1. (17 points) Let 6 be an angle, such that sin(¢) # 0, and let A := (
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cos(f) —sin(0)
sin(f)  cos(0)

be the matrix of the rotation of R? about the origin by angle § counterclockwise.

(a)
(b)

(c)

(d)

The characteristic polynomial of A is h(x) = 2% — 2cos(f) + 1.

The minimal polynomial m(z) of A is equal to its characteristic polynomial
2 —2cos(0)+1. Two ways to see it are: If we work over the complex numbers,
then the equality h(z) = m(z) follows, since the two roots cos(#) + sin(6)i
and cos(f) — sin(#)7 of h(z) are distinct, and m(z) and h(z) have the same
set of roots, and m(x) divides h(z), by the Cayley Hamilton Theorem. Over
the real numbers the equality m(x) = h(z) follows, since h(z) is a prime
polynomial, m(z) has positive degree, and m(z) divides h(x).

A is similar to a diagonal matrix in My(C), since the minimal polynomial

factors as a product of linear terms with distinct roots
m(z) = (x — [cos(#) + sin(0)i])(x — [cos(f) — sin(0)1]).

A is not similar to a diagonal matrix in M5(R), since its minimal polynomial
is prime in R[z].

1 0

2. (17 points) Set A := ( 0 -1 )

(a)
(b)

(c)

The characteristic polynomial of A is 2% + 1. Its two eigenvalues are i and
—1.

A basis of C? consisting of eigenvectors of A. We find first a basis for the
i-eigenspace null(A — iI), then for the —i eigenspace null(A + iI), and take
their union as a basis for C2.

. —i —1 1 —i
A‘”‘<1 —i)N<0 o)'

Thus, null(A — iI) is spanned by vy :=

) . —1 1 2
A—I—z]-(l ; )N(O 0).

Thus, null(A + il) is spanned by vy := ( _1@ )

Find an invertible matrix P and a diagonal matrix D, both in M5(C), such
that P71AP = D.

{
1

1 1 0 —i

Answer: Take P := (vjv9) = ( v ) Then D = ( 00 )

3. (17 points) Let T : R* — R? be given by multiplication by A = ( —2 9 )

(a)
(b)

-1 4

The characteristic polynomial of T is h(z) = (z — 1)%

The minimal polynomial m(z) of T divides h(x). Ilf m(z) = x—1, then A = I,
which is false. Hence, m(z) = (z — 1)2.

1

)



(c¢) T is not diagonalizable, since its minimal polynomial is a product of linear
terms with repeated roots.

(d) The unique eigenvalue of 7" is the scalar 1.

1

(f) Find an upper triangular matrix B and an invertible matrix P, such that
B = P7'AP. Carefully explain, in complete sentences, your method for
finding P. Credit will not be given for an answer obtained by trial and error.

(e) As a basis for the 1-eigenspace of T we can take ( 3 ) :

Answer: The proof of the Triangular Form Theorem dictates, that we should
choose a basis {v1, vo} for R? = null((A — I)?), so that (A — Iv; = 0. Take v; =

( ? ) and vy = ( 1 ) The change of basis matrix is P = (vjvg) = < 31 ),

0 10
1 —1Y. .
) is upper triangular.

-1 _
and P AP-(O 1

4. (17 points)

(a) Let V be a finite dimensional vector space, T', D, and N, three linear transfor-
mations in L(V, V'), such that T'= D + N. State the three properties that D
and N need to satisfy, in order for the above to be the Jordan decomposition
of T.

Answer: i) D is diagonalizable, ii) N is nilpotent, iii) DN = ND.

b) Let A = O4,B: 21,andP: 21.N0te,that
-1 4 0 2 11
P7'AP = B.
i. The Jordan decomposition of B is B = D’ + N’, where D' = ( 20 )

0 2
andN’:<8 (1])

ii. The Jordan decomposition A = D + N of A is:

A=PBP*'=PD +N)P'=PDP 4+ PNP

0 2 -1 2
iii. We verify that the matrices D and N in part 4(b)ii satisfy the properties
in part 4a, by a direct calculation.

We see that D = PD'P~! = < 2.0 ) and N = PN'P~1 = < —2 4).

iv. Using Jordan decomposition of A we calculate:

A*¥ = (D + N)* = D* + kD*IN + ..., where the other terms involve powers N,
1 > 2, which vanish. Hence,

A — 2k 0 Lk 2k=1 0 -2 4\ [ (1—k)2~" g2kt
L0 2 0 2kt -1 2 )\ =k (k+1)2% -



5. (17 points) Let V' be an n-dimensional vector space over R with an inner product
and v a unit vector in V. Recall, that the reflection R of V', with respect to the
subspace u' orthogonal to u, is given by R(v) = v — 2(v, u)u.

(a)
(b)

(f)

R*(v) = R(R(v)) = R(v —2(v,u)u) = [v — 2(v,u)u] — 2([v — 2(v, w)u], u)u =
[v — 2(v, u)u] + 2(v,u)u = v. Hence, R? = 1.

The minimal polynomial m(z) of R divides 2 — 1 = (x — 1)(z + 1), since
R*—1=0. If m(z) = 2 — 1, then R = 1, which it is clearly not, by part
5d. If m(xz) = x + 1, then R = —1, and the —1 eigenspace is the whole of
V. This is the case, precisely if V' is one dimensional, by part 5d. Hence, if
n =1, then m(z) = z + 1, and if n > 2, then m(x) = 2* — 1.

R is diagonalizable, since its minimal polynomial is a product of linear terms
with distinct roots.

