
Positive Grassmannian, lectures by A. Postnikov

April 19, 2014

Contents

1 Lecture 1, 2/8/2012 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1 Lecture 1, 2/8/2012

1.1 Introduction

Fix 0 ≤ k ≤ n and a field F (e.g., C,R,Fq). The Grassmannian Gr(k, n,F) be the manifold
of k-dimensional linear subspaces in Fn. (It has nice geometry it is projective algebraic vari-
ety/smooth,. . . )

Example 1.1. k = 1, Gr(1, n) = Pn−1 the projective space:

Pn−1 = {(x1, . . . , xn) 6= (0, . . . , 0)}\(x1, . . . , xn) ∼ (λx1, . . . , λxn)

= {(x1 : x2 : · · · : xn)}.

Take a k × n matrix A with rank k then

Gr(k, n) = {k × n matrices of rank k}\ row operations = GL(k)\Mat*(k, n).

where GL(k) is the group of k × k invertible matrices over F, and Mat*(k, n) is the set of k × n
matrices over F with rank k.

The row picture is considering the row space of A (the original definition of Gr(k, n)). The
column picture is to take the columns of A: δ1, . . . , δn ∈ Fk. Note that dim Gr(k, n) = k(n− k).
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Example 1.2. k = 2:

x

y

v1

v3

v2v4

v5

v6 ∈ Gr(2, n).

k = 3

x

z

y projective picture:

1

2 3

4

5

6

7

8

∈ Gr(3, n).

1.2 Plücker coordinates

Let [n] = {1, 2, . . . , n} and

(
[n]

k

)
= {I ⊂ [n] | #I = k}. For a k × n matrix A and I ⊂

(
[n]

k

)
let

∆I(A) = det(k × k submatrix in column set I), i.e., ∆I(A) is a maximal minor of A. Since A has
rank k, at least one ∆I(A) 6= 0.

k

n

︸︷︷︸ ︸ ︷︷ ︸
I

A

For B ∈ GL(k), ∆I(B · A) = det(B) · ∆I(A). Thus the
(
n
k

)
minors ∆I(A) for A in Gr(k, n)

form projective coordinates on Gr(k, n).

The Plücker embedding is the map Gr(k, n) 7→ P(nk)−1, A 7→ (∆I1(A) : ∆I2(A) : · · · ).

Example 1.3. For Gr(2, 4), its dimension is 2 ·4−2 ·2 = 4. Gr(2, 4)→ P5, A 7→ (∆12 : ∆13,∆14 :
∆23 : ∆24 : ∆34). Moreover, the maximal minors satisfy the following relation called a Plücker
relation

∆13∆24 = ∆12∆34 + ∆14∆23. 1 2 3 4 1 2 3 4 1 2 3 4

The Grassmannian has the following decomposition: Gr(k, n) =
∐
λ⊂k×(n−k) Ωλ where λ is a

Young diagram contained in the k × (n− k) rectangle, and

ΩI := {A ∈ Gr(k, n) | ∆I(A) is the lexicographically minimal nonzero Plücker coordinate}.

This is the Schubert decomposition of Gr(k, n).

4



Example 1.4. In Gr(2, 5) the matrix A

A =

[
0 1 2 1 3
0 1 2 2 3

] [
0 1 2 0 3
0 0 0 1 0

]
∈ Ω{2,4} = Ω ,

since the second and fourth are the pivot columns.

Identify I ∈
(

[n]

k

)
with the Young diagram λ ⊂ k × (n− k). The set I gives the labels of the

vertical steps. Explicitly, λ = (λ1 ≥ λ2 ≥ · · · ) is identified with the set I = {i1 < i2 < · · · < ik}
where λj = n− k + j − ij .

Example 1.5. k = 3, n = 9, λ = 532 ∼ I = {2, 5, 7}

3

6

1
2

34
5

6
7

89

Figure 1: Illustration of correspondence between λ ⊂ k × (n− k) and set I ∈
(

[n]

k

)
for k = 3 and

n = 9. The labels of the vertical steps of λ are the elements of I.

Schubert calculus is based on the following result.

Theorem 1.6. Ωλ
∼= F|λ| where |λ| is the number of boxes of λ.

Theorem 1.7. If F = C then H∗(Gr(k, n,C)) has a linear basis [Ωλ].

Example 1.8. Gr(1, 3) = {(x1 : x2 : x3)} = {(1, x2, x3)}︸ ︷︷ ︸
Ω

∪{(0, 1, x3)}︸ ︷︷ ︸
Ω

∪{(0, 0, 1)}︸ ︷︷ ︸
Ω∅

1.3 Matroid Stratification

[Gelfand-Serganova stratification]

For M⊂
(

[n]

k

)
a stratum is SM = {A ∈ Gr(k, n) | ∆I 6= 0⇔ I ∈M}.

There is the following important axiom:

Exchange Axiom: For all I, J ∈M and for all i ∈ I there exists a j ∈ J such that (I\{i})∪{j} ∈
M.

In fact the nonempty collection of subsets M that satisfy the exchange axiom are called ma-
troids, the sets I ∈M are called bases of M, and k is the rank of the M.

Lemma 1.9. If M is not a matroid then SM = ∅.

The best way to prove this Lemma is using the Plücker relations. The converse is not true.
A matroid M is a realizable matroid (over F) if and only if SM 6= ∅. In general it is a hard

question to characterize realizable matroids.
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2 Lecture 2, 2/10/2012

Last time we saw Gr(k, n) = GL(k)\Mat*(k, n), the Plücker coordinates ∆I(A) for I ∈
(

[n]

k

)
, and

two stratifications: the Schubert and matroid stratifications.

Gr(k, n) =
∐

λ

Ωλ =
∐

M
SM,

where the cells Ωλ have a simple structure and the matroid strata SM have a complicated structure.

2.1 Mnëv’s Universality Theorem

The strata SM can be as complicated as any algebraic variety (even for k = 3).

Example 2.1. For k = 3 and n = 6, consider the point of Gr(3, 6) given by the projective picture
in Figure 2.

1 2 3

4 5

6

Figure 2: Projective picture of point in the cell Ω{1,2,4} in Gr(3, 6).

It is in Ω1,2,4 = Ω and M =
(

[6]
3

)
\ {{1, 2, 3}, {1, 4, 6}, {3, 5, 6}}.

Any system of algebraic equations can be realized by a configuration like the one in Figure 2.
One of the main topics of this course will be to give a third decomposition of Gr(k, n) called

the Positroid decomposition (see Section 11.3) that sits between the Schubert decomposition and
the matroid decomposition.

2.2 Schubert decomposition

Recall the Schubert decomposition Gr(k, n) =
∐
λ⊂k×(n−k) Ωλ, where Ωλ = ΩI . The set I ∈

(
[n]

k

)

indicates the columns in which the lattice path given by λ has vertical descents (see Figure 1).

Definition 2.2. There are several ways to define a Schubert cell:
1. Ωλ consists of the elements of Gr(k, n) such that ∆I is the lexicographic minimum non-zero

Plücker coordinate.
2. A point in Gr(k, n) is in correspondence with a non-degenerate k × k matrix A modulo row

operations. By Gaussian elimination such a matrix A has a canonical form: the reduced
row-echelon form of the matrix. So ∆I consists of the elements of Gr(k, n) with pivot set I.

6



Example 2.3.

A =




0 1 ∗ ∗ 0 ∗ 0 0 ∗
0 0 0 0 1 ∗ 0 0 ∗
0 0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 0 1 ∗


 ,

Let I = {2, 5, 7, 8} be the set of the indices of the pivot columns (the pivots are underlined).

Clearly ΩI
∼= F#∗ and also clear that ∆I , where I is the set of pivots, is the lexicographically

minimum nonzero Plücker coordinates.

Definition 2.4. The Gale order is a partial order on

(
[n]

k

)
given as follows: if I = {i1 < i2 <

· · · < ik} and J = {j1 < j2 < · · · < jk}, then I � J if and only if i1 ≤ j1, i2 ≤ j2, . . . , ik ≤ jk.

Proposition 2.5. For A ∈ ΩI , ∆J(A) = 0 unless I � J .

Proof. We use the reduced row echelon form.

Corollary 2.6. The set M := {J ∈
(

[n]

k

)
| ∆J(A) 6= 0} has a unique minimal element with

respect to the Gale order.

Thus, we get another equivalent definition of a Schubert cell:
3. ΩI consists of the elements of Gr(k, n) such that ∆I is the Gale order minimum non-zero

Plücker coordinate.

Theorem 2.7 (F = C or R). ΩI ⊃ ΩJ if and only if I � J .

Proof. (⇒): For J such that I 6� J then by Proposition 2.5 ∆J(A) = 0 and so A ∈ ΩI . In the
closure it still holds that ∆I(A) = 0 for A ∈ ΩI . (Looking at the row echelon form, pivots can only
jump to the right).

(⇐): this is left as an exercise.

From row echelon form, remove the k pivot columns to obtain a k × (n− k) matrix.

Example 2.8. Continuing with the matrix from Example 2.3, if we remove the pivot columns we
obtain:




0 1 ∗ ∗ 0 ∗ 0 0 ∗
0 0 0 0 1 ∗ 0 0 ∗
0 0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 0 1 ∗


 7→




0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗
0 0 0 0 ∗


 7→ mirror image of λ = .

Also note that λ corresponds to I = {2, 5, 7, 8} (see Example 1.5 for illustration between shapes λ
and sets I).

Theorem 2.9. Ωλ
∼= F|λ|.
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2.3 Classical definition of Schubert cells

We think of Gr(k, n) as the space of k-dimensional subspaces V ⊂ Fn. Fix the complete flag of
subspaces:

{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Fn,

where Vi =< en, en−1, . . . , en+1−i > and ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith elementary vector.
Pick a sequence of integers d = (d0, d1, . . . , dn).

4. Ωd = {V ∈ Gr(k, n) | di = dim(V ∩ Vi) for i = 0, . . . , n}.
The conditions on di ∈ Z≥0 are:

{
d0 = 0, di+1 = di or di + 1,

dn = k.

Proof that Definition 4 of the Schubert cell is equivalent to Definition 3. We already have Ωλ ↔
ΩI . We show Ωλ ↔ Ωd and then show ΩI ↔ Ωd.

Given λ ⊂ k × (n − k) we obtain d by doing the following: we start at the SW corner of the
Young diagram and follow the border of the diagram until the NE corner. We label the horizontal
and vertical steps, where we add 1 if we go north. See Example 2.11(a) for an illustration of this.

Given I ⊂
(

[n]

k

)
we obtain d by di = #(I ∩ {n − i + 1, n − i + 2, . . . , n}). Note that this is

precisely the dimension of the rowspace(A) ∩ Vi or equivalently the number of pivots in positions
n, n− 1, . . . , n− i+ 1.

Exercise 2.10. Check that all these correspondences agree with each other.

Example 2.11. For k = 4 and n = 9 let λ = 3211, from the labels of the Young diagram we get
d = (0, 1, 2, 2, 3, 3, 3, 4, 4) (see Figure 3). And since di = #(I ∩ {n− i+ 1, n− i+ 2, . . . , n}) we get
that I = {2, 5, 7, 8}.

0 0
1

2

2 3

3 3 4

4

A

B

Figure 3: Illustration of correspondence between λ and d.

2.4 Plücker embedding

Recall the definition of the Plücker map ϕ : Gr(k, n)→ PN−1 where N =
(
n
k

)
by A 7→ (∆I1 : ∆I2 :

· · · : ∆IN ).

Lemma 2.12. The map ϕ is an embedding.
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Proof. We know that at least one Plücker coordinate is nonzero, without loss of generality say
∆12...k(A) 6= 0. Then by left GLk action we can write A in the form

Ã = [Ik | xij ],

where (xij) is a k × (n − k) submatrix. From the minors we can reconstruct (xij). That is

let ∆I(Ã) := ∆I(A)/∆12...k(A) so that ∆12...k(Ã) = 1. Then by the cofactor expansion xij =

±∆12···i−1 k+j i+1 ... k(Ã). Thus a point in the image of ϕ determines the matrix A in Gr(n, k).

3 Lecture 3, 2/15/2012

3.1 The Grassmannian Gr(n, k) over finite fields Fq

Say F = Fq where q = pr is a power of a prime p. What can we say in this case about Gr(k, n,Fq)?
The first way is to view it as GL(k,Fq)\Mat*(k, n,Fq). Recall that:

# Mat*(k, n,Fq) = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−k+1),

#GL(k,Fq) = (qk − 1)(qk − q) · · · (qk − qk−1).

Then

#Gr(n, k,Fq) =
1− qn
1− qk ·

1− qn−1

1− qk−1
· · · 1− q

n−k+1

1− q .

We can write this more compactly using q-numbers: [n]q = 1 + q + q2 + · · · + qn−1 = 1−qn
1−q ,

[n]q! = [1]q[2]q · · · [n]q and

[
n
k

]

q

=
[n]q !

[k]q ![n−k]q !
. Then

Theorem 3.1. #Gr(n, k,Fq) =

[
n
k

]

q

.

The second way is to use the Schubert decomposition Gr(k, n,Fq) =
∐
λ⊆k×(n−k) Ωλ which

implies

#Gr(k, n,Fq) =
∑

λ⊆k×(n−k)

q|λ|.

Thus

Corollary 3.2.

[
n
k

]

q

=
∑

λ⊆k×(n−k) q
|λ|.

Example 3.3.

Gr(2, 4,Fq) =
(1− q4)(1− q3)

(1− q2)(1− q)
= 1 + q + 2q2 + q3 + q4

∅

Problem 3.4. Given a diagram D ⊆ k × (n − k), fix complement D to be 0. One obtains XD ⊆
Gr(k, n,Fq). For e.g. if D is a skew Young diagram. Find #XD/Fq. Note that Ricky Liu [6]
studied the combinatorics of related problems but not the # of points in Fq.
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3.2 More on the Plücker embedding

Recall, the Plücker embedding ϕ : Gr(k, n) 7→ P(nk)−1, A 7→ (∆I1(A) : ∆I2(A) : · · · ). The signed
Plücker coordinates are

∆i1,i2,...,ik = ±∆{i1,i2,...,ik},

where the sign is positive if i1 < i2 < . . . < ik and the sign changes whenever we switch two indices.
Also ∆i−1,...,ik = 0 if the indices repeat. In terms of these signed coordinates the Plücker relations
are: for any i1, . . . , ik, j1, . . . , jk ∈ [n] and r = 1, . . . , k:

∆i1,...,ik,j1,...,jk =
∑

∆i′1,...,i
′
k
∆j′1,...,j

′
k
, (3.5)

where we sum over all indices i1, . . . , ik and j′1, . . . , j
′
k obtained from i1, . . . , ik and j1, . . . , jk by

switching is1 , is2 , . . . , isr (s1 < s2 < . . . < sr) with j1, j2, . . . , jr.

Example 3.6. For n = 4, k = 3 and r = 1 we have (∆32 = −∆23)

∆12 ·∆34 = ∆32 ·∆14 + ∆13 ·∆24.

Theorem 3.7 (Sylvester’s Lemma).

1. The image of Gr(k, n) in P(nk)−1 is the locus of common zeros of the ideal Ikn generated by the
Plücker relations (3.5) in the polynomial ring C[∆I ] (where we treat ∆I as formal variables).

2. Ikn is the ideal in C[∆I ] of all polynomials vanishing on the image of Gr(k, n).
3. Ikn is a prime ideal.

We give the proof of the first part of this result. The full proof can be found in Fulton’s book.

Proof. First we show that the coordinates ∆I satisfy the Plücker relations (3.5). Given k-vectors
d1, . . . , dk, w1, . . . , wk. Let |v1 . . . vk| := det(v1, . . . , vk) then

|v1 . . . vk| · |w1 . . . wk| =
∑
|v′1 . . . v′k| · |w′1 . . . w′k|

where the sum in the right hand side is obtained by switching r vectors from v1, . . . , vk with r
vectors from w1, . . . , wk. Let f be the difference between the left-hand side and the right-hand side
(we want to show that f = 0). Note that (i) f is a multilinear function of v1, . . . , vk, wk and (ii) f
is an alternating function of v1, . . . , vk, wk.
Claim: If vi = vi+1 or vk = wk then f = 0.

First we do the case vk = wk where r < k by induction on k.

f = |v1 . . . vk| · |w1 . . . vk| −
∑
|v′1 . . . vk| · |w′1 . . . vk|

Assume that vk = [0 . . . 01]T = en and expand the determinants in the expression above with
respect to the last column. We obtain the equation for f involving k − 1 vectors. By induction we
get f = 0.

Second, if vi = vi+1 the cancellation is easy to see as the following example shows.

Example 3.8. For k = 3 and r = 1 we get

f = |v1v1v3| · |w1w2w3| − (|w1v1v3| · |v1w2w3|+ |v1w1w3| · |v1w2w3|)
= 0− (|w1v1v3| · |v1w2w3| − |w1v1w3| · |v1w2w3|) = 0.

10



Now we prove part 1 of Sylvester’s Lemma. We want to show that the image of ϕGr(k, n) in

P(nk)−1 is the zero locus of Ikn. Let {∆I}
I∈

(
[n]

k

) be any point in P(nk)−1 satisfying the Plücker

relations. We need to find a k × n matrix A such that ∆I = ∆I(A).
Suppose ∆12...k 6= 0. We can rescale the coordinates such that ∆12...k = 1. Let A be the matrix

[Ik | xij ] where xij = ∆1 2...i−1 j+k i+1 ...k. Let ∆̃I = ∆I(A). We want tot show that ∆̃I = ∆I for all

I ∈
(

[n]

k

)
.

We know the following:
1. ∆1 2... k = ∆̃1 2 ... k = 1,
2. For all I such that |I ∩{1, 2, . . . , k}| = k−1 we have ∆̃I = xij for some j but by construction
xij = ∆I ,

3. Both ∆̃I and ∆I satisfy the Plücker relations.

We claim that form the three observations above it follows that ∆I = ∆̃I for all I ∈
(

[n]

k

)
. We

show this for r = 1 by induction on p = |I ∩ {1, 2, . . . , k}|. The base case is p = k, k − 1.
We use the Plücker relations to expand ∆1 2 ... k ·∆i1 ... ik :

∆1 2 ... k ·∆i1 ... ik =
k∑

s=1

∆1 2 ... s−1 i s+1 ...k ·∆s i2 ... ik ,

=
∑

∆̃1 2 ... s−1 i s+1 ...k · ∆̃s i2 ... ik ,

= ∆̃1 2 ... k · ∆̃i1 ... ik ,

where ∆s i2 ... ik = ∆̃s i2 ... ik y induction on p.

