
Math 545 Solution of Midterm 2 Spring 2007

1. (17 points) Let θ be an angle, such that sin(θ) 6= 0, and let A :=

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

be the matrix of the rotation of R2 about the origin by angle θ counterclockwise.

(a) The characteristic polynomial of A is h(x) = x2 − 2 cos(θ) + 1.

(b) The minimal polynomial m(x) of A is equal to its characteristic polynomial
x2−2 cos(θ)+1. Two ways to see it are: If we work over the complex numbers,
then the equality h(x) = m(x) follows, since the two roots cos(θ) + sin(θ)i
and cos(θ) − sin(θ)i of h(x) are distinct, and m(x) and h(x) have the same
set of roots, and m(x) divides h(x), by the Cayley Hamilton Theorem. Over
the real numbers the equality m(x) = h(x) follows, since h(x) is a prime
polynomial, m(x) has positive degree, and m(x) divides h(x).

(c) A is similar to a diagonal matrix in M2(C), since the minimal polynomial
factors as a product of linear terms with distinct roots
m(x) = (x− [cos(θ) + sin(θ)i])(x− [cos(θ)− sin(θ)i]).

(d) A is not similar to a diagonal matrix in M2(R), since its minimal polynomial
is prime in R[x].

2. (17 points) Set A :=

(

0 −1
1 0

)

.

(a) The characteristic polynomial of A is x2 + 1. Its two eigenvalues are i and
−i.

(b) A basis of C2 consisting of eigenvectors of A. We find first a basis for the
i-eigenspace null(A− iI), then for the −i eigenspace null(A + iI), and take
their union as a basis for C

2.

A− iI =

(

−i −1
1 −i

)

∼

(

1 −i

0 0

)

.

Thus, null(A− iI) is spanned by v1 :=

(

i

1

)

.

A + iI =

(

i −1
1 i

)

∼

(

1 i

0 0

)

.

Thus, null(A + iI) is spanned by v2 :=

(

−i

1

)

.

(c) Find an invertible matrix P and a diagonal matrix D, both in M2(C), such
that P−1AP = D.

Answer: Take P := (v1v2) =

(

i −i

1 1

)

. Then D =

(

i 0
0 −i

)

.

3. (17 points) Let T : R2 → R2 be given by multiplication by A =

(

−2 9
−1 4

)

.

(a) The characteristic polynomial of T is h(x) = (x− 1)2.

(b) The minimal polynomial m(x) of T divides h(x). If m(x) = x−1, then A = I,
which is false. Hence, m(x) = (x− 1)2.
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(c) T is not diagonalizable, since its minimal polynomial is a product of linear
terms with repeated roots.

(d) The unique eigenvalue of T is the scalar 1.

(e) As a basis for the 1-eigenspace of T we can take

(

3
1

)

.

(f) Find an upper triangular matrix B and an invertible matrix P , such that
B = P−1AP . Carefully explain, in complete sentences, your method for
finding P . Credit will not be given for an answer obtained by trial and error.

Answer: The proof of the Triangular Form Theorem dictates, that we should
choose a basis {v1, v2} for R2 = null((A− I)2), so that (A− I)v1 = 0. Take v1 =
(

3
1

)

and v2 =

(

1
0

)

. The change of basis matrix is P = (v1v2) =

(

3 1
1 0

)

,

and P−1AP =

(

1 −1
0 1

)

is upper triangular.

4. (17 points)

(a) Let V be a finite dimensional vector space, T , D, and N , three linear transfor-
mations in L(V, V ), such that T = D + N . State the three properties that D

and N need to satisfy, in order for the above to be the Jordan decomposition
of T .
Answer: i) D is diagonalizable, ii) N is nilpotent, iii) DN = ND.

