
Solutions for Math 132 Fall ’02 Final
1. We have an = ( n2+2

2n2−1 )n, whose nth root is simply a
1/n
n = n2+2

2n2−1 . We consider
the limit

lim a1/n
n = lim

n2 + 2
2n2 − 1

= lim
1 + 2/n2

2− 1/n2
= 1/2.

Since this limit exists and is less than 1, the series converges by the nth root test.
2. Let P (t) be the position (in meters) at time t, then P ′(t) = v(t) is the velocity

in m/s at time t and P ′′(t) = v′(t) = a(t) is the acceleration. Since a(t) = −1,
we have v(t) = −t + v0 where v0 is some constant. Plugging in t = 0, we get
v(0) = 0 + v0 = 4, thus v0 = 4 and

v(t) = −t + 4.

Note that v(t) ≥ 0 for 0 ≤ t ≤ 4 and v(t) ≤ 0 for 4 ≤ t ≤ 6. To get the total
distance traveled, we must integrate the absolute value of the velocity.

(a) We get the distance traveled is

∫ 6

0

| − t + 4|dt =
∫ 4

0

(−t + 4)dt +
∫ 6

4

(t− 4)dt

= (−t2/2 + 4t)|40 + (t2/2− 4t)|64
= −8 + 16 + (18− 24− 8 + 16) = 10m.

(b) On the other hand, the total displacement from t = 0 to t = 6 is simpler to
calculate:

∫ 6

0

v(t)dt =
∫ 6

0

(−t + 4)dt = −t2/2 + 4t|60 = −18 + 24 = 6m.

3. We have a water-holding parabola with lowest point at (0,−4) and its re-
flection over the x-axis. The points of intersection are have x coordinate satisfying
4− x2 = x2 − 4 i.e. x = ±2. Thus the curves meet at (2, 0) and (−2, 0). The area
between the curve is calculated by either of the integrals

∫ 2

−2

[(4− x2)− (x2 − 4)]dx = 4
∫ 2

0

(4− x2)dx.

However you slice it, the area between them is 4(4x− x3/3)|20 = 64/3.
4. We rejoice at the sight of the odd power of sin(x) and immediately borrow

one of these sin(x)’s to couple with dx and put u = cos(x), du = − sin(x)dx. We
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then have∫
sin5(x) cos2(x)dx =

∫
sin4(x) cos2(x)[sin(x)dx]

=
∫

(1− cos2(x))2 cos2(x)[sin(x)dx]

=
∫
−(1− u2)2u2du

=
∫
−(1− 2u2 + u4)u2du

=
∫

(−u2 + 2u4 − u6)du

= −u3/3 + 2u5/5− u7/7 + C

= − cos3(x)/3 + 2 cos5(x)/5− cos7(x)/7 + C.

Now we use the fundamental theorem to calculate the definite integral to have value

− cos3(x)/3 + 2 cos5(x)/5− cos7(x)/7|π/2
0 = 0!

(That’s 0 (surprise!) which is equal to 0, not 0! = 0factorial which everybody
knows is equal to 1.)

5. For x = t(t2− 3), y = 3(t2− 3), we need to calculate the slope of the tangent,
which is, of course dy/dx. We use the chain rule to express this as dy

dx = dy/dt
dx/dt . Now

dx

dt
= 1(t2 − 3) + t(2t) = 3t2 − 3,

dy

dt
= 6t.

Thus,
dy

dx
=

6t

3(t2 − 1)
=

2t

t2 − 1
.

This quantity is 0, giving a horizontal tangent, when the numerator vanishes, i.e.
for t = 0, or at the point (0,−9). It is undefined (i.e. the denominator is 0), giving
a vertical tangent when t = ±1 i.e. at the points (2,−6) and (−2,−6).

6. It is always a good idea to get acquainted with a series before you start
investigating its convergence/divergence behavior. So, write out the first few (say
3) terms of the series to gain some familiarity with your opponent:
∞∑

n=0

(
lnx

2

)2n

=
(

lnx

2

)0

+
(

lnx

2

)2

+
(

lnx

2

)4

+ · · · = 1+
(

lnx

2

)2

+
(

lnx

2

)4

+ · · ·

First of all, let’s note that this is a geometric series because it is of the type∑∞
n=0(BLOB)n. How come? Because GOOP 2n = (GOOP 2)n. So for our se-

ries we have
∞∑

n=0

(
lnx

2

)2n

=
∞∑

n=0

[(
lnx

2

)2
]n

=
∞∑

n=0

(BLOB)n

where

BLOB =
(

lnx

2

)2

.