At the end since ∆1 2 ... k = ∆̃1 2 ... k we obtain ∆i1 ... ik = ∆̃i1 ... ik as desired.

Remark 3.9. Note that in the proof of Part 1 of Sylvester’s Lemma we only used the Plücker
relations for r = 1. The radical ideal of the ideal generated by just these relations is Ikn (the ideal
with the Plücker relations for all r).

3.3 Matroids

Recall the notion of matroid M ⊂
(

[n]

k

)
. The elements of the matroid satisfy the Exchange

axiom: For all I, J ∈M and for all i ∈ I there exists a j ∈ J such that (I\{i}) ∪ {j} ∈ M.

Theorem 3.10. Pick A ∈ Gr(k, n) and let M = {I ∈
(

[n]

k

)
| ∆I(A) 6= 0}. Then M is a matroid.

Proof. Two sets I, J and in M if and only if ∆J ·∆I 6= 0. But by the Plücker relations:

∆J ·∆I =
∑

j∈J
±∆(J\j)∪i ·∆(I\i)∪j .

Thus there exists a j ∈ J such that ∆(J\j)∪i ·∆(I\i)∪j 6= 0 which implies the stronger condition that
both (J\j) ∪ i and (I\i) ∪ j are in M.

We call the stronger condition implied by the proof the strong exchange axiom.

Exercise 3.11. Is the strong exchange axiom equivalent to the exchange axiom?

11



4 Lecture 4, 2/17/2012

Last time we saw the bf Stronger Exchange axiom: for all i1, . . . , ir ∈ I there exists j1, . . . , jr ∈ J
such that (I\{i1, . . . , ir}) ∪ {j1, . . . , jr} ∈ M, (J\{j1, . . . , jr}) ∪ {i1, . . . , ir} ∈ M.

Example 4.1 (non-realizable matroid). The Fano plane in
(

[7]
3

)
which is illustrated in Figure 4.

1

4

53

2

6

7

Figure 4: The Fano plane.

Exercise 4.2. Check that the Fano matroid is not realizable over R.

4.1 Two definitions of matroids

Recall the Gale order: {i1, . . . , ik} � {j1, . . . , jk} if and only if i1 ≤ j1, . . . , ik ≤ jk. A generalization
of this order is obtained by picking a permutation w = w1 · · ·wn in Sn, order the set [n] by
w1 < w2 < . . . < wn and define a permuted Gale order �w accordingly.

Definition 4.3. Let M⊆
(

[n]

k

)
.

1. Exchange Axiom: for all I, J ∈ M and for all i ∈ I there exists a j ∈ J such that
(I\{i}) ∪ {j} ∈ M.

2. M is a matroid if for all w in Sn, M has a unique minimal element in ⊆w (permuted Gale
order ⊆w).

The second definition above is connected to the Grassmannian since in Lecture 2 we had seen

that if we fix A ∈ Gr(n, k) then M := {I ∈
(

[n]

k

)
| ∆I(A) 6= 0} has a unique minimal element

with respect to the Gale order.
Another related result from Lecture 2 was the Schubert and matroid stratification of Gr(k, n):

Gr(k, n) =
∐

λ⊆k×(n−k)

Ωλ =
∐

M
SM,

where Ωλ depends on an ordered basis but SM depends on an unordered basis. Thus we really
have n!-Schubert decompositions: for w ∈ Sn we have Gr(k, n) =

∐
λ⊆k×(n−k) Ωw

λ where Ωw
λ has

the same definition as Γλ but with respect to the order ew1 < ew2 < . . . < ewn . (We can also think
of Ωw

λ as w−1(Γλ) where Sn acts on Cn by permuting coordinates according to w.

Theorem 4.4 (Gelfand-Goresky-MacPherson-Sergenova [2]). Matroid stratification is the common
refinement of n! permuted Schubert decompositions.

12



Proof. [? ? ? pending ? ? ?]

Example 4.5. For k = 3 and n = 5 consider the matroid M from Figure 5. The minimal basis
with respect to the Gale order is {1, 2, 4}. For w = 34512 the minimal basis with respect to the w
permuted Gale order is {3, 4, 1}. So SM ∈ Ω1,2,4 ∩ Ω34512

3,4,1 ∩ · · · .

1 2 3

5

4

Figure 5: MatroidM. The minimal basis with respect to the Gale order is {1, 2, 4}. For w = 34512
the minimal basis with respect to the w permuted Gale order is {3, 4, 1}.

4.2 Matroid polytopes and a third definition of matroids

We denote by e1, . . . , en the coordinate vectors in Rn. Given I = {i1, . . . , ik} ∈
(

[n]

k

)
we denote

by eI the vector ei1 + ei2 + · · · + eik . Then for any M ⊆
(

[n]

k

)
we obtain the following convex

polytope
PM = conv(eI | I ∈M) ⊂ Rn,

where conv means the convex hull. Note that PM ⊂ {x1 + x2 + · · ·+ xn = k} so dimPM ≤ n− 1.

Definition 4.6 (Gelfand-Serganova-M-S). PM is a matroid polytope if every edge of PM is
parallel to ej − ei, i.e. edges are of the form [eI , eJ ] where J = (I\{i}) ∪ {j}.

This gives us a third definition of a matroid.

Definition 4.7. 3. A matroid is a subset M⊆
(

[n]

k

)
such that PM is a matroid polytope.

Theorem 4.8. The three definitions of a matroid: 1. by the exchange axiom, 2. by the permuted
Gale order, and 3. by matroid polytopes are equivalent.

Exercise 4.9. Prove this theorem.

Example 4.10. If M =

(
[n]

k

)
is the uniform matroid then PM = conv(eI | I ∈

(
[n]

k

)
). This

polytope is called the hypersimplex ∆kn. The hypersimplex has the following property: All eI

for I ∈
(

[n]

k

)
are vertices of ∆kn and these are all the lattice points of ∆kn.

Question 4.11. What are the vertices of any PM?

The answer is eI where I ∈M (basis of the matroid).

Example 4.12. For k = 1, ∆1n = conv(e1, e2, . . . , en) is the usual (n − 1)-dimensional simplex.
See Figure 6 for an illustration of ∆13.
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∆1,4

e1

e2

e3

e4

Figure 6: An illustration of ∆13.

∆2,4

e12

e13

e14
e23

e24

e34

(a)

M1

e12

e13

e14
e23

e34
e12

e14
e23 e12

e13

e23
e34

M2 M3

(b)

Figure 7: (a) the hypersimplex ∆24, (b) three subpolytopes of ∆24 corresponding to M1 =
{12, 13, 14, 23, 34},M2 = {12, 14, 23} and M3 = {12, 23, 34, 13} the first two are matroid poly-
topes and the third one is not (it has a bad edge [e12, e34], or in terms of M3 take I = {3, 4},
J = {1, 2} and i = 3 then the Exchange Axiom fails).

Example 4.13. For k = 2 and n = 4 the hypersimplex ∆24 has six vertices e12 = (1, 1, 0, 0), e13 =
(1, 0, 1, 0), . . . (see Figure 7(a)). The matroid polytopes are subpolytopes of ∆24 without new
edges. In Figure 7(b) there are three subpolytopes associated withM1 = {12, 13, 14, 23, 34},M2 =
{12, 14, 23} andM3 = {12, 23, 34, 13} respectively. M1 andM2 are matroids butM3 is not (take
I = {3, 4}, J = {1, 2} and i = 3 then the Exchange Axiom fails).

Exercise 4.14. Consider the subset S2468 of the Grassmannian Gr(4, 8,Fq) that consists of the
elements that can be represented by 4× 8 matrices A with 0s outside the shape 2468. Find a com-
binatorial expression for the number f4(q) of elements of S2468 over Fq. Calculate also f4(1), f4(0)
and f4(−1).

5 Lecture 5, 2/20/2012

Last time we talked about matroid polytopes.

If M =

(
[n]

k

)
(uniform matroid) then the matroid polytope is the hypersimplex ∆kn.

5.1 Moment Map

First we will talk about the moment map which is important in symplectic and toric geometry.
Let T = (C∗)n, it acts on Cn by (t1, . . . , tn) · (x1, . . . , xn) 7→ (t1x1, t2x2, . . . , tnxn). This induces

a T -action on Gr(k, n,C).
Recall Gr(k, n) = GLk\Mat(k, n). We claim that T acts by right multiplication by diag(t1, . . . , tn)

(we rescale column i by ti). In terms of Plücker coordinates: (t1, . . . , tn) · {∆I} 7→ {
∏
i∈I ti∆I}.

14



We define the moment map: µ : Gr(k, n,C)→ Rn, A 7→ (y1, . . . , yn) where yi =
∑
I3i |∆I |2∑
I |∆I |2 .

Example 5.1. k = 2 and n = 4, Gr(2, 4) → R4, A 7→ (y1, y2, y3, y4) where for instance y1 =
|∆12|2 + |∆13|2 + |∆14|2∑

I |∆I |2
.

Theorem 5.2 (Atiyah-Guillemin-Sternberg). (1) Image of µ is a convex polytope.

(2) Moreover, pick any point A ∈ SM ⊂ Gr(k, n), then µ(T ·A) is a convex polytope (A is fixed,
T ·A is a set of matrices).

Exercise proof this case of convexity theorem.
Claim:

(1) µ(Gr(k, n)) =

(
[n]

k

)
.

(2) µ(T ·A) = PM is a matroid polytope.

Idea proof of Claim.
(1) Clearly 0 ≤ yi ≤ 1, also y1 + · · · + yn = k. This means that µ(Gr(k, n)) ⊆ ∆kn. (Recall that
∆kn = {(y1, . . . , yn) | 0 ≤ yi ≤ 1, y1 + · · ·+ yn = k}.)

Pick AI to be the 0-1 matrix whose k × k submatrix indexed by I is the identity matrix, and
the other columns are 0. This is a fixed point of T in Gr(k, n). Actually this is the form of all the

fixed points. Thus there are
(
n
k

)
such fixed points (one for each set I ∈

(
[n]

k

)
).

Now ∆J(AI) = δI,J . Then µ(AI) = eI =
∑

i∈I ei and this is a vertex of ∆kn. From the convexity
theorem, µ is a convex polytope, this together with the fact that µ(AI) = eI forces µ(Gr(k, n)) to
be ∆kn. �

Remark 5.3. To prove the convexity result we have to show that if

A
Plücker→ {∆I} µ→ y = (y1, . . . , yn),

A · diag(t1, . . . , tn)
Plücker→ {

∏

i∈I
ti∆I} Plücker→ y′ = (y′1, . . . , y

′
n),

then y and y′ are connected by a line where every point in the line corresponds to an image of
µ.

5.2 Normalized Volumes

P ⊂ Rn, polytope with integer vertices in Zn. Let d = dim(P ) and let V be a d-dimensional
affine subspace containing P (it may or may not contain the origin). Let L = V ∩ Zn = `0+ <
`1, . . . , `d >Z, where < `1, . . . , `d >Z is the set of all linear Z-combinations of {`1, . . . , `d}.

0

V `1

`2`0
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Define Vol(·): volume form of V such that Vol(`0 + Π(`1, . . . , `d)) = 1 where Π(`1, . . . , `d) is the
parallelepiped spanned by {`1, . . . , `d}.

Also we define normalized volume Ṽol := d! Vol. Claim ṼolP ∈ Z and Ṽol of the standard
coordinate simplex is 1.

Example 5.4. For the lines A and B, Ṽol(A) = 2 but Ṽol(B) = 1.

A

B

The following result justifies why normalized volumes are interesting.

Theorem 5.5. The degree of a torus orbit T ·A is the normalized volume of µ(T ·A) = PM.

Example 5.6. For Gr(2, 4):

α1t1t2 + α2t1t3 + · · ·+ α6t3t4 = 0

β1t1t2 + β2t1t3 + · · ·+ β6t3t4 = 0

γ1t1t2 + γ2t1t3 + · · ·+ γ6t3t4 = 0.

The number of solutions of this system is Ṽol(∆24). We can calculate this volume by showing that

we can divide ∆24 into four simplices of normalized volume 1. Thus Ṽol(∆24) = 4.

∆24

This motivates calculating the normalized volume of the hypersimplex. In general the nor-
malized volume of ∆kn is given by the Eulerian number Ak−1,n−1, where Ak,n = #{w ∈ Sn |
des(w) = k} where des(w) is the number of descents of w (#{i | wi > wi+1}).

Theorem 5.7. Ṽol(∆kn) = Ak−1,n−1.

Example 5.8.

permutations Ak−1,n−1 Ṽol(∆kn)

123 A0,3 = 1 Ṽol(∆14) = 1

213, 132 A1,3 = 4 Ṽol(∆24) = 4
312, 231

321 A23 = 1 Ṽol(∆34) = 1
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Euler knew the following:

1 + x+ x2 + x3 + · · · = 1

1− x
x+ 2x2 + 3x3 + 4x4 + · · · = x

(1− x)2

12x+ 22x2 + 32x3 + 42x4 + · · · = x+ x2

(1− x)3

13x+ 23x2 + 33x3 + · · · = x+ 4x2 + x3

(1− x)4
.

And in general:

Proposition 5.9.
∞∑

r=1

rnxr =

∑n
k=0Ak,nx

k+1

(1− x)n+1
,

or equivalently, Ak−1,n−1 = [xk](1− x)n
∑

r≥1 r
n−1xr.

We think of the hypersimplex in two ways: as a section of the n-hypercube:

∆kn = [0, 1]n ∩ {x1 + · · ·+ xn = k},

or equivalently as a slice of the (n− 1)-hypercube:

∆kn = [0, 1]n−1 ∩ {k − 1 ≤ x1 + · · ·+ xn−1 ≤ k}.

Example 5.10. We divide [0, 1]3 into ∆14,∆24 and ∆34.

∆34∆24

∆24

ṼolA = 2 but Ṽol(B) = 1.

Proof. First let us take the first interpretation.
Take the positive octant (R≥0)n. Define k∆ = (R≥0)n ∩ {x1 + · · ·+ xn = k}, this is a k-dilated

(n− 1)-simplex. So Ṽol(k∆) = kn−1.
By inclusion-exclusion we can decompose the n-hypercube as

[0, 1]n = (R>0)n −
∑

i

(ei + (R≥0)n) +
∑

i<j

(ei + ej + (R≥0)n)− · · ·

This is really an identity for characteristic functions of subsets (modulo set of measure 0)
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+

−

−

Then the volume of ∆kn (using the first interpretation)

Ṽol(∆kn) = Ṽol(k∆)−
∑

i

Ṽol((k − 1)∆) +
∑

i<j

Ṽol((k − 2)∆)− · · ·

= kn−1 − n(k − 1)n−1 +

(
n

2

)
(k − 2)n−1 − · · ·+ (−1)k

(
n

k − 1

)
.

From the expression Ak−1,n−1 = [xk](1− x)n
∑

r≥1 r
n−1xr from Proposition 5.9 one can show this

expression above gives Ak−1,n−1.

Stanley’s proof. We use the interpretation of ∆kn = [0, 1]n−1 ∩ {k − 1 ≤ x1 + · · ·+ xn−1 ≤ k}. For
w ∈ Sn−1, there is a simple triangulation of [0, 1]n−1 into ∆w = {0 < xw1 < xw2 < . . . < xwn < 1}
of (n− 1)! simplices.

This is not exactly the triangulation we need, it is not compatible with the slicing of the
hypercube:

∆12

∆21

x1

x2

x1 + x2 = 0

x1 + x2 = 1

x1 + x2 = 2

Instead define S : [0, 1]n−1 → [0, 1]n−1 to be the following piecewise-linear volume preserving
map. (x1, . . . , xn−1) 7→ (y1, . . . , yn−1) where xi = {y1 + · · · + yi} = y1 + · · · + yi − by1 + · · · + yic
(where {x} is the fractional part of x). The forward map is:

yi =

{
xi − xi−1 if xi ≥ xi−1

xi − xi−1 + 1 if xi < xi−1,

where we assume x0 = 0. The maps S is piecewise linear map and volume preserving.
We had a trivial triangulation ∆w−1 := {0 < xw−1(1) < · · · < xw−1(n−1) < 1}. We get (n − 1)!

simplices. Then xi−1 < xi ⇔ wi−1 > wi ⇔ (i − 1) is a descent of w̃ = 0w1w2 . . . wn−1. Thus if
Des(w̃) is the st of descents of w̃ then

yi =

{
xi − xi−1 if i− 1 6∈ Des(w̃),

xi − xi−1 + 1 if i− 1 ∈ Des(w̃)

Then y1 + y2 + · · · yn−1 = xn−1 − x0 + des(w), and so des(w) ≤ y1 + y2 + · · ·+ yn−1 ≤ des(w) + 1.
So S(∆w−1) is in the kth slice of the (n − 1)-cube where k = des(w) + 1. And S(∆w−1) is a

triangulation of the (n− 1)-cube with exactly Ak−1,n−1 simplices in the kth slice.
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6 Lecture 6, 2/24/2012

We digress a bit from the Grassmannian to talk about Matroids.

Problem 6.1. For any matroid M, what is the integer ṼolPM?

The dual matroid if M∗ := {[n]\I | I ∈M}. Clearly, PM∗ ∼= PM by the map (x1, . . . , xn) 7→
(1− x1, . . . , 1− xn).

6.1 Graphical Matroids MG

If G is a graph with labelled edges {1, 2, . . . , n}, the bases ofMG are the set of edges corresponding
spanning trees of G. We denote by G∗ the dual graph of G (when G is planar).

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

G

1

2

3

4

G∗

Figure 8: A graph G, its dual G∗ and the spanning trees of G and of G∗.

Exercise 6.2. 1. Check exchange axiom on spanning trees of G.

2. If G is a planar graph, MG∗ = (MG)∗.

Example 6.3. If G is an n-cycle then MG
∼= ∆n−1 is an (n− 1)-simplex.

Example 6.4. If G is an (r+ 1)-cycle glued at a vertex with a (s+ 1)-cycle then PMG
= ∆r×∆s.

And Ṽol(PMG
) =

(
r+s
r

)

(s+ 1)-cycle

(r + 1)-cycle

Proposition 6.5. In full dimensions Vol(A×B) = Vol(A) · Vol(B), if A is r-dimensional and B

is s-dimensional then Ṽol(A×B) =
(
r+s
r

)
Ṽol(A)Ṽol(B).

Problem 6.6. What is Ṽol(PMG
) =? or give families of graphs G with nice formulas for Ṽol(PMG

) =
?.
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6.2 Generalization of Matroid polytopes

A generalized permutahedron is a polytope P ⊂ Rn such that any edge of P is parallel to
ei − ej for some i 6= j. (such a permutahedron has dimension n− 1)

Example 6.7. n = 3, the lengths of the sides satisfy the following hexagon equation: a+f = c+d,
e+ f = b+ c, and a+ b = c+ d.

a

b

c
e

f

d

Example 6.8. The usual permutahedron Pn with n! vertices (w1, . . . , wn) for all w ∈ Sn.

