescaling of the linear predictor in the expression for the marginal mean; 
however, the same link function can be used for both the conditional and marginal 
expectations. 

Ideally, simple formulae would exist for V, = cov(Yi) as well. This is not the case except 
for the linear link. However, only an approximation for Vi is necessary to obtain consistent 
and nearly efficient inferences for B using the GEE approach when the number of subjects, 
K, is large relative to the number of observations per subject, n,, and F is given (Liang and 
Zeger, 1986). Expanding the link function in a Taylor series about b, = 0 gives the 
approximation 

where L, =diagidh-' (u)/d u, u = x,; 8 ,  t = 1, . . . ,n,).The quality of a similar approximation 
has been studied for the probit link by Gilmour et al. (1985). 
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n - L i n e a r  P r e d i c t o r  

Figure 2. logit[E(Y)] vs q, where Y satisfies logit[E(Y I b)] = q + b and b - G(0,D). Notice that the 
logit of the marginal mean is nearly linear. 

Using q, as an approximation to V,, we have that conditional on F, &(b - 8 )  is 
asymptotically multivariate Gaussian with mean 0 (if an exact expression for pi,is used 
and small bias otherwise) and with variance that can be consistently estimated by 

It is important to emphasize that the distributional result assumes F is given. In mixed 
models with nonlinear links, estimates for 8 and for parameters of F (D in the Gaussian 
case) are not even asymptotically orthogonal as they are in linear models. In general, 
inferences about 8 depend in a complicated way on those for F. There are important 
exceptions, however, when b, is Gaussian. For the log link, changing D changes only an 
offset in the marginal mean. For X's approximately orthogonal to the intercept, changing 
D has little effect on their coefficients and the conditional inferences are satisfactory. For 
the probit and logit links, D need not be known for testing the null hypothesis /3, = 0. 
To see this, note that for any D, h[E(yll)] = xABal,(D), where h is the logit or probit 
function. The standard error of bJ is also proportional to al,(D). Hence, the ratio of bJto 
its standard error is approximately independent of D. 
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3.2 Estimating D and 6 

The approximation (3.4) can be used to obtain a rough estimate of the random effects 
variance, D. We have 

V,=L,Z ,DZ, 'L ,+~A,  

so that 

D = (z:z,)-lz: L,(v, - ~A,)L;~z , (z :  z,)-I 

We use the moment estimator 

The scale parameter is estimated from the diagonal terms of the covariance matrix. 
Note that 

E(ylt - PI,l2 = 6 g ( ~ , i) + (L,,)2~ADzri, 

which leads to the moment estimator 

To calculate b and (D, 4 )  simultaneously, we iterate solving equations (3.1) and (3.5). This 
algorithm has been found to converge except when the linear approximation becomes 
inaccurate, for example, when the probability of response in logistic regression becomes 
too large or small and/or when D becomes large. Because of the approximations involved 
for nonlinear links, we currently use D and 4 as rough estimators and examine the 
sensitivity of ,6 to changes in D and 4 in the neighborhood of D, 6. Further work on 
estimating D and 6 for specific link functions is required. 

4. Example: Children's Respiratory Disease and Mother's Smoking 

We illustrate the GEE approach with an analysis of data from the Harvard Study of Air 
Pollution and Health (Ware et al., 1984). Data are available for 537 children from 
Steubenville, Ohio, each of whom was examined annually from age 7 to age 10. Whether 
the child had respiratory infection in the year prior to each exam was reported by the 
mother. Mother's smoking status [regular smoker (I)  or not (O)], a time-independent 
variable, was determined at the first interview. The subset of data used here was obtained 
from and previously analyzed by Laird, Beck, and Ware (unpublished technical report, 
Department of Biostatistics, Harvard University, 1986). Only subjects with complete records 
were available; however, the previous analysis found little difference when all subjects were 
included. Our objective is to illustrate the GEE method, demonstrating the connections 
between PA and SS models. 

To fit a PA model, the marginal probability of respiratory infection, pit, is assumed to 
satisfy 

l ~ g i t ( ~ , ~ )  (4.1)= P,* + M S  P T  + AGE 0: + (AGE . MS)PT, 

where MS = 1 if mother smoked and 0 if not, and AGE is in years since the 9th birthday. 
Note that whether a child had infection the previous year is not explicitly included in the 
model. The purpose is to compare the rate of respiratory disease for children whose mothers 
smoke to the rate for children whose mothers do not smoke. 