(b) Let A =

(

0 4
−1 4

)

, B =

(

2 1
0 2

)

, and P =

(

2 1
1 1

)

. Note, that

P−1AP = B.

i. The Jordan decomposition of B is B = D′ + N ′, where D′ =

(

2 0
0 2

)

and N ′ =

(

0 1
0 0

)

.

ii. The Jordan decomposition A = D + N of A is:

A = PBP−1 = P (D′ + N ′)P−1 = PD′P−1 + PN ′P−1.

We see that D = PD′P−1 =

(

2 0
0 2

)

and N = PN ′P−1 =

(

−2 4
−1 2

)

.

iii. We verify that the matrices D and N in part 4(b)ii satisfy the properties
in part 4a, by a direct calculation.

iv. Using Jordan decomposition of A we calculate:

Ak = (D + N)k = Dk + kDk−1N + . . ., where the other terms involve powers N i,
i ≥ 2, which vanish. Hence,

Ak =

(

2k 0
0 2k

)

+ k

(

2k−1 0
0 2k−1

) (

−2 4
−1 2

)

=

(

(1− k)2k k2k+1

−k2k−1 (k + 1)2k

)

.

2



5. (17 points) Let V be an n-dimensional vector space over R with an inner product
and u a unit vector in V . Recall, that the reflection R of V , with respect to the
subspace u⊥ orthogonal to u, is given by R(v) = v − 2(v, u)u.

(a) R2(v) = R(R(v)) = R(v − 2(v, u)u) = [v − 2(v, u)u]− 2([v − 2(v, u)u], u)u =
[v − 2(v, u)u] + 2(v, u)u = v. Hence, R2 = 1.

(b) The minimal polynomial m(x) of R divides x2 − 1 = (x − 1)(x + 1), since
R2 − 1 = 0. If m(x) = x − 1, then R = 1, which it is clearly not, by part
5d. If m(x) = x + 1, then R = −1, and the −1 eigenspace is the whole of
V . This is the case, precisely if V is one dimensional, by part 5d. Hence, if
n = 1, then m(x) = x + 1, and if n ≥ 2, then m(x) = x2 − 1.

(c) R is diagonalizable, since its minimal polynomial is a product of linear terms
with distinct roots.

(d) We compute the −1 eigenspace of R by solving the equation R(v) = −v,
which is equivalent to v − 2(v, u)u = −v. Solving for v in terms of u, we get
that v is in the −1 eigenspace, if and only is v = (v, u)u, i.e., if and only if v

is a scalar multiple of u.

(e) The characteristic polynomial of R is h(x) = (x− 1)d+(x + 1)d
−, where d+ is

the dimension of the +1 eigenspace null(R−1) and d− is the dimension of the
−1 eigenspace null(R + 1), since R is diagonalizable. Now d− = 1, by part
5d, and d++d− = n, since the characteristic polynomial has degree n. Hence,
d+ = n− 1 (We also saw in class several times, that the +1 eigenspace is u⊥,
which is n− 1 dimensional). We conclude, that h(x) = (x− 1)n−1(x + 1).

(f) The trace tr(R) is the sum of the eigenvalues, repeated according to their
multiplicity in the characteristic polynomial. Hence, tr(R) = −1+(n−1)1 =
n− 2.

6. (17 points) Let V be a finite dimensional vector space over a field F , and T : V → V

a linear transformation.

(a) Let v ∈ V be an eigenvector of T with eigenvalue λ, and g(x) = cnx
n + · · ·+c0

a polynomial in F [x]. Show that v is an eigenvector of g(T ) and find its
eigenvalue.

Answer: T n(v) = λnv. Hence,
g(T )v = cnT n(v) + · · ·+ c0v = (cnλ

n + · · ·+ c0)v = g(λ)v. The eigenvalue is
thus g(λ).

(b) Use part 6a to show, that every root of the characteristic polynomial h(x)
of T is also a root of the minimal polynomial m(x) of T (without using the
Cayley-Hamilton Theorem).

