
REVIEW SHEET FOR
MATH 132 FINAL EXAM, FALL 2003

SIMAN WONG

Disclaimer: This review sheet serves to give a highlight of the topics covered after Midterm #2.
It does NOT replace your textbook and/or your lecture notes.

Comments about the practice exams/homework:
• practice exams are on the course website — these are taken verbatim from old exams and

may NOT cover the same materials as we do
• the practice exams are intended to give you an IDEA what the questions are like; your

homework problems are indented to give you a chance to LEARN the course materials.
The actual exam MAY contain problems DIFFERENT from those in the practice exams
and/or homeworks!

• for additional practice: try the end-of-chapter review problems

Other comments about your exams:
• SHOW YOUR WORK!
• study the examples in your textbook
• the final exam is TWO HOURS LONG

11.1, 11.2

• a series
∑

an converges if and if only the sequence of partial sums sn = a1 + · · ·+ an

converges
• basic series:

harmonic series geometric series p-series telescopic series
shape

∑∞
n=1

1
n

∑∞
n=0 arn

∑∞
n=1

1
np Example:

∑∞
n=1

1
n(n−2)

behavior always divergent conv if |r| < 1 conv if p > 1
div if |r| ≥ 1 div if p ≤ 1

• n-term test:
– if limn→∞ an 6= 0 or if this limit does not exist, then

∑
an diverges

– warning: the n-term test is only a ONE-WAY test – if limn→∞ an = 0 then the series
MAY or MAY NOT converge !!

• note the difference between a p-series
∑

n

1
np

and a geometric series
∑

n

a

rn
— note

the different locations where n appear
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Flow-chart for convergent test:

Does
∑

n an converge?

lim
n→∞

an = 0? AST? ratio test?

harmonic series? p-series?
geometric series? telescopic?

all terms
positive?

proceed accordingly
integral test?
comparison tests?
ratio test?

?

yes

-no
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?

?
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no
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yes

11.3, 11.4

• integral test
– suppose an = f(n) for some continuous, decreasing, positive function f , then∫ ∞

1
f(x) dx converges ⇐⇒

∑
an converges

– error estimate for integral test:∫ ∞

n+1
f(x)dx < s− sn <

∫ ∞

n
f(x)dx

• comparison test
– suppose both

∑
an,

∑
bn both have POSITIVE terms.

∗ if an ≤ bn for all large n and if
∑

bn converges, then
∑

an converges
∗ if an ≥ bn for all large n and if

∑
an diverges, then

∑
bn diverges

– error estimate for the comparison test: if 0 ≤ an ≤ bn for all n and if
∑

n bn converges,
then

0 ≤ s− sn < bn+1 + bn+2 + . . .

• limit comparison test

– suppose both
∑

an,
∑

bn both have POSITIVE terms. If lim
n→∞

an

bn
exists and is finite

and non-zero, then∑
an converges ⇐⇒

∑
bn converges

– NOTE: there is NO error estimate for the limit comparison test!
• to use the two comparisons we need something to compare! Good candidates: p-series and

geometric series. Also, remember the relative size of functions:

powers of log n � positive powers of n � (fixed number > 1)n � n! � nn

——————
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11.5:

• alternating series test If
– every bi > 0
– lim

n→∞
bn = 0

– b1 ≥ b2 ≥ b3 ≥ · · ·

then the alternating series
∞∑

n=1

(−1)n−1bn = b1 − b2 + b3 − b4 ± · · · converges

• error estimates: suppose the alternating series b1− b2 + b3− b4±· · · satisfies the AST, then

|s− sn| ≤ bn+1

——————

11.6:
•

∑
an is called absolutely convergent if

∑
|an| converges

•
∑

an is called conditionally convergent if
∑

an converges but
∑
|an| does not.

– Equivalently:
∑

an converges but not absolutely converges
• Theorem: absolutely convergent ⇒ convergent

– converse is FALSE! E.g.
∑∞

n=1
(−1)n−1

n converges but NOT absolutely converges.
• Ratio Test:

lim
n→∞

∣∣∣an+1

an

∣∣∣ exists and is < 1
exists and is > 1; or
if the limit is +∞

exists and is = 1; or
if the limit does not exist

Conclusion absolute conv. divergence inconclusive
——————

11.8, 11.9

• given a power series, use the ratio test to find its radius of convergence, interval of conver-
gence and its center

– don’t forget to check the end points when you try to determine the IOC !
• can get power series representation of functions by manipulating geometric series – the basic

idea is to turn your expression into something that resemble
1

1− blah
:

– Step 0: make sure the numerator is 1
– Step 1: make sure the denominator begins with the coefficient 1
– Step 2: arrange the denominator so that it looks like 1− blah

– Step 3: apply the geometric series formula – so long as |blah| < 1
• within the interval of convergence you can differentiate and/or integrate a power series

term-by-term
– use this to get power series representation for arctanx and for ln(1− x) (both for
|x| < 1)

——————
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11.10
• Taylor polynomials
• know how to compute Taylor series & MacLaurin series

– Taylor series with center a:
∞∑

n=0

f (n)(a)
n!

(x− a)n

– MacLaurin series: Taylor series with center 0; i.e.
∞∑

n=0

f (n)(0)
n!

xn

• know the series (and the interval of convergence) of the basic functions:

ex, sinx, cos x, arctanx, ln(1− x),
1

1− x

• applications: e.g. computing indefinite integrals; computing limits; estimating definite in-
tegrals (in conjunction with error estimates)
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