(3, 2, 1)

(1, 2, 3)

P3

(3, 1, 2) (2, 3, 1)

(2, 1, 3) (1, 3, 2)

(3, 2, 1)

(1, 2, 3)

P3

(3, 1, 2) (2, 3, 1)

(2, 1, 3) (1, 3, 2)1 2 3

Figure 9: The permutahedron P3, and tiling of P3 illustrating why Vol(Pn) is nn−2, the number of
Cayley trees with n vertices.

Exercise 6.9. Check that Pn is a generalized permutahedron.

Exercise 6.10. Vol(Pn) = nn−2 or equivalently Ṽol(Pn) = (n− 1)!nn−2. This is Cayley’s formula
for the number of trees with n labelled vertices.

case k = 3.

6.3 Graphical Zonotopes

The Minkowski sum A+B = {x+ y | x ∈ A, y ∈ B}.
A zonotope is a Minkowski sum of line segments. In the plane you get n-gons whose opposite

sides have same length and are parallel. From the examples above, in the plane only the square is
a zonotope.

IfG is a graph on n vertices labelled 1, 2, . . . , n, the graphical zonotope is ZG =
∑

(i,j)∈E(G)[ei, ej ]
∼=∑

(i,j)∈E(G)[0, ej − ei]. In the last equation you pick an orientation of edges, however the zonotope
does not depend on the orientation.
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+ =

+ =

+ =

Figure 10: Examples of Minkowski sums.

Proposition 6.11. For the complete graph, the zonotope is the permutahedron ZKn = Pn.

A Newton polytope of f ∈ C[x1, x2, . . . , xn], then we can write f =
∑
ca1,...,anx

a1
1 · · ·xann .

Then New(f) = conv({(a1, . . . , an) | ca1,...,an 6= 0})

Example 6.12. New(x2y3 + x+ 27y2) = conv((2, 3), (1, 0), (0, 2)).

Figure 11: The newton polytope of x2y3 + x+ 27y2.

One of the most important features of the Newton polytope is the following property than says
that we can view New(·) as a generalized logarithm.

Proposition 6.13. New(f · g) = New(f) + New(g).

Proof. The non-trivial point of this proof is that vertices are not cancelled.

Proposition 6.14. ZG is a generalized permutahedron.

using Newton polytopes. Recall the Vandermonde determinant




1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n




=
∑

w∈Sn

(−1)sgn(w)xw1−1
1 xw2−1

2 · · ·xwn−1
n =

∏

i<j

(xj − xi).

If we take the Newton polytope of both sides and use Property [], New(LHS) = conv((w1 −
1, . . . , wn − 1)) = Pn and New(RHS) =

∑
[ei, ej ] = ZKn .
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Theorem 6.15. Vol(ZG) = #{spanning trees in G}.
Proof. We prove it by induction on the number of edges of G. Let t(G) = #{spanning trees in G},
this numbers satisfy the following deletion-contraction relation

t(G) = t(G\e) + t(G/e).

Where G\e is graph G with edge e deleted and G/e is the graph G with edge e contracted. One
can then show that ZG also satisfies the same relation.

6.4 Chromatic polynomial of G

χG(t) = #{proper t-colorings of vertices of G}, a proper coloring is one where the vertices of any
edge of G have different colors.

Theorem 6.16. χG(t) is a polynomial in t.

Proof. χG(t) satisfies a deletion-contraction relation χG = χG\e − χG/e, and show χG(t) = tn if G
consists of just n vertices with no edges.

Problem 6.17 (open). Is there a polytope such that some statistic gives TG(x, y). Is there a
polytopal realization of the Tutte polynomial.

7 Lecture 7, 2/29/2012

7.1 Schubert Calculus

We start with basic facts about (co) homology: Let X be a topological space and Hi(X) is the ith
homology of X which is some vector space over C. Its dual H i(X) := (Hi(X))∗ is the cohomology
of X. These are both topological invariant of X.

The Betti number is βi(X) = dimH i(X). If H∗(X) = H0 ⊕ H1 ⊕ · · · , this space has a
multiplicative structure (cup-product).

Suppose that X is a nonsingular complex algebraic variety and dimCX = N then the homology
and cohomology only live in even dimension:

H∗(X) = H0 ⊕H2 ⊕ · · · ⊕H2N

H∗(X) = H0 ⊕H2 ⊕ · · · ⊕H2N .

The fundamental class [X] is the canonical generator of H2N .
We also consider Poincaré duality that says H i(X) ∼= H2N−i(X), or equivalently H i(X) ∼=

(H2N−i(X))∗. If Y ⊂ X is an algebraic subvariety with dimC Y = m then [Y ] ∈ H2m(X) ∼=
H2N−2m(X) (it has codimension 2m). If X =

∐
i∈I Yi then we say that X has a cell decomposition

(CW-complex), where Yi ∼= Cmi and Yi is an algebraic subvariety and Yi\Yi is a union of smaller
dimensional Y s.

Claim 1: Cohomology classes of [Yi] are in H2N−2mi(X) so they form a linear basis of H∗(X). In
particular H0(X) is spanned by [X]. And H2N (X) is spanned by [point].

Claim 2: If Y and Y ′ are algebraic subvarieties of X and Y ∩ Y ′ = Z1 ∪ · · · ∪ Zr where
(i) codimY + codimY ′ = codimZi for all i (proper intersection)
(ii) For every generic point z ∈ Zi, TzZi = TzY ∩ TzY ′ where Tz is the tangent space (transversal

intersection)
Then

[Y ] · [Y ′] =
∑

[Zi].
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Y ′

Y

Y ′

Y

transversal not transversal

Figure 12: Example of transversal and non-transversal intersections. In the first example the
intersection of the tangent spaces at the points where the varieties meet is a point. In the second
example, the tangent spaces are the same.

k

n− k

λ∨

λ

(a)

k

n− k

µ

λ

(b)

Figure 13: (a) Example of a partition λ and its complement λ∨, and (b) example of partitions
obtained in Pieri rule.

7.2 Cohomology of Gr(k, n,C)

Gr(k, n) =
∐

λ⊆k×(n−k)

Ωλ,

where Ωλ
∼= C|λ| is a Schubert cell. Let Xλ := Ωλ∨ where λ∨ = (n− k − λk, · · · , n− k − λ1) is the

complement of λ in k × (n− k).
Denote by σλ = [Xλ] ∈ H2|λ|(Gr(k, n,C)), these are the Schubert classes. The Schubert classes

do not depend on the choice of basis, just on the partition.

Theorem 7.1. The Schubert classes σλ for λ ⊆ k× (n−k) form a linear basis of H∗(Gr(k, n,C)).

Example 7.2. σ∅ = [Gr(k, n)] and σk×(n−k) = [point].

Remarks 7.3 (Special feature of this basis). This basis is self-dual with respect to Poincaré
duality. This means:

(i) B = {σλ | |λ| = i} basis of H2i(Gr(k, n)),
(ii) B∗ = {σ|µ| | |µ| = k(n− k)− i} basis of H2k(n−k)−2i(Gr(k, n)). B and B∗ are dual basis (the

dual map is σλ 7→ σλ∨).

Let c ∈ C, for σ ∈ H2k(n−k)(Gr(k, n)) where σ = c · [point] then < σ >:= c.

Theorem 7.4 (Duality Theorem). For partitions λ, µ such that |λ| + |µ| = k(n − k) then <
σλ · σµ >= δλ,µ∨σk×(n−k). Where the product of Schubert classes is in the cup product.

Theorem 7.5 (Pieri Formula). Let σr = σ
. . .

(k boxes) then

σλ · σr =
∑

µ

σµ,

where the sum is over µ such that µ/λ is a horizontal r-strip.
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In terms of coordinates the partitions are interlaced n−k ≥ µ1 ≥ λ1 ≤ µ2 ≥ λ2 ≥ · · · ≥ µk ≥ λk
and

∑
(µi − λi) = r.

Example 7.6.

7.3 Note on proofs

Consider σλ · σµ = [Xλ] · [Xµ]. We work with Xλ ∩ X̃µ where Xλ corresponds to standard Schu-

bert decomposition (ordering basis with permutation 12 · · ·n) and X̃µ corresponds to the opposite
ordering of the coordinates (permutation nn − 1 · · · 21). We do this choice of basis to obtain a
transversal intersection and then use Claim 2.

If |λ|+|µ| = k(n−k) and λ = µ∨ then we get a point. Otherwise you can show that Xλ∩X̃µ = ∅.
Pieri formula uniquely defines the multiplicative structure of the Schubert cells.

σλ · σµ =
∑

ν,|ν|=|λ|+|µ|

cνλµσν ,

where cνλµ are the Littlewood Richardson coefficients. By the duality theorem cνλµ =< σλ ·σµ ·σν∨ >,

i.e. cλµν := cν
∨
λµ = #{Xλ ∩ X̃µ ∩ ˜̃Xν}. Then cλµν ∈ Z≥0 and these coefficients have S3-symmetry.

k

n− k

λ k

n− k

Xλ = X̃µ =

0

0

µ

k

n− k

k

n− k

Xλ ∩ X̃µ =

0

0
Xλ ∩ X̃λ∨ =

0

0

7.4 Honeycomb version of the Littlewood Richardson rule

This version was done by Knutson-Tao [5], it is a reformulation of a rule by Bernstein-Zelevinsky.
We work in the plane R2 = {(x, y, z) ∈ R3 | x+ y + z = 0}. In this plane there are three types

of lines (a, ∗, ∗), (∗, b, ∗) and (∗, ∗, c) where a, b, c ∈ Z.

Theorem 7.7. cνλµ = #{integer honeycomb with fixed boundary rays}.

If we know the rational lengths `i of the internal edges we can reconstruct the honeycomb.
We can rescale the honeycomb such that `i ∈ Z≥0 and also λ1 + λ2 = λ1 − λ2 and the lengths

on a hexagon should satisfy the hexagon condition

8 Lecture 8, 3/2/2012

Recall from last time that H∗(Gr(k, n,C)) has a linear basis of Schubert classes Ωλ. In this lecture
we will mention the relation between H∗(Gr(k, n,C)) and symmetric functions.
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(∗, ∗,−ν1) (∗, ∗,−ν2) (∗, ∗,−ν3)

(∗, µ1, ∗)

(∗, µ2, ∗)

(∗, µ3, ∗)(λ1, ∗, ∗)

(λ2, ∗, ∗)

(λ3, ∗, ∗)k = 3

(a, ∗, ∗) (∗, b, ∗) (∗, ∗, c)

8.1 Symmetric functions

Let Λ be the ring of symmetric functions. We build this ring in the following way: let Λk =
C[x1, . . . , xn]Sk , the symmetric polynomials with k variables and let Λ = lim←−Λk.
• er =

∑
1≤i1<i2<···<ir xi1xi2 · · ·xir (elementary symmetric functions)

• hr =
∑

1≤j1≤j2≤···≤jr xj1 · · ·xjr (complete symmetric functions)

Theorem 8.1 (Fundamental theorem of symmetric functions). Λ = C[e1, e2, . . .] = C[h1, h2, . . .].

Another well known fact about Λ is it has a linear basis of Schur functions sλ where λ is a
partition λ = .

Definition 8.2. We give two equivalent definitions of the Schur functions.
• Given a partition λ = (λ1, . . . , λk) let α = (α1, . . . , αk) = (λ1 + k− 1, λ2 + k− 2, . . . , λk + 0).

sλ(x1, . . . , xk) =

∣∣∣∣∣∣∣∣∣

xα1
1 xα1

2 · · · xα1
k

xα2
1 xα2

2 · · ·
...

...
. . .

...
xαk1 xαk2 · · · xαkk

∣∣∣∣∣∣∣∣∣
/det(xk−ij )

then sλ = limk→∞ sλ(x1, . . . , xk).
• sλ =

∑
T∈SSY T (λ) x

T where SSY T (λ) is the set of semistandard Young tableaux

T = 1 1 1 2 2 2
2 2 3 3 4 7
3 4 4 6
5 5 5

, xT = x3
1x

5
2x

3
3x

3
4x

3
5x6x7.

In particular er = s1r and hr = s(r).

From the second definition of sλ it is easy to see the following rule.
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Theorem 8.3 (Pieri formula for sλ).

hr · sλ =
∑

µ

sµ.

where µ are partitions such that µ/λ is a horizontal r-strip.

Equivalently er · sλ =
∑

µ sµ where µ/λ is a vertical r-strip.

Lemma 8.4. Suppose that we have an associative bilinear operation ∗ on Λ such that sr∗sλ =
∑

µ sµ
where µ/λ is a horizontal r-strip, then (Λ, ∗) ∼= (Λ, ·).

Proof. By the fundamental theorem we know that (Λ, ·) = C[h1, h2, . . .], since sr = hr, the Pieri-
type formula essentially says that (Λ, ∗) has the same product of by the algebraically independent
generators hr as (Λ, ·).

Definition 8.5. Let Λk,n = Λ/Ik,n where Ik,n :=< sλ | λ 6⊂ k × (n− k) >.

Exercise 8.6. Show that In,k =< ei, hj | i > k, j > n − k >. Show that sλ 6⊂ k × (n − k) form a
linear basis of In,k.

Theorem 8.7. H∗(Gr(k, n)) ∼= Λk,n.

Proof. Define the map σλ 7→ sλ, sλ · sµ =
∑

ν c
ν
λµsν .

8.2 Gleizer-Postnikov web diagrams

The Gleizer-Postnikov diagrams (GP-diagrams) defined in [3] involve four directions instead of the
three directions of the Knutson-Tao puzzles. In the latter λ, µ and ν have k parts, and in the former
λ and µ have k parts and ν has k + ` parts. Note that by convention s(λ1,...,λk,0)) = s(λ1,...,λk) and
sλ = 0 if some λi < 0.

cνλµ

µ
λ

ν

k

k

k
cνλµ

µ

k

ν

120o 120o

60o

60o`

GP-web diagrams

`k

Knutson-Tao puzzles

120o

120o

120o

λ

Figure 14: Schematic comparison of Knutson-Tao puzzles and Gleizer-Postnikov web diagrams.

The horizontal edge at a height c from the x-axis is labelled c = 2h/
√

3. The edges going from
NW-SE and from NE-SW are labelled according to their x-intercepts. See Figure 15.

Example 8.8 (k = ` = 1). sr · ss =
∑

c≥r−s ss+c,r−c. We have a conservation law: a flow of r + s
is coming in and coming out. See Figure 16.
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h

c = 2h√
3 ba

a0 b

Figure 15: How to label the edges of a GP-web diagram.

r

r − c

s

s+ c

c

c ≥ r − s

s r − s

Figure 16: Example of GP-web diagrams for k = ` = 1.

Theorem 8.9. The Littlewood-Richardson coefficient cνλµ is the number of web diagrams of type λ,
µ and ν.

Proof. Define ∗ product on Λ by sλ ∗ sµ =
∑

ν #{web diagrams type λ, µ, ν}sν . Next we prove the
Pieri rule for ∗-product.

For ` = 1 we get interlacing ν1 ≥ λ1 ≥ λ2 ≥ · · · ≥ νk ≥ λk ≥ νk+1 (see Figure 17). By
conservation law |λ| + µ1 = |ν|. This is equivalent to saying that ν/λ is a horizontal µ1-strip.
Conversely, given ν such that ν/λ is a horizontal µ1-strip we can build a unique web diagram. The
non-trivial part showing it is associative.

λk

λ1

λ2

. . .

ν2

ν1

νkνk+1

µ1

. . .

Figure 17: Illustration of the Pieri-rule for GP-web diagrams

Example 8.10. Let’s verify that c631
21,52 = 2. See Figure 18
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0 1 2 3 4 5 60 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 3

2

4 1

6 0 1 3

1

6

Figure 18: Example showing the two GP web diagrams when λ = 21, µ = 52 and ν = 6310.

Problem 8.11. (Open) The GP-web diagrams with six directions are infinite. However with five
directions the diagrams are finite. In this case, what is the analogue of the Littlewood-Richardson
coefficients.

9 Lecture 9, 3/7/2012

A permutation w is a bijection between [n]→ [n]. We multiply permutations from right to left. A
simple transposition is a permutation si = (i, i + 1). We can write any w as a product of simple
transpositions. A reduced decomposition is an expression of w as a product si1si2 · · · si` of simple
transpositions of minimum possible length `. The reduced decompositions of w are related by
certain moves

sisj = sjsi |i− j| ≥ 2, (2-move)

sisi+1si = si+1sisi+1(3-move)

9.1 Wiring diagrams

w =

(
1 2 3 4 5
3 2 5 1 4

)
, w = s4s2s1s2s3.

We do not allow triple intersections and intersections occur at different heights.

3-move w = 325142-move

Figure 19: Illustration of 2 and 3-moves and of the wiring diagram of w = 32514 = s4s2s1s2s3.

We want to transform the GP-web diagrams into wiring diagrams.
The number of such plane partitions are the Littlewood-Richardson rule.

Exercise 9.1. Show that the classical Littlewood-Richardson rule corresponds to this rule in terms
of plane partitions.
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µ1

ν

GP-web diagram

λ2
λ1

µ3
µ2

ν3

ν5
ν4

ν2
ν1

µ3

µ2

µ1

ν1

ν2

λ1

λ2

ν5

ν4

ν3

c13

c23

c14

c15

c25

c24 c13

c23

c14

c15

c25

c24

wiring diagram plane partition

r

r − c

s

s+ c

c

r s

r − c s+ c

locally

Figure 20: Illustration of how to transform a GP-web diagram into a wiring diagram.

If V is a vector space with basis e0, e1, e2, . . . a Scattering matrix (R-matrix)

R(c) : V ⊗ V → V ⊗ V, er ⊗ es =

{
es+c ⊗ er−c if c ≥ r − s,
0 otherwise.

where e−i = 0 for i > 0. This corresponds to picture. (ei are levels of excitement of particles and
R(c) describes how they interact)

Given a partition λ = (λ1, . . . , λk) we map sλ 7→ eλk ⊗ eλk−1
⊗ · · · ⊗ eλ1 ∈ V ⊗k.

We define an operator Mk,` : V ⊗k ⊗ V ⊗` → V ⊗(k+`). Then Rij(c) is the operator on V ⊗m that
acts as R(c) on the ith and jth copies of V . Clearly Rij(c) commutes with Rîĵ(c) if #{i, j, î, ĵ} = 4
(they act on four different copies of V ).

