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Abstract

We use Gr1obner bases of modules as a tool in the construction and classi2cation of quasicyclic
codes. Whereas previous studies have been mainly concerned with the 1-generator case, our
results elucidate the structure of arbitrary quasicyclic codes and their duals. As an application
we provide a complete characterisation of self-dual quasicyclic codes of index 2. ? 2001
Elsevier Science B.V. All rights reserved.

1. Introduction

Quasicyclic codes of index ‘ over a (2nite) 2eld F , de2ned by the property that
a cyclic shift of a codeword by ‘ places is another codeword, generalise the class of
cyclic codes (‘ = 1). Many such codes have been discovered with minimum distance
exceeding that previously known for any linear code of the same length and dimension,
or, indeed, taking the maximum possible value.
The theory of Gr1obner bases of modules (developed in [1,2]) has been applied [6–9]

to decoding Reed–Solomon codes, to scalar rational interpolation, and to various other
problems, such as Pad?e approximation, that can be represented as solving systems of
polynomial congruences. In [22], the authors use the theory to develop machinery for
analysis of Hermitian codes. The essential idea is to use a cyclic group of automor-
phisms of the code to represent it as a module over the polynomial ring F[x]. In this
paper we adopt the same approach to provide new insight into the algebraic structure
of quasicyclic codes.
Early studies by Chen et al. [3], Karlin [18,19], and Townsend and Weldon [32]

established connections between quasicyclic codes, multicirculant, and power residue
codes, while [20] showed that quasicyclic codes meet a modi2ed Gilbert–Varshamov
bound (see also [23]). The close link between quasicyclic and convolutional codes is

� A preliminary version of this paper was presented at the Workshop on Coding and Cryptography, INRIA,
Paris, January 1999.
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indicated by the obvious similarity between the polynomial form of the generator matrix
of a quasicyclic code (see Section 2) and the generator matrix of a convolutional code
[24,25,30].
Generally, a quasicyclic code of length ‘m and index ‘ may be represented as the

row space of a block matrix, each row of which has the form (G1; : : : ; G‘), where Gi

is an m × m circulant. These rows, or the equivalent polynomial vectors, are conven-
tionally called “generators”. A method for constructing 1-generator quasicyclic codes
was given by van Tilborg in [33], as well as the results of an exhaustive computer
search for such codes over the binary alphabet, for m = 7; 8 and length up to 120.
Some of these codes meet the best possible values of minimum distance for any linear
code. Further developments of van Tilborg’s technique were provided by Gulliver and
Bhargava [11–15], who carried out non-exhaustive searches, using heuristic combinato-
rial optimisation techniques and selection algorithms, again resulting in the construction
of many new 1-generator quasicyclic codes that improved the known lower bounds.
The same authors extended their research to the 2-generator case in [16]. Quasicyclic
codes over other 2elds were studied in [10,13] and many good or optimal codes were
constructed. Currently, Zhi Chen maintains a searchable database of quasicyclic codes
at http:==rimula.hkr.se/∼chen=research=codes=searchqc2.htm.
The structure of quasicyclic codes was explored by S?eguin and others [4,26–28],

and Tanner [31]. We adopt a new approach based on the construction of a canonical
generating set for a quasicyclic code regarded as a submodule of the algebra R‘ where
R=Fq[x]=〈xm− 1〉. We use the language of Gr1obner bases which, although not strictly
necessary, leads to concise arguments and has the potential for generalisation to codes
over other domains. Our primary aim here is to elucidate structure, so we do not address
the important issues of minimum distance, decoding algorithms, and the existence of
good quasicyclic codes. Nevertheless, our methods can be used to construct quasicyclic
codes of index ‘ and length ‘m for all dimensions permissable by the degrees of the
irreducible factors of xm − 1. As a consequence we have constructed many binary
quasicyclic codes which are optimal or meet the best known bounds for linear codes,
many of which are the 2rst known quasicyclic codes meeting the bounds. Also, using
an early version of this paper [21], Siap et al. [29] have constructed many quasicyclic
codes over the 2elds of order 3 and 5 that improved the known bounds.
NB: Throughout the paper the word “code” means “quasicyclic code” unless

otherwise speci/ed.

2. Basic structure

Let C be a code of length ‘m and index ‘ where ‘ is de2ned as the smallest
power of the cyclic shift operator under which C is invariant. It is obvious that
by a coordinate permutation we may assume that each element of C can be repre-
sented as a vector c = (c1(x); : : : ; c‘(x)) of polynomials of degree less than m. In this
form the de2ning property of C is that it is closed under multiplication by x and
reduction modulo xm − 1 in each component, that is, c ∈ C implies xc = (xc1(x)
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mod xm − 1; : : : ; xc‘(x)mod xm − 1) ∈ C. If R=F[x]=〈xm − 1〉, where F is a 2nite 2eld,
this implies that C is an R-submodule of R‘, which is the precise generalisation of
the structure of a cyclic code. It follows that the preimage C̃ of C in F[x]‘ is an
F[x]-submodule containing K̃= 〈(xm−1)ei; i=1; : : : ; ‘〉 where ei is the standard basis
vector with 1 in position i and 0 elsewhere. The tilde will be used conventionally
throughout to represent structures over F[x].
Since C̃ is a submodule of the 2nitely generated free module over the principal ideal

domain F[x] and contains K̃, it has a generating set of the form {ri; i=1; : : : ; t; (xm−
1)ej; j = 1; : : : ; ‘} where ri = (ri1; : : : ; ri‘) (see [17, Chapter 7]). Thus the rows of

