I. Kostant partition function and flow polytopes

$K_{A_{n}}\left(a_{1}, \ldots, a_{n+1}\right)$ number of ways of writing $\left(a_{1}, \ldots, a_{n+1}\right)$ as an \mathbb{N}-combination of positive roots $e_{i}-e_{j}, i<j$.

$$
\begin{aligned}
K_{A_{3}}(1,0,0,-1)=4: \quad(1,0,0,-1) & =e_{1}-e_{4} \\
& =\left(e_{1}-e_{3}\right)+\left(e_{3}-e_{4}\right) \\
& =\left(e_{1}-e_{2}\right)+\left(e_{2}-e_{4}\right) \\
& =\left(e_{1}-e_{2}\right)+\left(e_{2}-e_{3}\right)+\left(e_{3}-e_{4}\right)
\end{aligned}
$$

- Kostant (1958) used them to give formulas for weight multiplicities of irreducible representations of semisimple Lie algebras. Lusztig (1983) studied a q-analogue.

Combinatorial approach (Baldoni-Vergne 2001)
View ways counted in $K_{A_{n}}(\cdot)$ as lattice points of a flow polytope $\mathcal{F}_{G}\left(a_{1}, \ldots, a_{n+1}\right)$

$$
P_{n}:=\mathcal{F}_{G}(1,0, \ldots, 0,-1) \quad \text { volume }\left(P_{n}\right)=K_{G}(1,2,3, \ldots)=C_{1} C_{2} \cdots C_{n-2} \quad C_{i}=\frac{1}{i+1}\binom{2 i}{i}
$$

$$
\begin{array}{ll}
\text { volume equals } & \text { Zeilberger 1999 by } \\
\text { \# lattice points } & \text { identity related to } \\
\text { similar to permutahedra } & \text { Selberg integral }
\end{array}
$$

Results

- [1] Extend from Lie type A to Lie types B, C, D

$$
K_{D_{2}}(2,0,0)=5
$$

- [2][3] Connection to space of diagonal harmonics $D H_{n}$, shuffle conjecture new polytope $Q_{n}:=\mathcal{F}_{G}(1,1, \ldots,-n), n!$ vertices, volume $\left(Q_{n}\right)=\frac{\binom{n}{2}!}{\prod_{i}(2 i-1)^{n-i}} C_{1} \cdots C_{n-1}$

$$
K_{A_{3}}(1,1,1,-3)=7:
$$

- [4] $\mathcal{F}_{G}(1,0, \ldots,-1)$ when G is planar $\mathcal{F}_{G} \equiv$ order polytope of poset from dual of G Corollary: certain Kostant partition functions count linear extensions of posets.
- [5] lattice/Ehrhart theory flow polytopes parallel to generalized permutahedra

References

[1] K. Mészáros and A.H. M., Int. Math. Res. Not., rnt212:830-871, 2015.
[2] K. Mészáros, A.H. M., B. Rhoades. The polytope of Tesler matrices. Selecta Math. bf 23, 2017.
[3] R.I. Liu, K. Mészáros, and A.H. M. , arXiv:1610.08370.
[4] K. Mészáros, A.H. M., and J. Striker. , arXiv:1510.03357.
[5] K. Mészáros, A.H. M., Lidskii formulas for lattice points of flow polytopes, in preparation.

II. Hook formulas for skew shapes

The irreducible representations of the symmetric group S_{n} are indexed by partitions λ of n.
The dimension f_{λ} of the irreducible representation counts standard tableaux: fillings of the diagram of λ with all entries $1,2, \ldots, n$ increasing in rows and columns (Young 1900)

$\lambda=(3,2)$	

$$
f^{(3,2)}=5
$$

1	3	5
2	4	

f^{λ} has a product formula: the hook-length formula (Frame-Robinson-Thrall 1954)

$$
f^{\lambda}=\frac{n!}{\prod_{(i, j) \in \lambda} \operatorname{hook}(i, j)}
$$

$$
f^{(3,2)}=\frac{5!}{1 \cdot 1 \cdot 2 \cdot 3 \cdot 4}=5
$$

Applications:
uniform sampling

- Greene-Nijenhuis-Wilf 79
- Novelli-Pak-Stoyanovski 97

Limit shapes (Plancherel)

- GL (∞) : Vershik-Kerov 77
- probability: Logan-Shepp 78
- free probability: Biane 98

III. q-analogue of placements of non-attacking rooks

In complexity theory computing the permanent of a (0-1) matrix is hard (\#P-complete) (Valiant 79)

$$
\operatorname{perm}(A)=\sum_{w \in S_{n}} A_{1 w_{1}} \cdots A_{n w_{n}}
$$

For an $n \times n$ 0-1 matrix A, $\operatorname{perm}(A)=\#$ placements of n non-attacking rooks on support of A.
 some nice cases:
diagram of partition

