
Algebraic Geometry Homework Assignment 5, Fall 2007
Due Thursday, October 27.

The field k below is assumed algebraically closed.

1. Let f : A
2 → A

2 be the morphism given by f(x, y) = (xy, y). Describe the image
of f . Show that f fails to satisfy each of properties 1 and 2 in Proposition 2 of
section I.7 in Mumford (it is not closed, and it has an infinite fiber).

2. (Fulton’s Algebraic curves problem 4.28 modified) SetA := k[X0, . . . , Xn, Y0, . . . , Ym].
A polynomial F ∈ A is called bi-homogeneous of bi-degree (p, q), if F is homoge-
neous of degree p (resp. q) when considered as a polynomial in X0, . . . , Xn (resp.
in the Yi’s). Given a set S of bi-homogeneous polynomials, set

V (S) := {(x, y) ∈ P
n × P

m : F (x, y) = 0, for all F ∈ S}.

(a) Show that a subset Z of P
n × P

m is closed, in the Zariski topology of the
product variety defined in Mumford section 6, if and only if Z = V (S), for
some set S of bi-homogeneous polynomials.

(b) Let A++ ⊂ A be the ideal generated by all the products XiYj, 0 ≤ i ≤ n,
0 ≤ j ≤ m. Prove the bi-homogeneous Nullstellensatz: There is a one-to-
one order reversing correspondence between radical bi-homogeneous ideals not
containing A++, and non-empty closed subsets of P

n×P
m. Hint: Immitate the

proof that affine Nallstellensatz implies projective Nallstellensatz (Theorem 3
in section I.2 of Mumford’s text). Note that the subset Vaffine(A++) of A

n+m+2

is the union A
n+1 × {0} ∪ {0} × A

m+1. Use the linear algebra fact, that an
ideal of A is bi-homogeneous, if and only if it is (k∗ × k∗)-invariant.

(c) Assume that V (S) 6= ∅. Show that V (S) is irreducible, if and only if the
bi-homogeneous ideal, generated by S, is a prime ideal in A.

(d) Let ϕ : P
1 × P

1 → P
3 be the Segre embedding,

ϕ[(x0, x1), (y0, y1)] = (x0y0, x0y1, x1y0, x1y1).

Let the homogeneous coordinates on P
3 be X, Y, Z,W , so that the image of

ϕ is V (XW − Y Z).

i. Find a bi-homogeneous polynomial F (X0, X1, Y0, Y1), such that ϕ(V (F )) =
V (XW −Y Z, X2 +Y 2 +Z2 +W 2). Show that V (F ) is the union of four
irreducible components, each isomorphic to P

1.

ii. Let ρ : P
1 → P

3 be the twisted cubic, ρ(s, t) = (s3, s2t, st2, t3). Find
a bi-homogeneous polynomial G(X0, X1, Y0, Y1), such that ϕ−1(ρ(P1)) =
V (G). Compare with problem 5 of Homework 2.

3. Let Z ⊂ P
n × P

m be a closed subvariety, I(Z) its bi-homogeneous prime ideal,
Γb(Z) := A/I(Z), and Kb(Z) its quotient field. Set K ′(Z) to be {0} union
{

h ∈ Kb(Z) ; h =
F

G
, F, G are bi-homogeneous of the same bi-degree in Γb(Z)

}

.

Show that K ′(Z) is isomorphic to the function field K(Z) of Z. Describe the local
ring Oz, at a point z ∈ Z, in terms of Γb(Z).
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4. Let X and Y be varieties, C a closed subset of X, and f : C → Y a continuous
surjective map (this is the case, for example, if f is the restriction of a morphism
from X to Y ). Assume that i) every fiber of f is an irreducible subset of C, and
ii) For every y ∈ Y there exists a Zariski open subset U of Y , containing y, such
that f−1(U) is homeomorphic to U × f−1(y). Prove that C is irreducible.
Note: The latter condition states that f : C → Y is (topologically) a locally trivial
fibration.

5. (Fulton’s Algebraic curves problem 6.28) Let d ≥ 1, N = (d+1)(d+2)
2

− 1, and
let M0, . . . ,MN be the monomials of degree d in X, Y , Z (in some order). Let
T0, . . . , TN be homogeneous coordinates for P

N . Set

C := V

(

N
∑

i=0

Mi(X, Y, Z)Ti

)

⊂ P
2 × P

N ,

and let π : C → P
N be the restriction of the projection map.