M =




r11 · · · r1‘

r21 · · · r2‘

· · ·
rt1 · · · rt‘

xm − 1 · · · 0

· · ·
0 : : : xm − 1




generate C̃. Using elementary row operations in F[x] we may triangularise M so that
another generating set is given by the triangular set of rows G̃= {g1; : : : ; g‘} of

G̃ =




g11 g12 : : : g1‘

0 g22 : : : g2‘

: : : : : :

0 0 : : : g‘ ‘


 (1)

where the diagonal component gii divides xm − 1 for all i: Note that gi 
= 0 for all i.
Each non-zero element of C̃ may be expressed in the form (0; : : : ; 0; cr ; : : : ; c‘), where
r¿1 and cr 
= 0. Writing this as an F[x]-linear combination

∑‘
i=1 aigi, it is immediate

that cr is divisible by the corresponding diagonal component grr . This implies that G̃
is a Gr1obner basis of C̃ with respect to the position-over-term (POT) order in F[x]‘,
where e1 ¿ · · ·¿e‘ and the monomials xi are ordered naturally in each component.
Throughout the paper Gr1obner bases will be de2ned with respect to POT order unless
otherwise stated. For the theory of Gr1obner bases see [1,2,5].
Using further elementary operations we can guarantee that

@gij ¡@gjj for i¡ j; (2)

where @ denotes degree and @0 =−1, and then G̃ is the reduced Gr1obner basis of C̃.
This is uniquely de2ned up to multiplication by constants, and where appropriate we
adopt the natural normalisation in which the diagonal components are monic. We will
often make uniqueness statements intending uniqueness up to constant multiples without
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explicit mention. If G̃ is a reduced Gr1obner basis and the diagonal component gii is
equal to xm − 1 then (0; : : : ; 0; gi; i+1; : : : ; gi‘) ∈ C̃ which means that it is an F[x]-linear
combination of {gi+1; : : : ; g‘}. Since @gij ¡@gjj for all j¿ i this forces gij = 0 for all
j¿ i and hence gi = (xm − 1)ei.
The leading term Lt(0; : : : ; 0; vr ; : : : ; v‘); r¿1; vr 
= 0; of an element v ∈ F[x]‘ is

x@vr er . Each such v has a uniquely de2ned normal form Nf G̃(v) = (0; : : : ; 0; v′s; : : : ; v
′
‘)

with respect to G̃, obtained by successive division of its components by the gii and
satisfying

v= (0; : : : ; 0; v′s; : : : ; v
′
‘) +

‘∑
i=1

bigi;

where s¿r and @v′j ¡@gjj for s6j6‘. (This division algorithm is given in detail in
[8,9] and is a straightforward generalisation of that in [5].) Also, v ∈ C̃ if and only
if Nf G̃(v) = (0; : : : ; 0). Since the dimension of the quotient F[x]‘=K̃ is 2nite we may
immediately compute the F-dimension of F[x]‘=C̃ as the number of terms xiej which
are in normal form modulo G̃. This is clearly

∑‘
i=1 @gii.

We summarise in the following theorem.

Theorem 2.1. Each submodule C̃ of F[x]‘ containing K̃ has a reduced Gr3obner basis
of the form

G̃= {gi = (gi1; gi2; : : : ; gi‘); i = 1; : : : ; ‘}; (3)

where
(i) gij = 0 for all j¡ i,
(ii) @gki ¡@gii for k ¡ i,
(iii) if the left-most non-zero component of an element of C̃ lies in the ith place then

it is divisible by gii; in particular; gii divides xm − 1;
(iv) if gii = xm − 1 then gi = (xm − 1)ei;
(v) the F-dimension of F[x]‘=C̃ is

∑‘
i=1 @gii.

Any triangular set G̃ is a Gr1obner basis of the submodule of F[x]‘ that it generates.
The condition that the submodule should contain K̃ is equivalent to the existence of
a matrix Ã ∈ Mat‘(F[x]) such that

ÃG̃ =




a11 a12 : : : a1‘

a21 a22 : : : a2‘

...
...

. . .
...

a‘1 al2 : : : a‘ ‘







g11 g12 : : : g1‘

0 g22 : : : g2‘

...
. . .

...

0 : : : 0 g‘ ‘




= (xm − 1)I; (4)

where I is the identity matrix. It is immediate that Ã is also upper triangular, and
its non-zero entries can be computed recursively from those of G̃. If we consider the
equation ÃG̃=(xm−1)I over the 2eld of fractions of F[x] then the factors are invertible
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and therefore also G̃Ã = (xm − 1)I over F[x]. It follows that the entries of G̃ satisfy
an analogous system of equations in terms of those of Ã.