1057 Models for Longitudinal Data 

Table 1 presents the coefficients and robust 2-statistics for the PA model based on the 
following three working assumptions about the correlation: R = I (repeated observations 
uncorrelated); R,A = a,  j # k (exchangeable correlation); R,L = a ( [j - k 1) (stationary 
correlation). In practice, we choose R based on empirical estimates of the correlation. We 
use three different correlation assumptions here only to demonstrate that both the estimates 
and 2-statistics show little dependence on the choice of R, despite the presence of substantial 
correlation among these data. In the exchangeable working model (R,a = a ,  j # k), & = 
.346. In the stationary case, the correlations for lags of 1 ,  2,  and 3 years were estimated to 
be .40, .3 1 ,  and .3 1 ,  respectively. Either of these alternatives appears reasonable. 

The yearly rate of respiratory infection for 9-year-olds (AGE = 0 )  with nonsmoking 
mothers is approximately 15%. The PA model indicates that the rate decreases with age by 
about 2% per year. The rate of illness for children of smoking mothers is about 1.35 as 
high as in those with nonsmoking mothers with approximate 95% interval (.92, 1.96). As 
the 2-statistic for pT is 1.58, the evidence from these data only moderately supports the 
smoking-respiratory illness relationship. 

Table 2 compares the robust 2-statistics with those obtained if we assume repeated 
observations are uncorrelated both in estimating 8 and in calculating its variance-that is, 
if we assume the independence working model is correct. The consistent statistic, Z,, is 
smaller for both time-independent covariates (intercept, mother's smoking) and larger for 
the time-dependent covariates (age, age-smoking interaction). Positive correlation within 

Table 1 
Coeflcients and robust Z-statistics (p*/s.e.,j*) for the population-averaged model of equation (4.1)for 

three different assumptions about the correlation amonx repeated observations for a subject 

Uncorrelated Exchangeable" Stationaryh 

Coefficient P * Z P * Z P * Z 
Intercept -1.90 -16.0 -1.90 -15.8 -1.90 -15.8 
Mother's smoking 

(MS = 0 if no) ,313 1.7 .303 1.6 .298 1.6 
AGE -.I40 -2.4 -.I37 -2.4 -.I39 -2.4 
M S .  AGE ,0699 .79 .0657 .75 .0704 .80 

Table 2 
Comparison of robust Z-statistics from independence working model 


and naive Z-statistics in which the independence was assumed 

in calculating both the coeflcients and their standard errors 


Naive Robust 

Z-statistic Z-statistic 


Coefficient Z ,  ZR (Z.V- ZR)/Z,, 
Intercept -2 1.4 -15.8 .26 
Mother's smoking 

( M s )  2.3 1.6 .30 
AGE -2.0 -2.4 -.20 
M S .  AGE .64 .79 -.23 
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subjects makes estimates of differences among subjects less precise than they would be with 
independent observations. In contrast, within-subject changes can be estimated more 
precisely, as is indicated in Table 2. Note that ignoring the correlation leads to incorrectly 
interpreting the data as strong evidence for a mother's smoking effect. 

Now consider the subject-specific model. We describe the probability of respiratory 
infection for an individual, uit = E( yi,I bi), as a function of the covariates assuming 

logit(u,,) = Po + M S  P1 + AGE P, + (AGE . MS)P, + boi, (4.2) 

where we assume bo, - G(0, D). Here, the coefficients are log-odds ratios for a single child. 
That is, the M S  coefficient, PI ,  indicates how one child's risk would change if his mother 
changed smoking status rather than how the average risk over the population differs, as is 
the case for PA coefficients. For illustration, only the intercept in the linear predictor is 
assumed to vary across subjects. Inferences about mother's smoking when both the intercept 
and age coefficients are random are qualitatively similar. Table 3 presents coefficients and 
robust 2-statistics for a range of values of D. The approximate variance, given in equation 
(3.5), was used in the estimating equation. Note that the subject-specific parameters are 
greater in absolute value than the population-averaged analogues (D = 0) and increase with 
the variance, D, of the random effect. The random effects variability shrinks the fixed 
effects parameters toward 0 in the logistic model. This is well known in the context of 
errors-in-variables (e.g., Stefanski, 1985). The degree of shrinkage depends on the study 
design (z,, '~), but in this simple case can be approximated by ai(D). For example, the M S  
coefficients for various D's can be compared with a,(D) p,(0), where pl(0) is the 
M S  coefficient when D = 0 (see Table 3). Note that this approximation is within 2% for 
all values of D. Hence, a reasonable estimate of SS parameters can in this case be obtained 
from the PA model results. 