We compute the —1 eigenspace of R by solving the equation R(v) = —uv,
which is equivalent to v — 2(v, u)u = —v. Solving for v in terms of u, we get
that v is in the —1 eigenspace, if and only is v = (v, u)u, i.e., if and only if v
is a scalar multiple of wu.

The characteristic polynomial of R is h(z) = (z — 1)%(z + 1)4-, where d, is
the dimension of the +1 eigenspace null(R—1) and d_ is the dimension of the
—1 eigenspace null(R + 1), since R is diagonalizable. Now d_ = 1, by part
5d, and dy +d_ = n, since the characteristic polynomial has degree n. Hence,
d, =n—1 (We also saw in class several times, that the +1 eigenspace is u™,

which is n — 1 dimensional). We conclude, that h(z) = (z — 1)""}(z + 1).
The trace tr(R) is the sum of the eigenvalues, repeated according to their
multiplicity in the characteristic polynomial. Hence, tr(R) = —1+(n—1)1 =
n—2.

6. (17 points) Let V be a finite dimensional vector space over a field F', and T : V — V
a linear transformation.

(a)

(b)

Let v € V be an eigenvector of T with eigenvalue A, and g(x) = ¢, 2"+ - -+ ¢cq
a polynomial in F[z]. Show that v is an eigenvector of g(7") and find its
eigenvalue.

Answer: T"(v) = \"v. Hence,

9T =c,T™(v) + -+ -+ cov = (A" + - - - + ¢o)v = g(A)v. The eigenvalue is
thus g(\).

Use part 6a to show, that every root of the characteristic polynomial h(x)

of T is also a root of the minimal polynomial m(z) of T' (without using the
Cayley-Hamilton Theorem).

Answer: Let )\ be a root of the characteristic polynomial of 7. Then there exists
a non-zero eigenvector v with eigenvalue A. Then m(T)v = m(\)v, by the previous
part. On the other hand, m(T) = 0, so m(T)v = 0. Hence, m(A)v = 0, and thus
m(A) = 0.



7. (17 points) Let V be a four dimensional vector space over C. Assume that the
characteristic polynomial of T is h(z) = (x — A1)?(z — A\2)?, and \; # Xo.

(a) The four possible minimal polynomials m(z) of T (with leading coefficient
1) are: (z — A\)(z — Ag)®?, where 1 < e; <2, and 1 < ey < 2, since m(x)
divides h(z) and m(x) and h(x) have the same set of roots.

(b) Assume that the minimal polynomial of T"is m(x) = (z — \)® (z — A2)®2,
set V; := null[(T — \;1)%], where 1 is the identity transformation, and let
T; € L(V;,V;) be the restriction of T' to V;. Use the Primary Decomposition
Theorem to show, that the minimal polynomial of T} is (z — A;)¢. Hint: Show
first that the minimal polynomial m;(x) of T; divides m(z) and the product
g(x) := my(x)my(x) satisfies g(7') = 0.

Answer: Step 1 (m;(x) divides m(z)): Let v be a vector in V;. Then T;(v) =
T'(v), by definition of T;. So m(T;)v = m(T)v = 0. Thus the minimal
polynomial m;(z) of T; divides m(x).

Step 2 (¢g(T) = 0): Let {vy,...,v,} be a basis of V;, and {wy,...,w,,} a
basis of V5. Their union is a basis of V, so it suffices to show, that g(T")v; =
0 = g(T)wj;. Now g(T)v; = ma(T)(m1(T)v;) = mo(T)(0) = 0. Similarly,
9(Tyw; = ma(T)(ma(T)w;) = ma (T)(0) = 0.

Step 3: m(x) divides my(x)mso(x), since my(T)mo(T) = 0, by Step 2. The
product my (z)ms(z) divides m(z), since each factor does, by Step 1, and the
two factors are relatively prime (they do not have a common factor). Hence,
m(x) = my(x)mso(x), since both sides have leading coeficient 1.

(c) Assuming that the minimal polynomial of T is (x — A\;)*(x — \3), the dimen-
sions of the null spaces of T'— A1, (T'— M\1)%, T — X\o1, and (T — A\y1)? are:
dim null(T — M 1) = 1, dim null[(T — A\1)?] = 2, dim null(T — X\21) = 2, and
dim null[(T — X\o1)?] = 2.

Reason: Let V; := null[(T —\;1)%] and Vs := null(T —X21). Then V = V; @& V5, by
the Primary Decomposition Theorem, and dim(V;) = 2, for both ¢ = 1,2, by the
Triangular Form Theorem, since the multiplicity of the corresponding eigenvalue,
as a root of the characteristic polynomial, is 2. This explains two of the above four
equalities.

The equality dim null(T — A1) = 1: We know that null(T'— A1) is non-zero, since
A1 is an eigenvalue, and null(T — A\;1) is contained in null[(T — A\;1)?], which is
two dimensional. Hence, 1 < dimnull(T — A1) < 2. If dimnull(T — M\1) = 2,
then we would have had a basis of V' consisting of eigenvectors of T', T" would have
been diagonalizable, and the minimal polynomial would have been (z— A1) (z— A2),
which it is not.

The equality dim null[(T — X21)?] = 2: This part was not needed for full credit.
dim null[(T — X\o1)?] > dimnull(T — \p1) = 2. If strict inequality held, then
there would have been a vector v in null[(T — A21)?], which did not belong to

null(T — X\o1). Then the order m,(z) of v would have been (z — X2)?. This is
impossible, since the order m,(x) divides the minimal polynomial.