Definition 9.2.
Mk,` =

∑

(cij

∏

i=1,...,k

∏

j=k+`,k+`−1,...,k+1

Rij(cij),

where the sum is over (cij) such that cij ≥ ci′j′ ≥ 0 whenever i′ ≤ i < j ≤ j′.
For example M23 =

∑
R15(c15)R14(c14)R13(c13)R25(c25)R24(c24)R23(c23) (you can choose any

linear extension of the poset - such number is the number of Young Tableaux on the rectangle)

Theorem 9.3 (LR-rule: R-matrix version). Given λ = (λ1, . . . , λk) and µ = (µ1, . . . , µ`) then

Mk,`(eλ ⊗ eµ) =
∑

ν=(ν1,...,νk+`)

cνλ,µeν .

The Pieri-rule is easy, the hard part is to show associativity: if W = V ⊗k ⊗ V ⊗` ⊗ V ⊗m

W
Mk,`⊗Idm

}}

Idk⊗M`,m

!!
W

Mk+`,m !!

W

Mk,`+m}}
W
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Proposition 9.4.
Mk+`,m ◦ (Mk,` ⊗ Idm) = Mk,`+m ⊗ (Idk ⊗M`,m).

R-matrices satisfy the Yang-Baxter Equation which depends on two parameters α, β:

R23(β)R13(α+ β)R12(α) = R12(α)R13(α+ β)R23(β).

These diagrams satisfy a generalized Yang-Baxter equation that depends on three parameters.

Proposition 9.5 (Generalized Yang-Baxter equation).

R23(c23)R13(c13)R12(c12) = R12(c′12)R13(c′13)R23(c′23),

where 



c′12 = min(c12, c13 − c12)

c′13 = c12 + c23

c′23 = min(c23, c13 − c12).

when c13 = α+ β it reduces to the classical Yang-Baxter equation.

Yang-Baxter equation

1 2 3 1 2 3

1 2 3 1 2 3

α

β

α+ β α+ β
α

β

Generalized Yang-Baxter equation

1 2 3 1 2 3

1 2 3 1 2 3

c12

c23

c13 c′13
c′12

c′23

Figure 21: Illustration of the Yang Baxter equation and the generalized Yang Baxter equation.

Exercise 9.6. Prove this generalized Yang-Baxter equation.

This Generalized Yang-Baxter takes the wiring diagram with cij to an expression with c′ij . The
important point is to show that the inequalities on cij get translated to the inequalities on c′ij .

To finish this prove we need to generalize this transformation of inequalities to arbitrary wiring
diagrams.

9.2 String cone

[? ? ? This part needs polishing ? ? ?]
Let D be any wiring diagram for some reduced decomposition w = si1 · · · si` .

Example 9.7. We start from a wiring diagram of w = 4213 = s2s3s2s1 and obtain a bipartite
graph (see Figure 22).

We switch directions of some edges such that strands L1, L2, . . . , Li are directed down and
Li+1, . . . , Ln are directed up.

GD,i look at directed path P from Li+1 to Li, each path gives an inequality: sum of weights of
edges in graph ≥ 0.
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w = 4213

c12

c23
c14

L1 L2 L3 L4

c
c

−c
−c14 c14

c14
c13

c13

−c13

c12

c12−c12

−c23 c23

c23

w = 4213

c12

c23

c13
c14

L1 L2 L3 L4

−c14 c14

c14
c13

c13

−c13

c12

c12−c12

c23

c

1 2 3 4

1 2 3 4

Figure 22: Illustration of how to obtain a bipartite graph from a wiring diagram of w = 4213.

w = 4213

c12

c23
c14

w = 4213

c12

c23

c13
c14

1 2 3 4

1 2 3 4

i = 2

L1 L2 L3 L4

−c14 c14

c14
c13

c13

−c13

c12

c12−c12

−c23 c23

c23

L1 L2 L3 L4

−c14 c14

c14
c13

c13

−c13

c12

c12−c12

c23

switch dir.

L1 L2 L3 L4

−c14 c14

c14
c13

c13

−c13

c12

c12−c12

−c23 c23

c23

L1 L2 L3 L4

−c14 c14

c14
c13

c13

−c13

c12

c12−c12

c23

P1P2

Figure 23: (a) In the bipartite graph obtained from a wiring diagram of w = 4213 we switch the
directions of the edges of the strands L1 and L2 so that they are directed down and L3 and L4 are
directed up. (b) Paths from L3 to L2 in the bipartite graph obtained from a wiring diagram of
w = 4213 after switching directions of the strands L1 and L2.

Example 9.8. Continuing from Example 9.7. For i = 2, there are two paths P : L3 → L2 with
the convention that cij = −cji. See Figure 23.

From the first path P1, we obtain the inequality c41 + (c13− c13 + c13)− c23 ≥ 0 which simplifies
to c41 + c13 + c32 ≥ 0. Form the second path P2, we obtain the inequality c41 + (c13 − c13) + (c12 −
c12 + c12) + (c23 − c23) ≥ 0 which simplifies to c41 + c12 ≥ 0.

Claim This cone is what we really need. Every time we apply a 3-move and transform parameters
by the Generalized Yang-Baxter equation then the cone for one diagram transforms to the cone of
the diagram we obtain ... transform as needed. (piecewise linear continuous map)

If we have a wiring diagram for the associativity these inequalities become very simple (we get
the plane partition inequalities)

10 Lecture 10, 3/9/2012

How about showing ∗-product is commutative. We know that associativity with Pieri rule shows
that ∗-product of Schur functions is equivalent to normal product of Schur functions (which are
commutative). Surprisingly, there is no direct way to see commutativity from the ∗-product picture.
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10.1 Symmetries of Littlewood-Richardson coefficients

cνλµ := cλµν∨ has S3 symmetry. It is not clear how to see this symmetry from the KT honeycomb.

Also cνλµ = cν
′
λ′µ′ where λ′ is the conjugate partition. There is a reformulation of KT honeycombs

in terms of puzzles that makes this symmetry explicit.
Also cνλµ = cνµλ and this is related to the Schützenberger involution. An interesting open question

is to understand this symmetry in the ∗-product setting (using Yang-Baxter equation...).

10.2 Total positivity

An m× n matrix is called totally positive or TP (totally nonnegative or TNN respectively)
if every minor is > 0 (≥ 0 respectively).

Example 10.1. [
a b
c d

]
, a, b, c, d ≥ 0, ad− bc > 0.

The following Lemma relates total positivity with combinatorics.

Lemma 10.2 (Lindström Lemma). Let G be a finite acyclic directed graph with weights xe on edges
and selected vertices: A1, . . . , An, B1, . . . , Bn. Define M = (Mij) where Mij =

∑
p:Ai→Bj

∏
e∈P xe.

Then

det(M) =
∑

(P1,...,Pn),Pi:Ai→Bw(i)

(−1)sgn(w)
n∏

i=1

∏

e∈Pi

xe,

where (P1, . . . , Pn) are families of non-crossing paths connection the As and Bs. Where non-crossing
means that no pair of paths Pi and Pj have a common vertex.

Remark 10.3. If we sum over all paths without the restriction that they are non-crossing we just
get a restatement of the definition of the determinant.

Example 10.4.

t

x

y z

, M =

[
x+ ytz yt
tz t

]
, det(M) = (x+ ytz)t− yt · tz = xt.

Proof.

det(M) =
∑

w∈S
(−1)sgn(w)

∏

i

Mi,w(i) =
∑

(P1,...,Pn),Pi:Ai→Bw(i)

(−1)sgn(w)
n∏

i=1

∏

e∈Pi

xe,

for any family of paths connecting As with Bs. Next we use the Involution principle. We build a
sign-reversing involution ϕ on families (P1, . . . , Pn) with a crossing. Find the min. Pi that intersects
a path and find first point c on Pi that intersects a path. On that path find the minimal Pj that
passes through c.

We claim that this map is an involution, it preserves the weight of the path but reverses sign.
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Ai Bwi

Aj Bwj

Ai Bwi

Aj Bwj

cPi

Pj

P ′
i

P ′
j

ϕ

c

Figure 24: Illustration of sign reversing involution ϕ in the proof of Lindström Lemma.

A special case of this Lemma is related to positivity.

Corollary 10.5. If G is a plane graph (embedded in a disk, see Figure 25) A1, . . . , Am are on the
left-hand side of the boundary of the disk and B1, . . . , Bn are on the right-hand side (ordered from
top to bottom). Assume edge weights xe > 0, then the matrix M = (Mij) is totally nonnegative.

A1

A2

Am

B1

B2

Bn

...
...

Figure 25: Plane graph G. If xe > 0, then the matrix M of Lindström’s Lemma is TNN.

Proof. Lindström Lemma implies that any minor is given by a nonnegative expression. That is, if
graph is planar all signs associated to noncrossing paths are positive.

t

x

y z

, M =

[
x+ ytz yt
tz t

]
, x, y, t, z > 0 det(M) = (x+ ytz)t− yt · tz = xt > 0.

Thus M is totally positive. Moreover, all 2 × 2 totally positive matrix can be written uniquely in
this way.

Claim: Any TNN matrix has this form (but not in a unique way).
The following is based on the work of Bernstein-Fomin-Zelevinsky related to previous results

by Lusztig. Assume that m = n and that M ∈ GLn. Recall the LUD-decomposition M = LUD
where L is lower triangular with ones on the diagonal, D is a diagonal matrix, and U is upper
triangular with ones on the diagonal.
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It is well known that M is TNN if and only if L,U,D are TNN. So our first goal is to understand
TNN upper triangular matrices. Let Un be upper-triangular unipotent subgroup of GLn. The
strata of the TNN part of Un correspond to permutations w ∈ Sn.

Example 10.6. n = 2,

[
1 x
0 1

]
where x ≥ 0. There are two possibilities: x = 0 in which case we

get the identity. If x > 0 we get the matrix

[
1 x
0 1

]
. Given w, we write its wiring diagram (now

drawn from left to right). See Figure 26 for an example of this correspondence for S2 (in this
case we are not using the fact that the graph we obtain from the wiring diagram is bipartite, this
property will be important later).

x

1 1

1 1

A1

A2

B1

B2

M =

[
1 x
0 1

]

M =

[
1 0
0 1

]
A1

A2

B1

B2

1

1

12 = ι

21 = s1

w wiring diagram bipartite planar
graph

strata of U2

Figure 26: How permutations in S2 correspond to strata of the TNN part of U2.

For w ∈ Sn pick any reduced decomposition w = si1 · · · si` . Next we decompose M into a
product of certain elementary matrices. We illustrate this with an example.

Example 10.7. For w =

(
1 2 3 4
4 2 1 3

)
= s1s3s2s1, we have

1

2

3

4

1

2

3

4

A1

A2

A3

A4

B1

B2

B3

B4

x

y

z

t x

y

z

t
B1

B2

B3

B4

A1

A2

A3

A4

J1(x) J2(y)J3(z) J1(t)

Figure 27: Example of Bruhat cell.

M = J1(x)J2(y)J3(z)J1(t) =




1 x
1

1
1







1
1 y

1
1







1
1

1 z
1







1 t
1

1
1



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The matrices Ji(x) are called elementary Jacobi matrices.

Lemma 10.8. If si1 · · · si` is a reduced decomposition of w, the set of matrices {Ji1(x1) · · · Ji`(x`) |
x1, . . . , x` > 0} depend only on the permutation w.

Proof. Seeing that the set of matrices does not change under a 2-move is easy. For 3-moves (see
Figure 28) we do the following:

x

y

z

x′
y′

z′

s1s2s1 s2s1s2

Figure 28: 3-move.

M = J1(x)J2(y)J1(z) =




1 x+ z xy
0 1 y
0 0 1


 =




1 y′ y′z′

0 1 x′ + z′

0 0 1




Thus we obtain the system of equations

y′ = x+ z
x′ + z′ = y
y′z′ = xy

⇒
y′ = x+ z
z′ = xy

x+z

x′′ = y − xy
x+z = yz

x+z .

Note that the solutions are subtraction-free. This means that for positive x, y, z we obtain a unique
positive solution x′, y′, z′.

11 Lecture 11, 3/14/12

Question 11.1. What is the number of potential nonzero minors of an upper triangular matrices
(including the “empty” minor)? Why is it the Catalan numbers Cn = 1

n+1

(
2n
n

)
.

Example 11.2. For n = 1 there are 2 minors, for n = 2 there are five minors, for n = 3 there are
14 such minors.

Exercise 11.3. Answer the question above and explain what is the refinement of Catalan numbers
you get when you restrict to the size of the minor.

Pick a reduced decomposition of w = si1 · · · si` . Then the Bruhat cell isBw = {Ji1(x1)Ji2(x2) · · · Ji`(x`) |
x1, . . . , x` > 0} where Ji(x) is the n × n upper triangular matrix with ones on the diagonal, the
(i, i+ 1) entry is x and the other entries are 0.

Ji(x) =




1
1 x

. . .

1




See Figure 27 for an Example of a Bruhat cell. We also showed:

Lemma 11.4. Bw depends only on w (not on its reduced decomposition).
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11.1 Bruhat order

Definition 11.5. The (strong) Bruhat order on Sn is the partial order on permutations with
covering relations ul w such that

1. u = w(i, j)
2. `(u) + 1 = `(w).

Equivalently, u ≤ w if any (or some for another equivalent definition) reduced decomposition for
w = si1 · · · si` contains a subword sj1 · · · sjr which is a reduced decomposition for u.

Note that it is not true that you can pick a reduced decomposition of u and add reflections to
obtain a reduced decomposition of w. [? ? ? give an example of this ? ? ?] See Figure 29 for the
Hasse diagram of the Bruhat order in S3.

s1s2s1

ι

s1s2 s2s1

s1 s2

Figure 29: The strong Bruhat order in S3.

Theorem 11.6 (Bernstein-Fomin-Zelevinsky).
1. The TNN of Un decompose as

∐
w∈Sn Bw,

2. Bw ∼= R`>0 where ` = `(w), and the isomorphism is Ji1(x1) · · · Ji`(x`) 7→ (x1, x2, . . . , x`).
3. The closure Bu ⊆ Bv if and only if u ≤ w in the strong Bruhat order.

Remark 11.7. To start seeing why part 2. of the theorem above is related to the Bruhat order if
xi = 0 then Jij (0) = I is the identity matrix. This is analogous to considering subwords (one has
to check that in the closure we get xi ≥ 0).

s1s2s1

ι

s1s2 s2s1

s1 s2



1 0 0
0 1 0
0 0 1






1 0 0
0 1 y
0 0 1






1 x 0
0 1 y
0 0 1






1 x 0
0 1 0
0 0 1






1 x xy
0 1 y
0 0 1






1 a b
0 1 c
0 0 1




Figure 30: Illustration of correspondence between w in the Bruhat order of S3 and TNN upper-
triangular matrices. The zero minors are in a blue square.

Question 11.8. How about the whole of GLn?
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11.2 Fomin-Zelevinsky double wiring diagrams and double Bruhat cells

We take two permutations u and w and shuffle two reduced decompositions of these permutations.

Example 11.9. u−1 = s1s2 and w−1 = s2s3s1.

1

2

3

4

1

2

3

4

Figure 31: Example of double wiring diagram.

We can convert these double wiring diagrams into trivalent graphs as shown in Figure 32.
We have two types of Jacobi matrices Ji(x) (x on the (i, i+ 1) entry) as before and Ji(x) which

is the identity matrix and x on the (i + 1, i) entry. We get an analogous decomposition as in the
case of single Bruhat cells.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure 32: Going from double wiring diagram to trivalent graph.

Example 11.10. Continuing from Example 11.9, M = J1(x1)J2(x2)J2(x3)J3(x4)J1(x5).

Definition 11.11. For u,w ∈ Sn with reduced decompositions u = si1si2 · · · si`(u) and w =
sj1sj2 · · · sj`(w)

the double Bruhat cell is

Bu,w = {Ji1(x1)Jj1(t1)Ji1(x2)Jj1 · · · diag(t1, t2, . . . , tn) | x1, x2, . . . , x`(u), t1, t2, . . . , t`(w) > 0}

.

Theorem 11.12 (Lusztig, Fomin-Zelevinsky).
1. The TNN of GLn decompose as

∐
u,w∈Sn Bu,w,

2. Bu,w ∼= R`(u)+`(w)+n
>0 , and the isomorphism is Ji1(x1) · · · Ji`(x`) 7→ (x1, x2, . . . , x`(u), t1, t2, . . . , t`(w)).

3. The closure Bu,w ⊆ Bv,z if and only if u ≤ v and w ≤ z in the strong Bruhat order.

11.3 Totally nonnegative Grassmannian

Definition 11.13. Gr≥0(k, n,R) are the elements in Gr(k, n,R) such that all Plücker coordinates
∆I ≥ 0 (we use only maximal minors).
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In this setting the matroid strata are

S>0
M = {A ∈ Gr(k, n) | ∆I(A) > 0 for I ∈M,∆J(A) = 0 for J 6∈ M}.

We also have that Gr≥0(k, n) =
∐
M S>0

M .
Recall that for Gr(k, n) the matroid stratification can get complicated (recall Lecture 2, Mnëv’s

Universality Theorem,. . . ) but the TNN Grassmannian has a “nice” stratification.

11.4 Relation to classical total positivity

Let B be a k × (n− k) matrix. From this matrix we obtain a k × n matrix A such that there is a
one-to-one correspondence between minors of B (of all sizes) and maximal minors of A (and with
the same sign).

B =



b11 · · · b1n−k
...

...
bk1 · · · bk n−k


 , A =




1 ±bk1 ±bk2 · · · ±bk n−k
. . . · · ·

1 b31 b32 · · · b3n−k
1 −b21 −b22 · · · −b2n−k

1 b11 b12 · · · b1n−k




So the classical total positivity embeds on the TNN Grassmannian. Moreover, there is a symmetry
feature in the latter (take first column and place it at the end and change sign by (−1)k−1. This
operation does not change the TNN Grassmannian. There is no such operation in the classical
setting.

12 Lecture 12, 3/16/2012

GL≥0
k embeds to a part of Gr≥0(k, 2k) where ∆12...k > 0 and ∆k+1,...,2k > 0. A double Bruhat cell

Bu,v in GL≥0
k corresponds to some special cells S>0

M that we will soon see.

Proposition 12.1 (cyclic symmetry). Given a matrix A = [v1, . . . , vn] that represents a point in
Gr(k, n), if Ã = [v2, . . . , vn, (−1)k−1v1] then the maximal minors of the latter are the same (and
with the same sign) as the maximal minors of A. That is, A ∈ Gr≥0(k, n)⇔ Ã ∈ Gr≥0(k, n). So
there is an action of the cyclic group Z/nZ on Gr≥0(k, n).