Tests for the null hypothesis that mother's smoking does not affect children's respiratory 
disease can be based on the MS 2-statistic in Table 3. It does not change even as D changes 
from 0 to 4.0. Hence, this inference is approximately independent of the random effects 
variance. On the other hand, the absolute magnitude of the SS coefficient changes substan- 
tially as a function of D. 

Unfortunately, there is little information about D in these data. The algorithm suggested 
above fails to converge because the linear approximation to the logit link function is not 
adequate for small respiratory disease propensity and large D. In their unpublished technical 
report, Laird et al. have found the profile likelihood for D to be flat when a Gaussian 
random effect is assumed. They give a point estimate of 4.4 and an approximate interval 
of (3, 6.5). In this range, the mother's smoking coefficient varies from .45 to .56. 

Table 3 
Coeficients and robust Z-statistics from subject-specific model with a Gaussian random intercept 

with variance D 

D 

0 .5 1 4.0 

Coefficient $ Z 4 Z 4 Z l? Z 

Intercept (Po) -1.91 -16 -2.1 -16 -2.2 -17 -2.9 -16 
M5' (PI .3 13 1.6 .344 1.7 .368 1.7 .488 1.6 
AGE (Pz) -.I4 -2.4 -.I5 -2.5 -.I6 -2.5 -.22 -2.5 
MS . AGE (P3) .070 .79 .074 .78 .079 .77 . I1 .78 
ai(D) 1.OO 1.08 1.16 1.54 
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In summary, the PA model indicates that the rate of children's respiratory disease is 
approximately 35% greater for children of smoking mothers. The SS modelling indicates 
that a child's risk if his or her mother stopped smoking would decrease by between 35% 
and 63% as the random effect variance ranges from 0 to 4.0. Note that the assumption 
D = 4.0 corresponds to a substantial amount of heterogeneity in children's propensity for 
respiratory disease. Under a Gaussian assumption, it implies that 95% of children have a 
probability of infection in a given year in the interval .0001 to .75. Finally, either the PA 
or SS model leads to the interpretation of these data as mild evidence for the relationship 
of mother's smoking and children's respiratory infection. 

5. Discussion 

In this paper, we have distinguished between population-averaged and subject-specific 
models for longitudinal data. The GEE approach can be used for both types of models. PA 
models describe how the average response across subjects changes with the covariates. Only 
the link function need be correctly specified to make consistent inferences about PA 
coefficients. The SS mixed models use the information contained in the population- 
averaged response as well as a distributional assumption about the heterogeneity among 
subjects to estimate subject-specific coefficients. Both the link function and the random 
effects distribution must be correctly specified for consistent inferences in this case. 
Estimates of SS parameters and of the random effects distribution are asymptotically 
correlated except for the linear link. Hence, the precision of ,6 depends on that of (D in 
the Gaussian case), which is more dificult to estimate from longitudinal data especially 
with nonlinear links and few observations per subject. When SS parameters are of primary 
interest, we believe care must be exercised in their interpretation. 

The methods described here are closely related to previous work in two other contexts. 
Gail, Wieand, and Piantadosi (1984) examined the bias in estimates of treatment effect 
when a balanced covariate is omitted in the generalized linear model setting. They found 
that the bias is zero only for the identity and log links. The notion of omitting balanced 
covariates is conceptually similar to that of ignoring random effects. Our results agree with 
theirs regarding the identity and log links. In addition, we have established simple relation- 
ships between @ and @*for other link functions. Second, the random effects problem is 
related to errors-in-variables regression as discussed for binary regression by Carroll et al. 
(1984) and for generalized linear models by Stefanski (1985). In the mixed model, the 
coefficients are random; in errors-in-variables the covariates are random. While this 
distinction leads to different results, there is substantial overlap. 
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Grants 1 -R29-AI25529-0 1 and 1-R29-GM3926 1-0 1. We thank the associate editor and 
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On discute, dans cet article, d'extensions des modkles liniaires giniralisis, pour I'analyse de donnies 
longitudinales. On considkre deux approches: les modkles spicifiques au sujet (SS), dans lesquels 
I'hitiroginiiti dans les paramktres de rigression, est modilisie explicitement; et les modkles moyen- 
nant sur une population (PA) dans lesquels, on s'intiresse h la riponse globale dans la population. 
On utilise, une approche giniralisie des iquations d'estimation, pour ajuster les deux classes de 
modkles pour des risultats discrets ou continus. Quand on suppose, que les paramktres spicifiques 
au sujet, suivent une distribution Gaussienne, on dispose de relations simples, entre les paramktres 
PA et SS. On illustre, les mithodes avec une analyse de donnies sur le tabagisme des mkres et les 
maladies respiratoires des enfants. 
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