(a) Show that C is an irreducible closed subvariety of P
2 × P

N , and π is a mor-
phism. Hint: Prove the irreducibility in two ways i) Using Problem 2c. ii)
Consider the fibers of the other projection p : C → P

2 and use Problem 4.

(b) For each t = (t0, . . . , tN) ∈ P
N , set Ft :=

∑N

i=0 tiMi(X, Y, Z) ∈ k[X, Y, Z],
and Ct := V (Ft) ⊂ P

2. Show that π−1(t) = Ct × {t}.

Note: The data of the projective variety C, together with the morphism π : C →
P

N , is called the universal family of curves of degree d. If the polynomial Ft is
square free, so that (Ft) is a radical ideal, then deg(Ct) is defined to be deg(Ft),
which is d. If one of the irreducible factors of Ft appears with multiplicity µ > 1,
then the algebraic set Ct will have degree < d, but we will define later a natural
scheme structure on the fiber π−1(t), which encodes these multiplicities.

6. (a) Let f : X → Y be a morphism of varieties, V an open subset of Y and U an
open subset of X, which is mapped into V . Prove that U and V are varieties,
and f resticts to a morphism from U to V . Hint: Use Proposition 6 section
I.5 in Mumford’s text. Note: Consider the special case, where Y is affine and
X = U . The coordinate ring Γ(Y ) is a subring of Γ(V ). Part 6a says that it
suffices to chech that f ∗Γ(Y ) is contained in Γ(X), in order to conclude that
f ∗Γ(V ) is contained in Γ(X).

(b) (Fulton’s Algebraic curves problem 6.29) Let G be a variety, and suppose G
is also a group, i.e., there are functions ϕ : G× G → G (multiplication) and
ψ : G→ G (inverse) satisfying the group axioms. If ϕ and ψ are morphisms,
G is said to be an algebraic group. Show that each of the following is an
algebraic group.

i. A
1 = k, with the usual addition on k; this group is often denoted by Ga.

ii. A
1 \ {0} with the usual multiplication on k; this is denoted by Gm.

iii. GLn(k), the group of invertable n× n matrices, which is an affine open
subset of A

n2

(k).
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Remark: Example F in section I.3 of Mumford’s text, which is revisited at the
end of section I.5, describe an automorphism of order 2 of a projective cubic plane
curve. This is the inversion for an algebraic group structure.

7. (a) Let X and Y be affine varieties over an algebraically closed field k with
coordinate rings R and S, and ϕ : X → Y a morphism. Let Z := ϕ(X) be the
closure of the image of ϕ in Y . Show that ϕ factors through an isomorphism
of X onto Z, if and only if the k-algebra homomorphism ϕ∗ : S → R is
surjective.

(b) Formulate and prove a necessary and sufficient criterion for a morphism ϕ :
X → Y of prevarieties to factor through an isomorphism onto Z := ϕ(X). In
this case, we say that ϕ is a closed immersion. See Proposition 5 section I.5
in Mumford’s text for the prevariety structure of Z.

(c) Mumford, Problem in section 6 (a converse to Proposition 6 in section I.6):
Let X be a prevariety, {Ui} an affine open covering of X. Let Ri be the
coordinate ring of Ui. Assume that Ui ∩ Uj is an affine subset of X with
coordinate ring Ri ·Rj (the minimal k-subalgebra of the function field K(X)
containing Ri and Rj). Prove that X is a variety.

8. (Hartshorne, Exercise I.3.7) Let X ⊂ P
n be a projective variety. We will prove

that OX(X) = k (all global regular functions on X are constant, an immediate
corollary of the completeness of X, defined and proven in section I.9 in Mumford).
Use this fact, together with Problem 6 of Homework 4, to solve the following:

(a) If an affine variety is isomorphic to a projective variety, then it consists of
only one point.

(b) Show that any two curves in P
2 have a non-empty intersection.

(c) More generally, show that if X ⊂ P
n is a projective variety of dimension ≥ 1,

and if Y = V (F ) is a hypersurface (where F is a homogeneous polynomial of
positive degree), then X ∩ Y 6= ∅.
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