Such a series converges exactly when |BLOB| < 1 and in that case it converges to
first term
1−BLOB . Look carefully and notice that the series begins with n = 0 not n = 1 and
BLOB0 = 1 so the first term of the series is 1. [Of course we know this because
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we wrote out the first few terms.] So, summing up, we have the series converges
exactly when ∣∣∣∣∣

(
lnx

2

)2
∣∣∣∣∣ < 1 which means∣∣∣∣ lnx

2

∣∣∣∣ < 1 which means

| lnx| < 2 which means
−2 < lnx < 2 which means

e−2 < eln x < e2 which means
e−2 < x < e2.

For these values of x, our series converges to
1

1−BLOB
=

1
1− (lnx)2/4

=
4

4− (lnx)2
.

7. To use the integral test, we just turn the Σ into a
∫

and the n’s into x’s,
tacking on a dx. The series converges if and only if the integral does.

a) ∫ ∞

1

1
1 + x2

dx = lim
B→∞

∫ B

1

1
1 + x2

dx

= lim
B→∞

arctan(x)|B1
= lim

B→∞
arctan(B)− arctan(1)

= π/2− π/4 = π/4.

Thus the series converges by the integral test.
b) First let’s do the indefinite integral:∫
lnx

x
dx =

∫
udu = u2/2+C = (lnx)2/2+C, where u = ln x, du = dx/x.

Now on the improper integral:∫ ∞

1

lnx

x
dx = lim

B→∞

∫ B

1

lnx

x
dx

= lim
B→∞

(lnx)2/2|B1

= lim
B→∞

(lnB)2/2− (ln 1)2/2

= ∞.

Hence the sum diverges.
8. Note the typo n = 1 instead of i = 1. We use ART (the absolute ratio test) of

course. We have the nth term of the series is an = (−1)n3n(x− 1)n/n, so an+1 =
(−1)n+13n+1(x−1)n+1/(n+1). We want to calculate L = limn→∞ |an+1/an|. First
we simplify this ratio:

|an+1/an| =
3n+1|x− 1|n+1n

3n|x− 1|n(n + 1)

= 3|x− 1| n

n + 1
.
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Now it’s immediate that L = 3|x − 1| since the ratio n/(n + 1) goes to 1. By the
absolute ratio test, we know that

the series CONVERGES ABSOLUTELY when L < 1, i.e. when |x− 1| < 1/3,
and we also know that the series DIVERGES when L > 1 i.e. when |x−1| > 1/3.
It remains to check what happens when L = 1 (that’s when ART is inconclusive).

L = 1 means |x− 1| = 1/3, i.e. either x− 1 = 1/3 or x− 1 = −1/3, in other words
it corresponds to x = 4/3, 2/3. When x = 4/3, the series is∑

n=1

∞ (−1)n3n(4/3− 1)n

n
=

∑
n=1

∞ (−1)n

n
,

i.e. the series just becomes the alternating harmonic series, which converges by
the Alternating Series Test. On the other hand, at the other endpoint, when
x = 2/3, we just get the harmonic series, which diverges. Thus, the series converges
absolutely for 2/3 < x < 4/3, conditionally for x = 4/3 and diverges for all other
x.

9. We know that

eu =
∞∑

n=0

un

n!
= 1 + u + u2/2! + u3/3! + u4/4! + ...

is a convergent power series for every u. Plugging in u = −x2, we get

e−x2
=

∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)n x2n

n!
= 1− x2 + x4/2!− x6/3! + x8/4!− ...

for every x. If we multipltiply this by x2, it will still converge for every x giving

x2e−x2
=

∞∑
n=0

(−1)n x2n+2

n!
= x2 − x4 + x6/2!− x8/3! + x10/4!− ...

Now we have a theorem to the effect that we can integrate a power series term-by-
term and that the resulting power series will converge in the same interval as the
original power series. Thus we know that∫

x2e−x2
dx =

∞∑
n=0

∫
(−1)n x2n+2

n!
dx

= C +
∞∑

n=0

(−1)n

n!(2n + 3)
x2n+3

= C + x3/3− x5/5 + x7/(7 · 2!)− x9/(9 · 3!) + x11/(11 · 4!)− ...

is a convergent power series for every x.