$\operatorname{perm}(A)=\prod_{i}\left(\lambda_{i}-i+1\right)$
derangements

$d_{n}=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)!$

Results

new q-analogue of rook placements [1]: for $S \subset\{1,2, \ldots, n\} \times\{1,2, \ldots, n\}$ $M_{q}(S):=\#\left\{\right.$ invertible matrices A entries in finite field \mathbb{F}_{q} support in $\left.S\right\} \subseteq \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$

- Theorem: enumerative q-analogue of rook placements:

$$
\text { i.e. } \lim _{q \rightarrow 1} M_{q}(S)=\#\{\text { rook placements in } S\}
$$

- not always polynomial in q, can be Polynomial On Residue Classes (Stembridge 98)
- polynomial in q when support is diagram of partition (Haglund 97)
and when support is a skew diagram [2]
- Theorem: polynomial in q when zeros are on inversions of any permutation [4] proved using coding theory (settling conjecture from [2])
- not known if there are non PORC examples

Fano plane

not polynomial in q (Stembridge)

References

[1] J. B. Lewis, R. Liu, A.H. Morales, G. Panova, Sam S. V, and Y. X. Zhang. J. Comb., 2(3):355-395, 2011.
[2] A. Klein, J.B. Lewis, and A.H. Morales. J. Alg. Comb., 39(2):429-456, 2014.
[3] J.B. Lewis and A.H. Morales. J. of Combin. Theory Ser. A, 137:273-306, 2016.
[4] J.B. Lewis and A.H. Morales. 2017, in preparation.

IV. Colored factorizations in S_{n} and $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$

Structure constants of the group algebra of the symmetric group count factorizations
$F_{\lambda, \mu}=\#\left\{\left(\pi_{1}, \pi_{2}\right) \mid \pi_{1}, \pi_{2} \in S_{n}, \quad\right.$ cycle type $\pi_{1}=\lambda$, cycle type $\left.\pi_{2}=\mu, \quad \pi_{1} \pi_{2}=(12 \ldots n)\right\}$
$F_{\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(k)}}$ Case of k permutations:
related to maps, constellations, matrix integrals, and Hurwitz problem of counting ramified covers of the sphere.

Example

constellation

- if $\lambda^{(i)}=21^{n-2}, k=n-1 \quad F_{21^{n-2}, \ldots, 21^{n-2}}=n^{n-2}$.
factorizations $(1,2, \ldots, n)$ into $n-1$ transpositions
(Hurwitz 1891, Dénes 1959)

Positive formulas for general $F_{\lambda, \mu}$ have exponentially many terms (Goupil-Schaeffer 1998)
Approach: (Harer-Zagier 86, Jackson 88, Schaeffer-Vassilieva 08)
In the generating function of $F_{\lambda / \mu}$ do a change of basis like $x^{r} \rightarrow x(x-1) \cdots(x-r+1)$
and obtain new coefficients $C_{\alpha, \beta}$.
$C_{\alpha, \mu}$ count factorizations with colored cycles, usually they have nicer formulas
Results (symmetric group S_{n})

- two factors [1]

- k factors (Jackson 88, bijective proof [2])

where $\ell_{i}=\ell\left(\alpha^{(i)}\right), \quad S_{r_{1}, \ldots, r_{k}}^{n}:=\#\left\{\left(S_{1}, \ldots, S_{n}\right), \mid \quad S_{i} \subsetneq[k], r_{j}\right.$ sets S_{i} contain $\left.j\right\}$,

In $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ (Lewis-Reiner-Stanton 2013; Huang-Lewis-Reiner 2015):

- analogue of long cycle $(1,2, \ldots, n) \longrightarrow$ Singer cycle
- analogue of number of cycles of $\pi \longrightarrow$ fixed space dimension of matrix
- number of factorizations Singer cycle in $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ into n reflections is $\left(q^{n}-1\right)^{n}$

Results [3]

$F_{r, s}(n, q)=\#\left\{(A, B) \mid A, B \in \mathrm{GL}_{n}\left(\mathbb{F}_{q}\right), \quad A \cdot B=\right.$ fixed Singer cycle, dimension fixed space $\left.A, B=r, s\right\}$

References

$F_{r, s}(n, q) \longrightarrow$ change of basis $\longrightarrow C_{r, s}(n, q)=\frac{q^{r s-r-s}\left(q^{n}-q^{r}-q^{s}+1\right)}{(q-1)[n-1]!} \frac{[n-r-1]![n-s-1]!}{[n-r-s]!}$
[1] A.H. Morales and E.A. Vassilieva. Electron. J. of Combin., 20(2), 2013.
[2] O. Bernardi and A.H. Morales. Adv. in Appl. Math., 50(5):702-722, 2013.
[3] J.B. Lewis and A.H. Morales. Euro. J. Comb., 58:75-95, 2016.