Example 12.2. Gr(1, n) ∼= Pn−1 = {(a1 : · · · : an)}. Then Gr≥0(1, n) = {(a1 : . . . , : an) | ai ≥ 0}.
See Figure 33 for a picture of Gr≥0(1, 3). Gr≥0(1, n) is equivalent to the n− 1 simplex.

Example 12.3. For k = 2, For Gr≥0(2, n) viewed in R2, we need ∆i i+1 = det([vi, vi+1]) > 0
so vi+1 is after vi in counterclockwise order. So Gr≥0(2, n) consists of vectors v1, . . . , vn ordered
counterclockwise (see Figure 34).

If v1 ‖ v3 then either v1 ‖ v2 ‖ v3 or v1 ‖ v4 ‖ v3 or v1 = 0 or v3 = 0. We represent these as point
on the circle. If two vectors are parallel then we superimpose two points in a circle. If vi = 0 we
delete the point. We obtain a poset structure. The covering relation is either merging consecutive
groups (which means we have two groups of vectors, the vectors in each group are parallel, we
merge these two groups to be all parallel) or removing an element from a group that has more than
one element (we have two or more vectors parallel in a group, we make any of these vectors equal
to 0). The minimal elements are circles with two elements. So the poset of Gr≥0(2, 4) has six
minimal elements and one maximal element. In general these posets have

(
n
k

)
minimal elements.

See Figure 35 for an example of part of the poset for Gr≥0(2, 4).
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a2 = 0

a1 = 0

a3 = 0

(1 : 0 : 0)

(0 : 0 : 1)

(0 : 1 : 0)

Gr≥0(1, 3)

Figure 33: A picture of Gr≥0(1, 3).

v1

v2

v3

vn

v1

v2

v3v4

v2

v3v4

−v1

(a) (b)

Figure 34: (a) Illustration of Gr≥0(2, n). (b) cyclic symmetry of Gr≥0(2, n).

12.1 Planar networks

We want to generalize the setup of double Bruhat cells for GLn. Let G be any directed graph
drawn inside a disk with n boundary vertices (of degree 1) b1, . . . , bn on the boundary of the disk
(sources or sinks) and with positive weights xe on the edges. k is the number of boundary sources.

Example 12.4. Let G be the planar graph in Figure 36. The k-set of boundary sources is I =
{1, 2, 3, 6, 7}, its complement I = {4, 5, 8} is the set of boundary sinks.

We want to define boundary measurements Mij for i ∈ I and j ∈ I so that Mij is the weighted
sum over directed paths from bi to bj .

Example 12.5. Consider the planar network in Figure 37. The first guess for such a weighted
sum would to weight each path as the product of the weights of the edges and take a sum of all
such contributions.

M12” = ”xyzu+ xyztyzu+ xyztyztyzu+ · · · = xyzu

1− yzt
We could have a problem whenever yzt = 1. Instead we do an alternating sum

M12 = xyzu− xyztyzu+ xyztyztyzu− · · · = xyzu

1 + yzt

Now we can pick any positive values of the parameters x, y, z, t, u. For instance, if x = z = t = 1
and y = u = 2 we get M12 = 1·2·1·2

1+2 = 4
3 .

We count paths P with the sign (−1)#loops in P where a loop means a closed directed path
without self intersection. But how do we define such loops to count them? In the planar case we
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1
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1
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2

1
2

3

∆12 = ∆23 = ∆13 = 0

1

2

3
4

1

2

3

4

4

3

1

4

3

2

Figure 35: Part of the poset of Gr≥0(2, 4). The covering relation is either merging consecutive
groups or removing an element from a group that has more than one element.

b1
b2

b3

b4

b5

b6

b7

b8

Figure 36: Example of planar network.

can define the winded index wind(P ) to be the number of full turns of the tangent vector to P
(counterclockwise is positive). Then wind(P ) is the number of counterclockwise loops minus the
number of clockwise loops.

Example 12.6. For the path P in Figure 38, the winded index wind(P ) = −1.

Exercise 12.7. Is it true for any graph that the number of erased loops (mod 2) is a well defined?

Definition 12.8 (Formal boundary meassurement). Given formal variables xe assigned to the
edges M form

ij =
∑

P :bi→bj (−1)wind(P )
∏
e∈P xe.

Lemma 12.9. M form
ij adds to a subtraction-free rational expression.

Proof. Idea of the proof is to use loop erased walks, which is a deterministic way of erasing walks: we
traverse the path and every time we self intersect we remove the loop from the path and continue.
The path we end up with has no loops and we denote it by P ′ and call it the loop erased part
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x

y z

t

u
b2b1

Figure 37: Illustration of path.

Figure 38: Path with winded index −1.

of P . The erased loops are L1, . . . , Lr and we denote by el(P ) the number of erased loops in this
procedure. See Figure 39 for an example.

From P → P ′ where P ′ is the loop erased part of P where L1, . . . , Lr are the erased loops. We
denote by el(P ) the number of erased loops in this procedure.

Now let G be any graph and select two vertices A and B

MG
AB =

∑

P :A→B
(−1)el(P )

∏

e∈P
xe.

Lemma 12.10. For any finite graph MAB is a subtraction-free rational expression.

Definition 12.11. The weighted sums Mij are specializations of these subtraction-free expression
to positive values of xe.

13 Lecture 13, 3/21/12

13.1 Loop-erased walks

Recall that by a loop we mean a closed directed path without self intersections. Recall also the
notion of loop-erased walk. Let P be any directed path in any directed graph, the path P reduces
to a loop erased path P ′, without self intersections, and loops L1, . . . , Lr. See Figure 39 for an
example. Recall that el(P ) is the number of erased loops.

Remark 13.1. Physicists think of undirected graphs and normally grids. There is a model called
Loop-Erased-Random-Walk (LERW) model which gives same distribution as uniform random tree
distribution (take a uniform random tree and pick two vertices, get unique path between them).

Remark 13.2. In the planar case we defined wind(P ) to be the number of counter-clockwise loops
minus the number of clockwise loops. wind(P ) (mod el)(P ) (mod 2) so (−1)wind(P ) = (−1)el(P ).
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P

L1

L2

L3

P ′

Figure 39: Example of loop erased walks.

Given a path P ′ without self intersections we want to describe all paths P s with loop-erased
part P ′. We need to insert loops Lr, Lr−1, . . . back. See Figure 40. The loop L′1 we insert cannot
intersect the path before A1 and so on.

L′
1 L′

1

L′
2

A3 A1

A2

A1

P ′ P ′ P ′

Figure 40: Illustration of how to insert loops to a path P ′ without self intersections.

To do this more systematically, given a path P ′ = (v1, . . . , vel) without self intersections at each
vertex vertex vr we insert a closed path Ci from vi to vi that does not pass through v1, . . . , vi−1

(Ci can be empty, or have many self intersections). At the end we obtain a path P with el(P ) =∑
el(Ci).

Lemma 13.3. Let G be any finite directed graph with formal edge variables xe. For two vertices
A and B of G we define

MG
AB :=

∑

P :A→B
(−1)el(P )xP ,

where xP =
∏
e∈P xe and the sum is over directed paths P from A to B. Then MG

AB is a subtraction-
free rational expression.

Proof. Assume G is connected. We will proceed by induction on #E(G)−#V (G). The base case
is −1 for trees which is easy to prove.

For the general case we first assume that is A 6= B

MG
AB =

∑

P ′:A→B
xP ′

∏̀

i=1

(
∑

Ci

(−1)el(Ci)xCi),

=
∑

P ′:A→B
xP ′

∏̀

i=1

MGi
vi,vi ,

where the sum is over directed paths P ′ = (v1, . . . , v`) without self-intersections andGi = G\{v1, . . . , vi−1}.
From this equation we see that the problem reduces to the case when A = B. For the inductive
step we split the graph at vertex A. See Figure 41.

Note that MG
AA = 1−MG′

A′B′+(MG′
A′B′)−· · · = 1

1+MG′
A′B′

where 1 comes from the empty path and

the sign comes from the change of parity since when A = B we get an additional loop. By induction
MG′
A′B′ is subtraction-free rational expression (#E(G′) = #E(G) but #V (G′) = #V (G) + 1).

42



A = B
A B

G G′

Figure 41: Illustration of Inductive step for proof of Lemma 13.3

Example 13.4. Let G be the graph with vertices A,B,C and D in Figure 42. Then

MG
AB = x · 1 ·MG2

BB + yz · 1 ·MG2
CC ·MG3

BB,

where G2 = G\{A} and G3 = G\{A,C}. Now MG3
BB = 1− v + v2 − · · · = 1

1+v .

To calculate MG2
CC we split G2 at vertex C and obtain graph G′2 and we obtain M

G′2
C′1C

′
2

= z 1
1+v tu

and so MG2
CC = 1/(1 + z 1

1+v tu). To calculate MG2
BB we split G2 at vertex B and obtain graph G′′2and

we obtain M
G′′2
B′1B

′
2

= v + tuz and so MG
BB = 1/(1 + v + tuz).

Putting everything together

MG
AB =

x

1 + v + tuz
+

yz

1 + z 1
1+v tu

· 1

1 + v
,

which is a subtraction-free rational expression.

x

y u

z t

v

A

B

G

C

u

z t

v
B

C1

C2
u

z t

v
B

C

G′
2 G′′

2

D

u

z t

v
B

C D

G2 = G\A

G3 = G\{A,C}

t

v
B

D

D D

Figure 42: Example of how to calculate MG
AB.

13.2 Boundary measurement map to Gr≥0(k, n)

Let G be a planar graph whose boundary vertices are v1, . . . , vn. We let I ⊂ [n] be the set of indices
of the sources (vi for i ∈ I are sources) and I is the set of indices of sinks. We define Mij is the
signed sum over paths from vi to vj for i ∈ I and j ∈ I. This gives a k × (n− k) matrix.
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We consider the following k × n matrix A: the k × k submatrix with columns indexed by I is
the identity matrix. The rest of the entries are ±Mij so that ∆I(A) = 1 and ∆(I\i)∪j(A) = Mij .
More explicitly, I = {i1 < i2 < . . . < ik} where Arj = (−1)tMirj where t is the number of elements
of I between ir and j.

Example 13.5. For n = 4 and k = 2, let G be the graph illustrated in Figure 43. Then I = {1, 3}
and ∆12 = M32,∆23 = M12,∆14 = M34,∆34 = M14. The matrix is

A =

[
1 M12 0 −M14

0 M32 1 M34

]
.

1

2

3

4

G

Figure 43: Illustration of planar graph with four boundary vertices two of which are sources.

The matrix A defines a point in Gr(k, n). We do not lose information about the boundary

measurements Mij since Mij =
∆(I\i)∪j

∆I
(the numerator does not make sense as a function in

Gr(k, n) but rescaling it by ∆I makes it work).

13.3 Boundary measurement map

The boundary measurement map is the map M : {G} → Gr(k, n) where G is a planar graph
with k boundary sources, n− k boundary sinks and positive edge weights xe.

Theorem 13.6. 1. Image of M is Gr≥0(k, n).

2. Fix a graph G and think of MG as the function that takes the edge weights R#E(G)
>0 and maps

it to Gr(k, n). MG : ·R#E(G)
≥0 → Gr(k, n). The image of MG is a cell in Gr≥0(k, n).

We can do the following simplifications that do not change the measurements Mij :
1. We can remove all internal sources and sinks (the do not contribute to the measurements. So

we can assume G has no such sources and sinks.
2. We can transform G into a 3-valent graph without changing M ′ijs
Can reduce to graphs with black and white vertices, the ones we got from the wiring diagrams.

See Figure 44.

x

y

z

t

x

y

z

t

1
x

y

z

t
x

y

1 t

z

Figure 44: Illustration of simplifications.
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14 Lecture 14, 3/23/2012

We continue with the simplification. Given a vertex of degree four we can transform it to a trivalent
planar graph with the same measurements. In general you double weights of outgoing edges. See
Figure 45. One obtains the same measurements, for example if we do the measurement from b1 to
b2 in the degree four vertex we get xy. On the modified trivalent graph we obtain:

x(x1 − x1x2x3x4x1 + · · · )2y =
x · x1 · 2y

1 + x1x2x3x4

∣∣∣∣
x1=x2=x3=x4=1

= xy.

x

y

z

t

x

2y

z

2t

x1 x2

x4 x3

x1 = x2 = x3 = x4 = 1

b1

b2

b3

b4 b4

b1 b3

b2

Figure 45: Illustration of how to simplify a 4-vertex.

Claim: we can transform any graph in to a planar trivalent graph.
We then color the vertices white if they have two outgoing edges and one incoming edge, and

black if they have two incoming edges and one outgoing: .
We can switch directions of some edges following the rules:

1. Switch direction and reverse the sign of weight.
2. Colors of vertices should not change.

Denote the graph you obtain by G′.
The next result states that even though the graph changes, the image under the map M in

Gr(k, n) does not change.

Theorem 14.1. M(G) = M(G′), that is we get the same point of Gr(k, n).

Example 14.2. Consider the graphsG1 andG2 in Figure 46. ForG1 we get the matrix A = [1 x+y]
(I = {1}). For G′1 we obtain A′ = [ 1

x+y 1] (I ′ = {2}) M21 = x−1−x−1yx−1 +x−1yx−1yx−1− · · · =
x−1

1+yx−1 . And A and A′ are the same point of Gr(2, 1) (the signs are crucial).

For G2, I = {1, 2}
A =

[
1 0 −xzt −xzy
0 1 yzt yzu

]

∆13 = M23,∆23 = M13. We choose a path from b2 to b3 and reverse to edges to obtain graph G′2

A′ =

[
1 x

y 0 0

0 1
tzy 1 y

t

]

A and A′ represents the same point in Gr(2, 4).
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x−1
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z−1
t−1

ub1

b2

b4

b3

G′2

x

y z t

ub1

b2

b4

b3

G2

Figure 46: Planar graphs G1 and G2 and the graphs G′1 and G′2 obtained by reversing the directions
of the edges of a path.

14.1 Plabic Graphs

Because of the previous theorem we do not care about the direction of the trivalent edges with
solid and empty vertices. We consider such graphs.

A plabic graph (plabic is an abbreviation of planar bicolored graph) is an undirected graph
with vertices colored in 2 colors. A perfect orientation is an orientation of edges such that the
empty vertices have two outgoing edges and one incoming edge, and the solid vertices have two
incoming edges and one outgoing. A plabic graph is perfectly orientable if the graph has a
perfect orientation. See Figure 47 for examples.

b1

b6

b5

b4

b3b2

b1

b6

b5

b4

b3b2

(a) (b) (c)

Figure 47: Examples of plabic graphs. (a) a perfectly orientable, (b) the perfect orientation of the
graph in (a), and (c) a graph that is not perfectly orientable.

Now we prove that a perfectly orientable plabic graph corresponds to a cell in Gr(k, n) where
n is the number of boundary vertices and we obtain k from the following relation.

Exercise 14.3. Prove that if we have a perfectly orientable graph and pick one of its perfect
orientations then k − (n− k) = # black vertices −# white vertices.

There are necessary and sufficient conditions for a plabic graph to be perfectly orientable: for
all induced subgraphs H of G we have 1 ≤ #V•(H)−#V◦(H)

2 ≤ n, where #V• and #V◦ are the number
of black and white vertices of the graph.

14.2 Gauge transformations

We can rescale the edge variables so that measurements don not change. We call these gauge
transformations of the edge variables.

The number of essential parameters is #V (G)−#E(G) the difference between the number of
edges and the number of vertices. We know this is #F (G)−1 where #F (G) is the number of faces
of G. This indicates that it might be beneficial to have face variables and assign weights to these.

f = xy−1ztu−1v.
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Figure 48: Illustration of Gauge transformations on directed planar graphs.
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Figure 49: The edge and face variables of a graph.

Example 14.4. For the graph in Figure 49 we go from edge weights to face weights.

Since each edge is in two faces with opposite orientation then the face variables satisfy the
following relation

∏
faces f = 1.

Lemma 14.5. One can reconstruct edge variables modulo the gauge transformations from the face
variables modulo the relation

∏
f = 1.

From this Lemma we can redefine the map MG : R#E(G)
>0 → Gr(k, n) to a map M̃G′ :

R#F (G)−1
>0 → Gr(k, n) where G′ is a perfectly orientable plabic graph.

[? ? ? something about top dimensional cells ? ? ?]

Example 14.6. If G is trivalent graph with one white vertex, it corresponds to Gr>0(1, 3) is
2-dimensional #F (G) − 1. If H is the trivalent graph with one black vertex, it corresponds to
Gr>0(2, 3) also 2-dimensional. For the graph G in Figure 48(b) corresponds to Gr>0(2, 4) it has
dimension k(n− k) = 4 = #F (G)− 1.

15 Lecture 15, 4/6/2012

Recall the notions of a plabic graph G and a perfect orientation of such graphs. If G has n vertices
and k is given by k − (n− k) = #V• −#V◦.

Exercise 15.1. For any perfect orientation k is the number of boundary sources.

Given a plabic graph with a perfect orientation we can build a boundary measurement map
from G with variables xe > 0 on the edges to a k×n matrix A that represents a point in Gr(k, n).
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Also we can rescale the variables at each vertex such that the number of essential variables is
#E(G) −#V (G) = #F (G) − 1 where #F (G) is the number of faces of G. Sometimes it is more
useful to work with face variables.

1

x y

1
xy

1

x

1
xy1

face variables edge variables

1

x y

1
xy

1

face variables edge variables

A = [1, 1
y , x]→ Gr>0(1, 3)

R2
>0
∼= Gr>0(1, 3)

A =

[
1 0 −y
0 1 xy

]
→ Gr>0(2, 3)

R2
>0
∼= Gr>0(2, 3)

Figure 50: Example of a plabic graph G with a perfect orientation. We get a map between Rn to
Gr(n, k) where n is the number of boundary vertices and k − (n− k) = #V•(G)−#V◦(G).

x

z

t

y

1 2

4 3

A =

[
1 0 −xz −(y + xzt)
0 1 z zt

]
→ Gr>0(2, 4)

x

z

t

y

1 2

4 3

A =

[
1 x 0 −y
0 z 1 t

]
→ Gr>0(2, 4)

I = {1, 3}

x

z

t

y

1 2

4 3

(a) (b)

Figure 51: Example of a plabic graph G with a perfect orientation. We get a map between Rn to
Gr(n, k) where n is the number of boundary vertices and k − (n− k) = #V•(G)−#V◦(G).