Answer: Let λ be a root of the characteristic polynomial of T . Then there exists
a non-zero eigenvector v with eigenvalue λ. Then m(T )v = m(λ)v, by the previous
part. On the other hand, m(T ) = 0, so m(T )v = 0. Hence, m(λ)v = 0, and thus
m(λ) = 0.
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7. (17 points) Let V be a four dimensional vector space over C. Assume that the
characteristic polynomial of T is h(x) = (x− λ1)

2(x− λ2)
2, and λ1 6= λ2.

(a) The four possible minimal polynomials m(x) of T (with leading coefficient
1) are: (x − λ1)

e1(x − λ2)
e2 , where 1 ≤ e1 ≤ 2, and 1 ≤ e2 ≤ 2, since m(x)

divides h(x) and m(x) and h(x) have the same set of roots.

(b) Assume that the minimal polynomial of T is m(x) = (x − λ1)
e1(x − λ2)

e2 ,
set Vi := null[(T − λi1)ei], where 1 is the identity transformation, and let
Ti ∈ L(Vi, Vi) be the restriction of T to Vi. Use the Primary Decomposition
Theorem to show, that the minimal polynomial of Ti is (x−λi)

ei. Hint: Show
first that the minimal polynomial mi(x) of Ti divides m(x) and the product
g(x) := m1(x)m2(x) satisfies g(T ) = 0.

Answer: Step 1 (mi(x) divides m(x)): Let v be a vector in Vi. Then Ti(v) =
T (v), by definition of Ti. So m(Ti)v = m(T )v = 0. Thus the minimal
polynomial mi(x) of Ti divides m(x).

Step 2 (g(T ) = 0): Let {v1, . . . , vn1
} be a basis of V1, and {w1, . . . , wn2

} a
basis of V2. Their union is a basis of V , so it suffices to show, that g(T )vi =
0 = g(T )wj. Now g(T )vi = m2(T )(m1(T )vi) = m2(T )(0) = 0. Similarly,
g(T )wj = m1(T )(m2(T )wj) = m1(T )(0) = 0.

Step 3: m(x) divides m1(x)m2(x), since m1(T )m2(T ) = 0, by Step 2. The
product m1(x)m2(x) divides m(x), since each factor does, by Step 1, and the
two factors are relatively prime (they do not have a common factor). Hence,
m(x) = m1(x)m2(x), since both sides have leading coeficient 1.

(c) Assuming that the minimal polynomial of T is (x− λ1)
2(x− λ2), the dimen-

sions of the null spaces of T − λ11, (T − λ11)2, T − λ21, and (T − λ21)2 are:
dim null(T −λ11) = 1, dim null[(T − λ11)2] = 2, dim null(T − λ21) = 2, and
dim null[(T − λ21)2] = 2.

Reason: Let V1 := null[(T −λ11)2] and V2 := null(T −λ21). Then V = V1⊕V2, by
the Primary Decomposition Theorem, and dim(Vi) = 2, for both i = 1, 2, by the
Triangular Form Theorem, since the multiplicity of the corresponding eigenvalue,
as a root of the characteristic polynomial, is 2. This explains two of the above four
equalities.

The equality dim null(T − λ11) = 1: We know that null(T−λ11) is non-zero, since

λ1 is an eigenvalue, and null(T − λ11) is contained in null[(T − λ11)2], which is
two dimensional. Hence, 1 ≤ dim null(T − λ11) ≤ 2. If dim null(T − λ11) = 2,
then we would have had a basis of V consisting of eigenvectors of T , T would have
been diagonalizable, and the minimal polynomial would have been (x−λ1)(x−λ2),
which it is not.

The equality dim null[(T − λ21)2] = 2: This part was not needed for full credit.

dim null[(T − λ21)2] ≥ dim null(T − λ21) = 2. If strict inequality held, then
there would have been a vector v in null[(T − λ21)2], which did not belong to
null(T − λ21). Then the order mv(x) of v would have been (x − λ2)

2. This is
impossible, since the order mv(x) divides the minimal polynomial.
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