Example 15.2. Let G be the plabic graph with a perfect orientation in Figure 51(a). We claim
that the map (x, y, z, t) 7→ A is a bijection between R4 and Gr>(2, 4). We look at the minors:
∆12 = 1,∆13 = M23 = z,∆23 = M13 = xz,∆14 = M24 = zt,∆24 = M14 = y + xzt,∆34 =∣∣∣∣
−xz −(y + xzt)
z zt

∣∣∣∣ = −xz2t + (y + xzt)z = yz. We see all the minors are nonnegative. We will

interpret ∆34 = yz as the product of nonintersecting paths.

Theorem 15.3. Assume that G is acyclic let I be the set of boundary sources then A is a k × n
matrix such that the columns indexed by I is an identity matrix and the other entries are ±Mij

such that ∆(I\i)∪j = Mij. For any J = (I\{i1, . . . , ir}) ∪ {j1, . . . , jr} we have that

∆J(A) =
∑∏

Pi

weight(Pi),

where the sum is over r noncrossing paths Pi connecting bi1 , . . . , bir with bj1 , . . . , bjr (but not in that
specified order).

Example 15.4. LetG be the plabic graph with a perfect orientation in Figure 51(b). The nontrivial
minor is ∆24 = xt + yz and these correspond to paths between I\J with J\I (paths in green in
Figure 51).
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Theorem 15.5. For all plabic graphs G, ∆J(A) is given by subtraction-free rational expression (a
quotient of two positive polynomials) in the edge (or face) variables.

For ∆(I\i)∪j = Mij we already know it is true. For any minor one can prove it by induction,
however we will use Kelly Talaska’s [8] simpler formula for ∆J(A).

A conservative flow in G is a collection of vertex-disjoint directed cycles (w/o self crossings).
We include in this definition the empty collection. See Figure 59(a) for an example.

v1

v2

v3

vn

v1

v2

v3

(a)

1

2

3

v3 = −xv1 + yv2

x

y

A =

[
1 0 −x
0 1 y

]

v1

v2

v3
1

2

3

v4 = −x′v1 + y′v3

x

y

A =

[
1 0 −x −(xy′ + x′)
0 1 y yy′

]

x′/x

y′

4

(b)(a)

v4

Figure 52: (a) Example of conservative flow in G, (b) example of a collection of vertex disjoint
cycles and paths (without self-crossings).

A flow from I\J to J\I is a collection of vertex disjoint cycles and paths (w/o self crossings),
that connect each source in I\J with a sink in J\I. See Figure 59(b) for an example.

Theorem 15.6 (Talaska’s formula). Fix I (set of boundary sources), for any J the corresponding
minor ∆J(A) = f/g such that f is the sum of weights of all flows from I\J to J\I and g is the
sum of weights of all conservative flows.

We give two examples of this result.

Example 15.7. Consider the graph G with n = 6 vertices in Figure 53 with a perfect orientation,
then the set of boundary sources is I = {2, 3, 6} so k = 3. This graph has #F (G)− 1 = 6 essential
parameters x, y, z, t, u, v (after rescaling). We obtain a 3× 6 matrix A. If J = {1, 3, 5} we compute
∆135(A) = f/g where

g = 1 + xy

conservative flow in red. To compute f notes that I\J = {2, 6} and J\I = {1, 5}. So f = xzyt
(paths in green in Figure 53). So ∆135 = xzyt

1+xy .

1 2

3

45

6

x

y

t

u

v

z

Figure 53: Example of Theorem 15.6.
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Example 15.8. Consider the graph G with n = 6 vertices in Figure 54. Then the set of boundary
vertices is I = {1, 4}. Fix J = {1, 5}. Then ∆15(A) = f/g. For the conservative flows (see
conservative flows in green in Figure 54(a)).

g = 1 + xy + zyt+ u+ wt+ xy · u+ xy · wt+ uwt+ xy · u · wt+ wvut+ wvut · xy.

Next we calculate f (see flows in blue and green in Figure 54(b)).

f = rwvus+ rwvusxy + rwtzyus+ rwvus · zyt

1

2 3

4

5

x

z

y

t

u v w r

s

1

2 3

4

5

x

z

y

t

u v w r

s

(a) (b)

Figure 54: Example of Theorem 15.6. (a) the conservative flows in green, (b) flows from I\J to
J\I where I = {1, 4} and J = {1, 5}.

The proof of the theorem uses ideas similar to Lindström Lemma.

Proposition 15.9.

∆J(A) =
∑

π:I\J→J\I

(−1)xing(π)
∏

i∈I\J

Mi,π(i)

where the xing(π) is the crossing number.

Example 15.10. I\J = {i1, i2, i3} and J\I = {j1, j2, j3} π : i1 7→ j2, i2 7→ j3, i3 7→ j1. xing(π) = 2

i1

i2

i3
j1

j2

j3

Figure 55: Example of Proposition 15.9.

The idea of the proof of Talaska’s formula is g ·∆J(A) = f
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16 Lecture 16, 4/11/2012

16.1 An aside: weighted Catalan numbers

Let Cn = 1
n+1

(
2n
n

)
be the nth Catalan number. When is Cn odd? The answer is Cn is odd if and

only if n = 2k − 1. A more refined question is the following,

Theorem 16.1. Let Ψ(m) be the max power of 2 that divides m. Let s(m) be the sum of the binary
digits of m. Then Ψ(Cn) = s(n+ 1) + 1.

Example 16.2. C4 = 14 but Ψ(C4) = 1 and the binary expression of 5 is 101.

There is a proof of this theorem by Deutsch and Sagan [1]. The method they use is the following:
Cn is the number of binary trees on n vertices (see Figure 56(a)). We define an action on such trees
that switches the left and right child of a vertex. The size of any orbit is 2s where s ≥ s(n+ 1)− 1.
Also the minimal number of orbits of size 2s(n+1)−1 is (2s− 1)!! which is an odd number.

This method can be generalized to weighted Catalan numbers, for weights b0, b1, . . . inZ≥0,
we associate to a Dyck path P the weight wt(P ) = bh1 · · · bhn where hi is the height of the ith
ascent of P . Let Cb

n =
∑

P wt(P ). For example for n = 3: Cb
n = b30 + 2b20b1 + b21b0 + b0b1b2 (see

Figure 56(b)).

b30

b0b1b0

b0b0b1

b0b1b1

b0b1b2

(a) (b)

Figure 56: (a) Example of binary tree with n = 12 vertices, (b) weighted Dyck paths with 2 · n
steps for n = 3. In this case Cb

n = b30 + 2b20b1 + b21b0 + b0b1b2.

These weighted Catalan numbers have a nice continued fraction:
∑

nC
b
nx

n = 1

1− b0x

1− b1x

1− b2x

1−
...

. If

bi = qi then Cb
n becomes the q-Catalan numbers. For instance C3(q) = 1 + 2q + q2 + q3.

Theorem 16.3 (Postnikov-Sagan). Let ∆f(x) := f(x+1)−f(x) be the divided difference operator.
If b : Z≥0 → Z such that (i) b0 is odd, (ii) ∆n(b)(x) is divisible by 2n+1 for all n ≥ 1 and for all
x. Then Ψ(Cb

n ) = Ψ(Cn) = s(n+ 1)− 1.

Such a condition holds for q-Catalan numbers if q = 1 + 4k. For instance b(x) = qx for all
x ∈ Z≥0, then ∆b = qx+1 − qx = qx(q − 1) and in general ∆nb = qx(1 − q)n. If q = 4k + 1 then
∆nb = (4k + 1)x(4k)n so ∆nb is divisible by 2n+1.
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16.2 Idea of proof of Talaska’s Formula

We continue with the proof of Talaska’s formula.
One can show from the definition of the determinant and moving negative signs the following

expression:

∆J(A) =
∑

π:I\J→J\I, bijection

(−1)xing(π)
∏

i∈I\J

∑

Pi:bi→bπ(i)

(−1)wind(Pi)weight(Pi)

LHS RHS

Figure 57: Conceptually what the equation g ·∆J(A) = f represents.

We want to show that g ·∆J(A) = f . The LHS and RHS of this equation in terms of paths are
represented in Figure 57. The sign is (−1)xing(A)+

∑
wind(Pi). We build a sign-reversing involution

ϕ (this is a generalization of Lindström’s Lemma).
Description of ϕ: Find the smallest i ∈ I\J such that Pi has a common vertex with some Pj ,
j > i or with a cycle in a conservative flow, or a self-intersection. Let x be the first intersection
point on Pi. There are two cases:
Case 1. If there exists another path Pj that passes through x. Pick such Pj with minimal j and

swap the tails of Pi and Pj .
Case 2. Otherwise, find the first point on Pi where we can move a loop in Pi to the flow or vice

versa and move this loop.

x

i y

Pi ϕ(Pi)ϕ

Figure 58: The sign reversing involution ϕ.

Our next goal is to prove the following theorem.

Theorem 16.4. Given the map M : {plabic graph with positive edge weights} → Gr(k, n), Then
Image(M) = Gr≥0(k, n).
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Proof. From Theorem 15.6 we have shown that Image(M) ⊆ Gr≥0(k, n). The converse is the hard
direction.

Example 16.5. k = 2 Gr≥0(2, n) v1, v2, . . . , vn ∈ R2.. Given a configuration Figure ??(a) we want
to build a graph with two boundary sources. See Figure ??(b) for examples of the inverse image
of M in Gr>0(2, 3) and Gr>0(2, 4).

v1

v2

v3

vn
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v3

(a)

1

2

3

v3 = −xv1 + yv2

x

y

A =

[
1 0 −x
0 1 y

]

v1

v2

v3
1

2

3

v4 = −x′v1 + y′v3

x

y

A =

[
1 0 −x −(xy′ + x′)
0 1 y yy′

]

x′/x

y′

4

(b)(a)

v4

Figure 59: Example of reverse map, from point in Gr(2, n) to a plabic graph G with positive edge
weights.

Claim: This type of graphs are the preimage of M of Gr>0(2, n).

The previous example shows how one generalizes the construction for all k. See Figure 60.

1

2

34n n− 1

1

2

k + 1k + 2n n− 1

k

Figure 60: Examples of plabic graphs that are inverse images of Gr>0(2, n) and more generally
Gr>0(k, n).

Theorem 16.6. The k × (n− k) grid with positive edge weights gives exactly Gr>0(k, n).

We also want to describe the degenerate case (we want Gr≥0(k, n)).

Example 16.7. For k = 2 and n = 4, v3 = −xv1 + yv2 x, y ≥ 0 and v4 = −x′v1 + y′v3. There are
two cases x = 0, y = 0.

17 Lecture 17, 4/13/2012

17.1 Degenerate cases

Given linearly independent vectors v1 and v2. Let v3 = −xv1 + yv2 , v4 = −x′v1 + y′v3, v5 =
−x′′v1 + y′′v4.
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Figure 61: Example degenerate cases.

We consider three degenerate cases illustrated in Figure 61 case 1. x′′ = 0 and y′′ > 0, case
2. x′′ > 0 and y′′ = 0, and case 3. x′′ = y′′ = 0.

case 2 is special because all things have to the parallel to v5. Once we skip a horizontal edge it
has to remain like that.

Example 17.1. k = 2

1

2

3

x

y

x′/x

y′

45

x′′/x

v1

v2

v3

v4

v5

v6

v7

v8v9

6789

Figure 62: Example degenerate case k = 2.

and k = 3 column picture in P2.

v3 v2

v1

v3 v2

v1

v4

v5

k = 3
k = 2

k = 1

v3 v2

v1

A =




1 0 0 x
0 1 0 −y
0 0 1 z


 , x, y, z ≥ 0, v4 = xv1 − yv2 + zv3

Figure 63: Example degenerate case k = 3.

17.2 General construction

A is a k × n matrix which is a point in Gr≥0(k, n), assume A is in row echelon form with pivot
column set I. We will obtain a filling of a Young diagram λ with nonnegative real numbers (see
Figure 64) .
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1

2

3
456

7
89

I = {1, 2, 3, 7, 10}

1011

...

2

d
d+ 1

xd

000 0 0 0

1x1

Figure 64: Tableaux with a blocked zero in red.

Let d be size of last column in λ, v1, . . . , vd are linearly independent. Say vd+1 = (−1)d−1x1v1 +
· · ·+ xd−2vd−2 − xd−1vd−1 + xdvd.

Lemma 17.2. x1, . . . , xd ≥ 0, ∆I = 1 and ∆(I\i)∪{d+1} = xi ≥ 0.

We say that xr = 0 is a blocked zero if there exists i < r such that xi > 0.

Lemma 17.3. If xr = 0 is a blocked zero then the rth row of A is zero (except arr = 1).

Proof. Look at minors of A.

Example 17.4. A =

[
1 0 −3 −10
0 1 0 0

]

The entry in red is a blocked zero if the (2, 4) entry is nonzero then we have a problem with a
minor. [? ? ? ask ? ? ?]

Lemma 17.5. If r is a blocked zero let B be the (k − 1) × (n − 1) matrix obtained from A by
removing rth row and rth column and changing signs of nonpivot entries in first r − 1 rows. Then
A ∈ Gr≥0(k, n) if and only if B ∈ Gr≥0(k − 1, n− 1).

Proof. Minors of A are the same as the minors of B.

Example 17.6. A =

[
1 0 −3 −10
0 1 0 0

]
→ B = [1 3 10].

By this Lemma we can remove the blocked zeros.
Back to filling of Young diagram. If we have a blocked zero we set to zero the entries in the

row of the diagram. The nontrivial case is when we have no blocked zeros.

Lemma 17.7. Assume that there are no blocked zeroes (that is x1 = x2 = · · · = xs = 0, xs+1, . . . , xd >
0). Let C be k × (n− 1) matrix such that first d columns are the coordinate vectors e1, . . . , ed and
the remaining entries are

ci,j−1 =





aij if i ∈ {1, 2, . . . , s} ∪ {d+ 1, . . . , k}
aij
xi

+
ai+1,j

xi+1
if i ∈ {s+ 1, . . . , d− 1}

adj
xd

if i = d.

Then A ∈ Gr≥0(k, d) if and only if C ∈ Gr≥0(k, n).

In this case there is a nontrivial transformation of minors.
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Example 17.8. A =

[
1 0 −x1 y
0 1 x2 z

]
, x1, x2 > 0 to C =

[
1 0 y

x1
+ z

x2
0 1 z

x2

]
Let ∆J := ∆J(A) and

∆̃J := ∆J(C). We want to show we can obtain one minor from the other by a subtraction-free
rational expression.

∆̃12 = 1, ∆̃13 = ∆14
x2
, ∆̃23 = ∆24

x1x2
. ∆12 = 1,∆13 = x2,∆23 = x1,∆14 = x2∆̃13,∆34 = x1x2∆̃23,

∆24 = x1(∆̃13 + ∆̃23).

Putting everything together
Start with A, find first linear dependence vd+1 = xdvd− xd−1vd−1 + xd−2vd−2− · · · , fill in zeros

if you have blocked zeros (do the same with matrix A). Then change matrix to C (can have smaller
number of columns), find first linear dependence v′d′ = x′d′wd′ − · · · , used these coefficients x′d′ in
the second column.

What type of diagrams do we obtain? We have fillings on Young diagrams with nonnegative
entries. You are not allowed to have two nonzero entries (i, j), (k, `) with i < k and ` < j and a
zero at (k, j).

18 Lecture 18, 4/18/2012

Last time we showed how to obtain from a matrix A in Gr≥0(k, n) a Young diagram filled with
numbers ≥ 0 with the following forbidden patterns:

These are called Le-diagrams (or L-diagrams) or hook-diagrams.

Example 18.1. For the hook-diagram x y z
t u v
w

we obtain its hook-graph and associated plabic

graph (see Figure 65).

1
2
3

456
78

t u v

w

zt
x

y

v

1w

u

1
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3

4

5

6

7

8

1

Figure 65: Example of hook graph and associated plabic graph.

Theorem 18.2. A ∈ Gr≥0(k, n) obtain hook diagram and hook graph G. Then A is a the boundary
measurement matrix corresponding to G.

Example 18.3. For the matrix

A =




1 1 0 0 2 6
0 0 1 0 −2 −2
0 0 0 1 0 0


 ,
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the set of pivot columns is I = {1, 3, 4}. From this set we obtain a Young shape λ = . Next,

we find the first linear dependence of the columns v2 = 1 · v1 1 We remove the second column

of A (corresponding to v2) and obtain the matrix

A′ =




1 0 0 2 6
0 1 0 −2 −2
0 0 1 0 0


 .

Next we find the first linear dependence v4 = 2v1 − 2v2 + 0v3

2 1
2

0 0

Since we have a blocked zero we get rid of the last row of A′ and the third column and

change signs to obtain

A′′ =

[
1 0 −2 −6
0 1 2 2

]

where a = −6, b = 2, x1 = 2, x2 = 2 A′′′ =

[
1 0 a/x1 + b/x2

0 1 b/x2

]
=

[
1 0 −2
0 1 1

]
. We find the first

linear dependence: v3 = −2v1 +1v2 and from it obtain the diagram 2 2 1
1 2
0 0

. From this hook-diagram

we obtain the hook-graph G in Figure 66(a). By tallying the paths in G one can check that we get
back matrix A.

2 2 1

1 2

1

2
3

4

56

x y z

t u

1

2
3

4

56

(a) (b)

1

2

3

4

5
6

(b)

Figure 66: (a) Hook graph obtained in Example 18.3. (b) Hook graph with parameters x, y, z, t, u.
By Theorem 18.4(2) this parametrizes a five dimensional cell of Gr≥0(3, 6). (c) Associated graph
with white and black lollipops.

Theorem 18.4. 1. Cells in Gr≥0(k, n) are in bijection with hook diagrams that fit inside a
k × (n− k) rectangle.

2. The dimension of a cell equals the number of ∗s in the corresponding hook diagram.
3. The boundary measurement map MG : Rd>0 → Gr(k, n) where G is a hook graph and d is the

number of ∗s. This map is a bijection between Rd>0 and the corresponding cell.

Example 18.5. The hook graph in Figure 66(b) gives all points in the cell of Gr≥0(3, 6): A =


1 z 0 0 yz (x+ t)yz
0 0 1 0 u tu
0 0 0 1 0 0


.

57



We can view the hook graph as a plabic graph with certain white and black edges incident
to edges called lollipops. See Figure 66(c). Such graphs can have two types of lollipops ◦−,
corresponding to empty rows of hook diagram and •−, corresponding to empty columns of hook
diagram.

Example 18.6.

Question 18.7. What are the zero dimensional cells?

The answer is
(
n
k

)
since this is the number of Young diagrams that fit in k× (n− k) (choices of

set I). This corresponds to a plabic graph
The map between hook graphs and cells is not a bijection since there are more graphs. However,

there is a set of transformation of graphs that do not change the corresponding cell and one can
use such transformations to go between two graphs that correspond to the same cell. These are
analogues of Coxeter moves in wiring diagrams. (Graphs and cells analogues of wiring diagrams
and permutations respectively).

Example 18.8. The hook-graphs and plabic graphs that correspond to the top cell in Gr≥0(2, 4)
are represented in Figure 67.

1

2

34

1 2

34

1 2

34

Figure 67: Example of hook-graphs and plabic graphs in top dimensional cell of Gr≥0(2, 4).

18.1 Undirected plabic graphs

In this section we consider plabic graphs with vertices of any degree. We will work with face
variables. We orient the edges and we say a perfect orientation is one where the white vertices
have indegree 1 and the black vertices have outdegree 1.

We have the following transformations of plabic graphs.
M1. Unicolored edge construction/deconstruction.

If we collapse all unicolored vertices we obtain a bipartite graph. Sometimes it is better to
uncollapse a vertex to obtain trivalent vertices. See Figure 68 for an illustration.

Remark 18.9. The number of ways of uncollapsing a vertex into trivalent graphs is the Catalan
numbers. So the number of ways of uncollapsing a graph is a product of Catalan numbers.

M2. Square move: If you have four vertices forming a square, all vertices are trivalent and the
colors alternate, then we switch the colors of the vertices. See Figure 69 for an illustration.

Question 18.10. How are these transformations related to Coxeter moves to wiring diagrams?

58



x y
z

tu

x

u t

z

y

x1

x4 x3

x2 x1 x2

x3x4

x1 x2

x3x4

1

1

Figure 68: Illustration of M1. Unicolored edge construction/deconstruction.

ux

y

z

t
t

1+u−1

z(1 + u)

y
1+u−1

x(1 + u) u−1

Figure 69: Illustration of M2. Square move.

19 Lecture 19, 4/20/2012

19.1 Moves on plabic graphs

We gave two moves on plabic graphs M1 unicolored edge contraction/deconstruction, and
M2 square move (see Figure 68 and Figure 69). There is also a directed version of square move
with edge variables. However, it is easier to do the square move with face variables.

x2

x1

x3

x4 x′
4

x′
3

x′
1

x′
2

Figure 70: x′1 = x3x4
x2+x1x3x4

, x′2 = x2 + x1x3x4, x
′
3 = x2x3

x2+x1x3x4
, x′4 = x1x3

x2+x1x3x4
.

The next reduction rules simplify the structure of the graph. They are illustrated in Figure 71.

• R1. vertex removal

• R2. parallel edge reduction

x = Au−1, y = uv−1, z = Bv, x′ = A
u+v , z

′ = B(u + v) can solve for x′ and z′ and obtain

x/(1 + y−1) and z(1 + y).

• R3. leaf reduction

• R4. dipole reduction

Once we have a leaf, using (R3) and (M1) (see Figure 72 we create an avalanche of reductions.
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1+y−1

z(1 + y)

u

v

u+ v
1 1 x′

z′

x x

R1

R2

R3

R4

Figure 71: Illustration of reduction rules: R1. vertex removal, R2. parallel edge reduction, R3.
leaf reduction and R4. dipole reduction.

Figure 72: Moves on leaves using (M1).

Definition 19.1. Two graphs are move equivalent G1
∼= G2 if they can be obtained from each

other by the moves described above.

Theorem 19.2. 1. Two perfectly orientable undirected graphs (with weights) map to the same
point of Gr≥0(k, n) if and only if they are move equivalent.

2. Cells in Gr≥0(k, n) correspond to move equivalence classes of graphs (without weights)

Definition 19.3. A plabic graph is reduced if it is impossible to transform it by the moves (M1)
and (M2) into a graph where we can apply a reduction and it has no leaves (except boundary
lollipops).

Example 19.4. In Figure 73 there are examples of reduced and not reduced graphs. For the latter
we show reductions to reduced graphs.

Theorem 19.5. If G without weights is reduced then it is perfectly orientable and the map M̃G :

RF (G)−1
>0 → cell in Gr≥0(k, n) is a bijection. In particular, the dimension of a cell is F (G) − 1,

where F (G) is the number of faces of G.

Theorem 19.6. For two reduced graphs, G1
∼= G2 if and only if G2 can be obtained from G1 by

moves (M1) and (M2).

A priori we know that G1
∼= G2 if G2 can be obtained by a sequence of moves and reductions.

But this result says that we can just go from one to the other at the level of reduced graphs without
using reductions.

60



reduced not reduced

not reduced

Figure 73: Example of reduced graph and two non reduced graphs and the corresponding reductions
to obtain reduced graphs.

Remark 19.7. Such results are parallel to a classical results about reduced decompositions of the
symmetric group: if Sn is the symmetric group and si = (i, i+ 1) and we have two decompositions
of w = si1 · · · si` = sj1 · · · sjm , we can obtain one from the other by doing Coxeter moves:





sisi+1si = si+1sisi+1

sisj = sjsi if |i− j| ≥ 2

sisi = id.

But there is a stronger result about reduced decompositions where we do not need to use the
relation sisi = id.

Figure 74: double wiring diagrams.

Question 19.8. Is there an algorithm to tell whether two graphs are equivalent?

If you see a black vertex you turn right, if you see a white vertex you turn left.

Example 19.9. For the graph in Figure 75 we obtain the permutation π =

(
1 2 3 4 5 6
4 5 1 3 6 2

)
.

Theorem 19.10. Two reduced graphs without lollipops are equivalent if and only if they have the
same permutation π as described above.
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Figure 75: Permutation π associated to graph G. π(3) = 1, π(5) = 6.

20 Lecture 20, 4/25/2012

[? ? ? missing pictures and revision ? ? ?]

Notion of trips in G. These are the walks that follow the following rules: . We obtain
a permutation πG where πG(i) = j if the trip that starts at the ith boundary vertex ends at jth
boundary vertex.

Lemma 20.1. If G′ is obtained from G by moves (M1) and (M2) then πG = πG′.

Proof. Show permutation does not change with the moves (M1) and (M2).

Remark 20.2. The reduction moves can change πG.

Theorem 20.3. If G is a plabic graph without vertices of degree 1 and 2 (except boundary lollipops)
then G is reduced if and only if

1. G has no closed trips,
2. G has no trips with a self-intersection except lollipops,
3. G has no pair of trips with a bad double crossing.

where a bad double crossing is a pair of trips such that there exist a pair of edges (with vertices
of different colors) e1 and e2 such that both trips pass through e1 and then trough e2 (see Figure 76).

e1 e2

Figure 76: Illustration of a bad double-crossing.

Example 20.4. Figure 77 shows two graphs, one reduced and one that is not reduced.

Definition 20.5. A decorated trip permutation of G is πG with fixed points πG(i) = i, then
ith boundary edge is a lollipop. We color a fixed point by its lollipop.
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reduced not reduced

Figure 77: Illustration of a graph without a bad double crossing and one with one.

Example 20.6. The graph G in Figure 78 gives the decorated trip permutation

π∗G =

(
1 2 3 4 5 6 7
5 7 2 4 1 6 3

)
.

1
2

3

4

5

6

7

π∗
G =

(
1 2 3 4 5 6 7
5 7 2 4 1 6 3

)

Figure 78: Decorated permutation π∗G from a graph G. The fixed points are either black or white
depending on whether they correspond to black or white lollipops.

The main result of this section is the following.

Theorem 20.7. 2-reduced graphs G1 and G2 are move equivalent if and only if π∗G1
= π∗G2

.

Remark 20.8. The hard direction of this result is to show that if π∗G1
= π∗G2

then the graphs G1

and G2 are move equivalent.

20.1 Alternating strand diagram

Definition 20.9. A disk with 2n marked points on the boundary labelled 1, 1′, 2, 2′, . . . , n, n′ (clock-
wise) and n directed strands connecting i with j′.

1. Then for any boundary vertex i there is exactly one strand that starts at i, For any boundary
vertex j′ there is exactly one strand that ends at j′.

2. There are finitely many intersections of the strands.

3. No triple intersections (only exception is a loop

i

i′

).
4. No self intersections.

5. Alternating condition (has to start left to right, then right to left, etc)
i

6. two strands cannot have two intersections points u and v like the following
u v
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We go from a reduced plabic graph to an alternating strand diagram. The first step is to
contract all unicolored edges to obtain a bipartite graph. The second step is to make all boundary
vertices connected to black vertices. See Figure 79.

1

2

34

5

1 1′

25′

5

4′

4 3′

3

2′

B

W

BB

B

W W

B B

Figure 79: Obtaining an alternating strand diagram from a reduced plabic graph.

Moves of alternating strand diagrams:

M1’

M2’

20.2 Triple crossing strand diagrams

These strand diagrams were studied by Dylan Thurston. Same setup as before (2n boundary

vertices connected by n directed strands). We allow only triple intersections .

Example 20.10. Domino tilings can be transformed to triple crossing diagrams (the converse is
not true).

We can perform flips on domino tilings which correspond to moves on triple crossing diagrams
(see Figure 81).

From a reduced plabic graph we can obtain a triple crossing diagrams. First we make all white
vertices 3-valent. Second we make the graph bipartite and impose that all boundary edges are
connected to black vertices. See Figure 82.
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Figure 80: From domino tilings to triple crossing diagrams.

Figure 81: Flips in domino tiling and corresponding move on triple crossing diagrams.

21 Lecture 21, 4/27/2012

21.1 Triple crossing diagrams

These consists of
• n directed strands in a disk

• all intersections have form .
• no self intersections
• no bad double crossings

Exercise 21.1. You can orient direct strands in the triple crossing diagram obtained from a domino
tiling.

Exercise 21.2. Show that any two domino tilings of the same region are connected by tiling flips.

21.2 How to go from plabic graphs to triple crossing diagrams

Example 21.3. In Figure 82, a triple crossing diagram is obtained from a plabic graph representing
a top cell in Gr≥0(2, 5).

There is a map between triple crossing diagrams D and plabic graphs G where the vertices of
D becomes white vertices of G, counter-clockwise regions of D become black vertices of G, and
clockwise regions of D correspond to regions of G. See Figure 83.

Given a permutation π without fixed points construct a triple crossing diagram with this per-
mutation.

Example 21.4. The permutation πG =

(
1 2 3 4 5
2 4 5 1 3

)
comes from the plabic graph G in

Figure 84. From this graph we construct a triple crossing diagram.
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5
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1

Figure 82: Illustration of how to go from a plabic graph to a triple-crossing diagram.
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3

2

1

2′

3′
4′

5′
1′

Figure 83: Illustration of map from a triple crossing diagram to a plabic graph.

If you have an even number of strands on top and do crossings.
Summary: The following are in bijection with each other

1. cells in Gr≥0(k, n),
2. hook diagrams contained in k × (n− k),
3. decorated permutations of type (n, k),
4. move-equivalent classes of perfectly orientable plabic graphs of type (n, k),
5. move-equivalent classes of reduced plabic graphs of type (n, k),
6. move-equivalent classes of alternating strand diagrams of type (n, k),
7. move-equivalent classes of triple crossing diagrams of type (n, k).

There will be three move objects (7)-(10).
The type of a plabic graph G is (n, k) where n is the number of boundary vertices and k− (n−

k) =
∑

u black vertex(deg(u)− 2)−∑v white vertex(deg(v)− 2).

Example 21.5. n = 5 and k − (n− k) = 3− 4 so k = 2. This is a top cell in Gr(2, 5).

The type of a decorated permutation π is (n, k) where n is the size of π and

k = #{i | π−1(i) > i}+ #{white fixed points in π}
= #{i | π(j) < j}+ #{white fixed points in π}

Example 21.6. For π =

(
1 2 3 4 5
2 4 5 1 3

)
π(4) < 4 and π(5) < 5 so k = 2. If we compute k

through the associated plabic graph G we also obtain the same number.
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1 1′ 2 2′ 3 3′ 4 4′ 5 5′ 1 2 3 4 5

πG

Figure 84: Illustrating how to construct a triple crossing diagram from a permutation πG = 2 4 5 1 3,
and then constructing a plabic graph from such a triple crossing diagram.

Theorem 21.7. Criterion for reduced plabic graphs (no closed trips, no self-intersections, no bad

double-crossings: .

Theorem 21.8. For any two reduced graphs G and G′ with π∗G = π∗G′ can be obtained from each
other by moves (M1) and (M2).

Lemma 21.9. Every connected reduced plabic graph G such that πG(i) = j can be transformed by
moves (M1) and (M2) into a graph where this trip goes along the boundary.

j

i

Figure 85: If πG(i) = j, Lemma 21.9 states that using moves (M1) and (M2) we can transform the
graph into a graph where this trip goes along the boundary.

The situation of the Lemma is illustrated in Figure 85. We will prove all claims together by
induction on the number of faces in G.

Proof of Theorem 21.7. If G is not reduced then it has a forbidden segment. Suppose that G is
reduced. And assume that G has a forbidden segment. Then

1. There is one face inside this segment. In all cases we can do a reduction. Thus G is not
reduced. See Figure 86.

2. There are two or more faces inside the forbidden segment. Let G̃ be the plabic graph inside
this segment. Assume that G̃ has as few faces as possible in the move equivalence class of
G. G̃ has at least one trip. By Lemma 21.9, we can make it go along the boundary. Take
the first face in the boundary strip. See Figure 87. In all cases, doing a square move one can
decrease the number of faces inside the forbidden segment.
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Figure 86: Step 1 of the proof of Theorem 21.7. There is a face with an instance of a closed trip,
a self intersection or a double crossing.

Figure 87: Step 2 of the proof of Theorem 21.7.

Proof of Theorem 21.8. Let G and G′ be the graphs with πG = πG′ . Make on trip go along the
boundary. The boundary strip should be the exactly the same. For the graphs G̃ and G̃′, π

G̃
= π

G̃′ .

By induction G̃ and G̃′ are related by moves M1 and M2. Thus G and G′ are related by moves M1
and M2.

Proof of Lemma 21.9. Make the number of faces in region A in Figure 88 (a) as small as possible
in the move equivalence class of G. If all the faces in A are boundary fatces then the trip goes along
the boundary. Make the trip in G̃ that starts at D go along the boundary (see Figure 88 (b)).

Apply a square move (see Figure 88 (c)). We can always decrease the number of faces to the
right of the trip.

i

j

i

j

G̃

(a) (b) (c)

A

C

D

G

C

D

Figure 88: Diagrams for the proof of Lemma 21.9.
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Figure 89: Moves relating reduced graphs in Theorem 21.8.

22 Lecture 22, 5/02/2012

We have proved Theorem 21.7 and Theorem 21.8. In order to prove these results used Lemma 21.9.
Next we talk about another object that is in bijection with cells in Gr≥0(k, n).

22.1 Grassmann necklaces

Let I1, . . . , In ∈
(

[n]

k

)
and for all i Ii+1 = (Ii\{i})∪{j} or Ii+1 = Ii. The indices are taken modulo

n.

Example 22.1. n = 6 and k = 3 let

I1 = 1 2 6
I2 = 2 3 6
I3 = 3 6 1
I4 = 5 6 1
I5 = 5 6 1
I6 = 6 1 2.

These objects are in bijection with all the objects we had from before. We show a bijection
between Grassmann necklaces and decorated permutations.
From necklaces to decorated permutations: We define π in the following way If Ii+1 = (Ii\{i})∪{j}
then π(i) = j. There are two kinds of fixed points: a white fixed point if i ∈ Ii, and black fixed
point if i 6∈ Ii.

Ii = {i | π−1(i) < i or i is white fixed point}.
Ii is the same procedure with respect to the shifted ordering i < i+1 < . . . < n < 1 < . . . < i−1.
To obtain the necklace from π, we find Ii by cutting the permutation between i and i+ 1. We

look at the chords that go to the left. Their endpoints are the elements of Ii. See Figure 90 for an
example.

Example 22.2. For I1 = {1, 2, 6} = {1 | π−1(i) < i or i is white fixed point}. In general Ii is the
same thing as I1 with the ordering shifted i < i+ 1 < · · · < n < 1 < · · · < i− 1. See Figure 90 for
the decorated permutations obtained from I1 and I2.

Recall that we had a bijection between the cells in Gr≥0(k, n) and hook diagrams. I1 corre-
sponds the the shape λ of the hook diagram.

Example 22.3. n = 6, k = 3, I1 = {1, 2, 6} and λ(1) = 3 3. The hook diagram is • •
•

• •

.

The next goal is the partial order of the cells.
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1

2

34

5

6

1 2 3 4 5 6

I1 = {1, 2, 6}

2 3 4 5 6 1

I2 = {2, 3, 6}

Figure 90: Example of bijection between Grassmann necklaces and decorated permutations.

23 Lecture 23, 05/04/2012

[? ? ? missing pictures and revision ? ? ?]
Last time we discussed a bijection between decorated permutations π and Grassmann necklaces

(I1, . . . , In). The condition on these necklaces was that Ii+1 = (Ii\{i}) ∪ {j} or Ii+1 = Ii. In this
case π(i) = j.

Given a k element subset Ii we get a Young diagram in k×(n−k) (we go down for each element
in the set and start labeling with i).

Example 23.1. n = 6 and k = 3 let

I1 = 1 2 6 λ(1) =

1
2

6

I2 = 2 3 6 λ(2) =

2
3

6

I3 = 3 6 1 λ(3) =

3
6
1

I4 = 5 6 1 λ(4) =

5
6
1

I5 = 5 6 1 λ(5) =

5
6
1

I6 = 6 1 2 λ(6) =

6
1
2
.

Theorem 23.2. The decomposition of Gr≥0(k, n) into cells is the common refinement of n Schubert
decompositions for cyclic shifts. And every cell C is the positive part of

Ωλ(1) ∩ c (Ωλ(2)) ∩ c2 (Ωλ(3)) ∩ · · · ∩ cn−1 (Ωλ(n)) ,

where c = (1, 2, . . . , n).

Claim 23.3. The map π ↔ C ↔ (λ(1), . . . , λ(k)). This is the same map as the correspondence
between necklaces and n Young diagrams.
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Claim 23.4. If C ⊂ Ωλ and via the map above the cell corresponds to a decorated permutation π
and this permutation corresponds to (λ(1), . . . , λ(n)) then λ = λ(1).

Recall that by construction λ is the shape of the corresponding hook diagram.

Example 23.5. n = 9, k = 4 and I = {1, 3, 6, 9} ∈
(

[9]
4

)
.

I1 = {1, 3, 6, 9} = I.

We can also go directly from the hook diagram to the decorated permutation. We follow the
rules of the road.

Example 23.6. π(3) = 7 and π(7) = 8.

23.1 Partial order on cells in Gr≥0(k, n)

Define the partial order in the following way: C1 ≤ C2 if and only if C1 ⊆ C2.
Recall the partial order on the Schubert cells Ωλ ⊆ Ωµ if and only if λ ⊆ µ if and only if I ≥ J

in the Gale order where I = I(λ) and J = J(µ).

Theorem 23.7. For two cells in Gr≥0(k, n) then C1 ↔ (I1, . . . , In) ↔ (λ(1), . . . , λ(n)) and C2 ↔
(J1, . . . , Jn)↔ (µ(1), . . . , µ(n)) then C1 ≤ C2 if and only if λ(i) ⊆ µ(i) for all i if and only if Ii ≥i Ji
for all i = 1, . . . n. Where ≥i is the Gale order on

(
[n]

k

)
with respect to the shifted ordering of

numbers i < i+ 1 < . . . < n < 1 < . . . < i− 1.

Recall the notion of the strong Bruhat order in Sn.
such that there is no chord from A to B.

Definition 23.8 (circular Bruhat order on decorated permutations π). π > π̃ (covering relation),
a simple crossing is there is no chord from A to B and π̃(r) = π(r) for all r 6= i, j. There are special
cases since we allow i = π(j) or j = π(i) or both.

Exercise 23.9. Show that the circular Bruhat order is equivalent to the shifted Gale order in
Theorem 23.7

Example 23.10.

24 Lecture 24, 5/09/2012

24.1 Circular Bruhat order

Last time we defined the circular Bruhat order. What is the rank function in this circular Bruhat
order? The chords can be arranged in three ways: crossing, alignment and misalignment (see
Figure 91)

Definition 24.1. Let A(π) be the number of alignments in π, and ki(π) is the cut π between i− 1
and i and counts the number of chords going to the left.

Example 24.2. Let π be the permutation in Figure 92. The alignments are 23, 24, 34, 36, 46, 16,
the crossings are 15, 12, 13, 25, 35 and the misalignments are 26, 56, 54, 14. Thus A(π) = 6. Also
k3(π) = 3.
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crossing alignment misalignment

Figure 91: Possible crossings

1

2

34

5

6

π

3 4 5 6 1 2

Figure 92: Example of decorated permutation.

Lemma 24.3. (1) ki(π) = kj(π) for all i, j,
(2) If π > π̃ then ki(π) = ki(π̃),
(3) If π > π̃ then A(π) + 1 = A(π̃).

Definition 24.4. Let CBKn be the partial order on decorated permutations of size n with ki(π) =
k. The maximum element in CBKn is the permutation π : i 7→ i+ k (mod n).

Corollary 24.5. The rank function on CBKn is rank(π) = k(n− k)−A(π).

Let An,k be the number of permutations w ∈ Sn with k descents (indices i such that wi > wi+1).
This is the Eulerian number.

Exercise 24.6. Show that

#CBKn =
∑

n′≤n

(
n

n′

)
An′,k.

We want to study
∑

π∈CBKn
qrank(π). An explicit expression was proved by Lauren Williams

[9].

Theorem 24.7 ([9]).

∑

π∈CBKn

qrank(π) =
k−1∑

i=1

(
n

i

)
q−(k−i)2 ([i− k]iq[k − i+ 1]n−iq − [i− k + 1]iq[k − i]n−iq

)
, (24.8)

where [a]q = 1−qa
1−q .

The formula was proved working with hook diagrams and looking at Fn,k(q) :=
∑

D⊂k×(n−k) q
#dots(D)

where the sum is over hook diagrams D. If we fix a shape λ ⊆ k × (n − k), let Fλ(q) =∑
D shape λ q

#dots(D).

72



Example 24.9. If λ = 22 then F (q) = (1 + q)4 − q2 − q3 = 1 + 4q + 5q2 + 3q3 + q4, since •
•

and • •
•

are not valid.

24.2 Recurrence relation for Fλ(q)

Let x be a corner removed. Let λ(1) be the shape λ with box x removed, λ(2) is the shape λ with
ith row removed, λ(3) is λ with jth column removed, λ(4) is λ with ith row and jth column removed
(see Figure 93).

xi

j

λ

Figure 93:

Lemma 24.10. Fλ(q) = qFλ(1) + Fλ(2) + Fλ(3) − Fλ(4).

Example 24.11. For λ = 22 as in the previous example,

F = qF + F + F − F .

= q(1 + q)3 + (1 + q)2 + (1 + q)2 − (1 + q).

Next we prove the Lemma.

Proof. The first part qFλ(1) corresponds to hook diagrams of shape λ containing dot in x. The rest,
F + F − F , counts hook diagrams where x is empty, then the whole ith row or the whole

jth column is empty by the hook diagram condition.

Exercise 24.12. Prove formula for Fn,k(q) =
∑

λ⊆k×(n−k) Fλ(q) from the recurrence in Lemma 24.10.

Definition 24.13. λ ⊆ k × (n− k), define a graph Gλ ⊂ Kk,n−k such that (i, j′) is an edge in Gλ
if and only if (i, j) is a box in λ.

Example 24.14. For λ = 421 ⊂ 3× (7− 3) we find Gλ in Figure 94.

Lemma 24.15. If χλ(t) be the chromatic polynomial of Gλ, then

χλ = χλ(1) − t−1 (χλ(2) + χλ(3) − χλ(4)) ,

where λ(1), . . . , λ(4) is defined as before.
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λ Gλ

Figure 94: Graph Gλ associated to λ ⊂ k × (n− k).

Proof. Let e be the edge form vertex A to B. Let Gλ(1) be the graph Gλ with edge e removed. Let
Gλ(2) be the graph Gλ with all edges from A removed. Let Gλ(3) be the graph Gλ with all edges
from B removed. And let Gλ(4) be the graph Gλ with all edges from A and B removed.

Pick any proper t-coloring of Gλ\{A,B}.
t(χλ(1) − χλ) = χλ(2) + χλ(3) − χλ(4) .
If we have a corner x = (a, b) then Gλ contains a copy of Ka,b including edge e.

Corollary 24.16. Fλ(1) = (−1)nχλ(−1). The LHS counts number of hook diagrams f shape λ
(also the number of positive cells in Ωλ). The RHS counts the number of acyclic orientations of
Gλ.

Exercise 24.17. Find a bijection between the hook diagrams of shape λ and the acyclic orientation
of Gλ. Finding a nice simple bijection is an interesting open question.

Let λ = k × (n − k) so that we are looking at acyclic orientations of Kk,n−k. There is a nice
way to draw such orientations by drawing a k× (n− k) grid. Each point corresponds to an edge of
Kk,n−k and we have to decide the orientation and represent it by doing a crossing or undercrossing.
We call these weak weaving patterns.

Figure 95: Example of representation of acyclic orientation ofKk×(n−k) and a weak weaving pattern.

24.3 Bijection between hook diagrams and Grassmannian permutations

λ ⊆ k × (n− k)⇔ Grassmannian permutationswλ = w1 · · ·wn where w1 < w2 < · · · < wk, wk+1 <
· · · < wn.

If in addition we have a hook-diagram on λ ⊆ k × (n− k) we tile the cells of the hook diagram

in the following way: if a cell is empty we tile it , if it has a dot we tile it . The resulting
tiled diagram is called a pipe dream. From it we obtain a permutation u in Sn (see Figure 96 for
an example).

Thus from a hook diagram D we obtain a pair (wλ, u).
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wλ =

(
1 2 3 4 5 6 7 8 9
2 4 8 9 1 3 5 6 7

)

1
2
3
4
5 6 7
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1
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3
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5 6 7 8 9

u =

(
1 2 3 4 5 6 7 8 9
1 4 2 7 3 5 9 6 8

)

5 6 7 8 9

1

2

3

4
8

9

5 6 7

1
2
3
4

(a)

(b)

Figure 96: (a) Example of bijection between λ ⊂ k × (n− k) and Grassmannian permutations wλ
for k = 4 and n = 9. (b) Example of bijection between hook-diagram and pipe dream given by the
permutation u. u ≤ wλ in the strong Bruhat order.

25 Lecture 25, 5/11/2012

Last time we saw that from a hook diagram we obtain a pair of permutations (wλ, u) where wλ.

Theorem 25.1. This is a bijection between hook diagram D ⊆ k × (n− k) and pairs (w, u) where
w is Grassmannian and u ≤ w in the strong Bruhat order on Sn.

From (w, u) we obtain the decorated permutation π where π = w0wu
−1w0 for w0 =

(
1 2 . . . n
n n− 1 . . . 1

)
.

Example 25.2. From the previous example wλ = 248913567 and u = 142735968. Then π =
531476928. Note that π has two fixed points 4 and 9. We can view π as coming from mirrors (see
Figure 97).

9
8
7
6
5 4 3

2

1

Figure 97: Building the decorated permutation π by placing mirrors on the hook diagram and
following the rules of the road. For example π(3) = 1.

25.1 Lex maximal subwords

Claim 25.3. w = si1 · · · si` is any reduced decomposition. All permutations u such that u ≤ w (in
the strong Bruhat order) are obtained by taking subwords of si1 · · · si`.
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But among these 2` possible subwords there might be repetitions. We want a way of obtaining
all such permutations u in a better way without repetitions. We will use wiring diagrams.

Example 25.4. w = s2s3s1s2s1 and u = s2ŝ3s1ŝ2ŝ1 = ŝ2ŝ3ŝ1s2s1 = s2s1 (see Figure 98).

1

2

3

4

1

2

3

4

s1 s2 s1 s3 s2

1

2

3

4

1

2

3

4

s1 s2
w u

Figure 98: The wiring diagram of w = s2s3s1s2s1 and of one of its subwords u = s1s2.

Among the subwords we want to find the lexicographically maximal subwords (to the left
in the wiring diagrams). In the wiring diagram of w replace some crossings by “uncrossings” such
that if two strands cross at some point x, they can never cross or touch at a point to the left of x
(see Figure 99).

x x

Figure 99: Forbidden moves on wiring diagrams of lex maximal subwords.

s2s1s2 1 s2 s1

s2 s2s2

s1s2s2s1 s2s1s2

w

Figure 100: Example of subwords of w = s2s1s2. Among the eight subwords (with repetitions)
ŝ2ŝ1s2 and s2ŝ1s2 (in red) contain the forbidden pattern.

Example 25.5. For w = s2s1s2, we consider the eight subwords by removing reflections. Among
them ŝ2ŝ1s2 and s2ŝ1s2 contain the forbidden pattern. See Figure 100.

Theorem 25.6. The lex maximal subwords give all u ≤ w without repetitions.

Proof. If we have a forbidden pattern then either subword is not reduced or it is not lex maximal
located in w = si1 · · · si` . The opposite direction is left as an exercise.
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If we have no dot in a cell this corresponds to a crossing. a dot in a cell corresponds to an
uncrossing. Each dot in a hook-diagram corresponds to eliminating a reflection from the reduced
decomposition.

Example 25.7. We apply the above construction to wλ for λ = 5521 (see Figure 96). wλ =
s7s6s8s1s3s5s7s2s4s6s3s5s4 and u = ŝ7s6s8ŝ1s3s5s7s2ŝ4ŝ6ŝ3s5s4. See Figure 101.
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wλ = s7s6s8s1s3s5s7s2s4s6s3s5s4 u = ŝ7s6s8ŝ1s3s5s7s2ŝ4ŝ6ŝ3s5s4
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Figure 101: Example of how to get wλ from a tiling of λ, and obtaining u as a lex maximal subword
from a dot diagram in λ.

Theorem 25.8. Under this correspondence the hook condition is equivalent to the lex maximal
condition.

Proof. (⇐)
If the wiring diagram has one of the two forbidden patterns (see Figure 99) they correspond to

a hook condition in the diagram (see Figure 102 (a)).
(⇒) pick a minimal hook condition pattern (with a + ` minimal). By the choice of a and ` there
are no dots in the rectangle defined by this pattern (except for the NW corner of the rectangle). If
we draw red wires we see we have one of the two forbidden patterns (see Figure 102 (b)).

x x
or

a

`

(a) (b)

min a+ `

Figure 102: Diagrams for the proof of Theorem 25.8.

25.2 General diagrams

A dot diagram is a placement of dots in λ. We have some moves:

Exercise 25.9. Each move-equivalence class of dot diagrams has a unique valid hook diagram.
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Figure 103: Moves of dot diagrams, the inner squares are empty.

λ = 431

λ = 665331

Figure 104: Examples of moving dots to obtain a hook diagram.

26 Lecture 26, 5/16/2012

26.1 Grassmannian formula for scattering amplitudes in N = 4 Super Yang-
Mills theory

This is based on the work of Nima Arkhani-Hamed, Freddy Cachazo, et.al.
This is an alternative to doing computations with Feynman diagrams.
∫

some contour in Gr(k,n,C)

∏
dcij

< 12 · · · k >< 23 · · · k + 1 > · · · < n1 . . . k − 1 >
δ4/4(C · Z), (26.1)

where < i1, . . . , iK > is a maximal k × k minors C is a k × n matrix whose entries are cij . The
integrand is invariant under GLk so we get a form in Gr(k, n,C).

To calculate such integrals one would look at a contour and we would obtain a sum of residues.

Claim 26.2. The singularities of this form on Gr(k, n,C) live exactly in positroid varieties
where such varieties are defined to be the Zariski closure of the positive cells of Gr≥0(k, n,R).

Example 26.3. In the function 1
x(x+yz) there are more than two possibilities for the poles. For

instance if x → 0 then x+ yz → yz thus there are two more cases y → 0 and z → 0. Thus, as we
set the simple minors in (26.1) to zero we get some complicated branching.

Question 26.4. See in a direct combinatorial way that all the possibilities of setting minors to zero
(this branching procedure) correspond to the objects described in this class to be in bijection with
positroid cells in Gr≥0(k, n,R).

The physical data is λ, λ̃ which are 2-dimensional planes in Cn,

λ =
2

n

, λ̃ =
2

n

(encodes momenta). If V is a k-dimensional subspace in Cn then λ ⊂ V and V ⊥ λ̃. This corre-
sponds to a subvariety of codimension 2n−4 in Gr(k, n) which is a Schubert variety Ω̃(k−2)×(n−k−2)

(not in the standard basis but an arbitrary basis).
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λ = 97631 = (7, 4, 2|5, 3, 1)

Figure 105: Example of Fröbenius notation of Young diagrams.

Then (26.1) becomes a sum over positive cells ΠD of dimension 2n − 4. You have to find the
intersection points ΠD ∩ Ω̃(k−2)×(n−k−2) (both find the number of points and a description of the

points). There is a nice paper of Knutson-Lam-Speyer [4] that looks at #(ΠD ∩ Ω̃λ) (this is related
to juggling patterns and affine Stanley symmetric functions).

26.2 Non-planar plabic graphs

A white trivalent vertex corresponds to Gr(1, 3) = P2 and a black trivalent vertex corresponds to
Gr(2, 3) (see Figure 106(a-b)). We have looked at graphs embedded in disks. Can we generalize
this to graphs that are not planar. We eliminate variables for internal edges.

Example 26.5. For the graph G in Figure 106(c) we get the equations w1
a = w2

b = w5
c , ew3 +

fw4 + dw5 = 0, we eliminate wis corresponding to internal edges. w5 = − ew3+fw4

d , w1
a = w2

b ,
w1
a =

− ew3+fw4

cd this corresponds to a plane in C4, i.e., a point in Gr(2, 4).

Example 26.6. For the graph in Figure 106(d) there is no perfect orientation and we cannot do
such an elimination.

w5

w2 w3

w4w11

2 3

4

(c) (d)

a

c1

2 a

c1

2

3 3b b

(a) (b)

Figure 106: (a) White trivalent vertex corresponds to Gr(1, 3) = P2 (a : b : c) w1
a = w2

b = w3
c . (b)

Black trivalent vertex corresponds to the plane given by aw1 + bw2 + cw3 = 0. (c) Planar graph
that corresponds to the equations w1

a = w2
b = w5

c and ew3 + fw4 + dw5 = 0, if we eliminate the
weight w5 corresponding to the internal edge we obtain a plane in C4 which is a point in Gr(2, 4).
(d) Planar graph that corresponds to four linear equations.

Conjecture 26.7. The elimination procedure described above works if and only if G has a perfect
orientation.

In the planar case if we start from a graph and do square moves repeatedly and get back to the
original graph. Each square move changes the parameters but at the end when we return to the
same graph the final transformation of parameters is the identity i.e., the monodromy is trivial.
This is no longer the case in the nonplanar case. For instance if the graph has one hole. Lam and
Pylyavskyy showed that in the case of one hole the monodromy is the symmetric group.
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Question 26.8. Describe the monodromy group in the non-planar case. What is it for two holes?

14 14

=

23 23

14

23

14

23

14

23

+ + = 0

Figure 107: Square move and Jacobi-type identity of graphs.

Question 26.9. Understand this set of graphs under the Jacobi type identity (see right of Fig-
ure 107).

26.3 BCFW recurrence for tree-level amplitudes

This was first defined in terms of Feynman diagrams. Let Mk,n be a certain linear combination of
plabic graphs for Gr(k, n) (see Figure 108).

Mk1,n1 Mk2,n2

∑

n=n1+n2−2,k=k1+k2+1

Mk,n
=

Figure 108: BCFW recurrence for tree-level amplitudes in terms of plabic graphs.

Claim 26.10. Mk,n involves Narayana number of graphs.

14 15

M2,4 M2,5

23 23

4

Figure 109: Mk,n involves Narayana number of graphs.

Mk,n is a sum of plabic graphs corresponding to binary trees with k−2 right edges and n−k−2
left edges (see Figure 110(a) for rules).

Example 26.11. The plabic graph in Figure 110(b) with n = 12 external edges and k = 7 external
edges incident to black vertices. This graph corresponds to a cell of dimension 2n − 4 and it is
associated to a binary tree with k−2 = 5 right edges and n−k−2 = 3 left edges. The intersection
ΠD ∩ Ω̃(k−2)×(n−k−2) has exactly one point.

See Figure 111 for the six-term identity of M3,6.
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(a) (b)(a) (b)

Figure 110: (a) Rules for correspondence between plabic graph and binary tree (in red). (b)
Example of plabic graph and its associated binary tree (in red).
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2

1

3

4 5

· · ·

Figure 111: Identities for M2,4,M2,5 and M3,6. The RHS of the latter involves six graphs.

Conjecture 26.12. The six-term identity implies cyclic symmetry of Mk,n.

Another way of representing the graphs in Mk,n is as two trees in the disk. We add extra
vertices such that every region is a quadrilateral (see Figure 112).
Thanks: to Darij Grinberg, Nan Li, Taedong Yun, Yufei Zhao and Tom Roby for comments,
proofreading and board photos!
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