Theorem 2.2. The set G̃ is a Gr3obner basis of a submodule F[x]‘ containing K̃ if
and only if there exist aij for 16i; j6‘ satisfying

aij =




0 if j¡ i;
xm−1
gii

if j = i;

−1
gjj

(
j−1∑
k=i

aikgkj) if j¿ i:

(5)

Moreover the corresponding equations with the roles of gij; aij interchanged also hold;
and m − @gii = @aii for all i. The Gr3obner basis is reduced if and only if @gii ¿@gji
for all j¡ i; if and only if @aii ¿@aij for all j¿ i.

Proof. This is an easy consequence of the de2nitions and (4), apart from the degree
conditions on the aij. Suppose that the Gr1obner basis is reduced so that @gii ¿@gji
for all j¡ i. The equation aiigi; i+1+ai; i+1gi+1; i+1=0 implies either gi; i+1=ai; i+1=0 or
@aii − @ai; i+1 = @gi+1; i+1 − @gi; i+1 ¿ 0. Using an induction argument, if @aii ¿@aij for
j = i + 1; : : : ; k − 1 and @aik¿@aii then the last summand on the left-hand side of the
equation

aiigik + ai; i+1gi+1; k · · ·+ ai;k−1gk−1; k + aikgkk = 0

has degree strictly greater than the degrees of the others, which is a contradiction. Hence
@aik ¡@aii and, by induction, the proof in one direction is complete. The converse is
true by a symmetrical argument.

Remark 2.3. Given a triangular set G̃, veri2cation in practice that it generates a sub-
module containing K̃ is carried out as follows. For each i, we check that the diagonal
component is a divisor of xm−1. Then the generator gi is multiplied by aii=(xm−1)=gii
and subtracted from (xm − 1)ei. The residual vector must then be reduced to zero by
subtracting multiples of gi+1; : : : ; g‘. This process takes (‘−1)(‘− i+1)=2 polynomial
multiplication–subtraction operations, and the total number of such operations required
for veri2cation is (‘ − 1)‘(‘ + 1)=6.

The code C is the image of C̃ under the natural homomorphism ’: F[x]‘ →
R‘; (c1; : : : ; c‘) �→ (c1 + 〈xm− 1〉; : : : ; c‘ + 〈xm− 1〉). Dropping the coset notation we see
immediately that C has an R-generating set G comprising the elements of a Gr1obner
basis G̃ not mapped to zero under ’, that is, those elements not of the form (xm− 1)u
for some u ∈ F[x]‘. We refer to this set of generators as a GB generating set of
C. This is the central structural notion of our theory. Of course, such Gr1obner basis
generating sets depend on the choice of order (we have used POT order and later will
introduce an alternative rPOT order). If the generating set of C is derived as the set
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of images of a reduced Gr1obner basis then it will be called an RGB generating set.
This generating set is uniquely de2ned with respect to the given order.
Applying part (v) of Theorem 2.1 and subtracting the codimension of C̃ from that

of K̃, we can immediately assert

Corollary 2.4. The dimension of the code C with GB generating set {’(gi);
i = 1; : : : ; ‘} is given by

‘m−
‘∑

i=1

@gii =
‘∑

i=1

(m− @gii):

The possible dimensions of codes can also be enumerated straightforwardly. From
now on we 2x the notation xm − 1 =

∏s
n=1 f

"
n, where m = (char F)tm′ with gcd

(m′; char F) = 1 and " = (char F)t , for the decomposition of xm − 1 into irreducible
factors fn over F . It will be convenient to use the notation N = {1; 2; : : : ; s}.

Corollary 2.5. The codes of length ‘m and index ‘ have dimensions
∑‘

i=1

∑s
n=1 tni@fn

where 06tni6". Every such dimension arises in some code (for instance; in a code
with block diagonal generator matrix).

Remark 2.6. The most frequently studied codes in the literature are those with one
“generator” (in the sense of the Introduction), that is, the cyclic submodules of R‘.
These are usually referred to as “1-generator” codes. Such codes may well have Gr1obner
basis generating sets containing more than one element. It is not at all obvious how to
determine the dimension of the code from such a generator (but see Corollary 2.14).

We now give two examples C1;C2 which will be used as illustrations.

Example 2.7. Let C1 be the binary code of index ‘=3 and length n= ‘m=21; m=7
generated by elements

v1 = (x5 + x4 + 1; x4 + x3 + x + 1; x4 + x3 + x2)

v2 = (x4 + x2 + x3 + 1; x; x4 + x3 + x + 1):

Let f1 = x+1; f2 = x3 + x+1; f3 = x3 + x2 + 1 so that x7 + 1=f1f2f3. The reduced
Gr1obner basis of C̃1 =

〈
v1; v2; (x7 + 1)e1; (x7 + 1)e2; (x7 + 1)e3

〉
comprises the rows of

f2 f2
1 x2

0 f3 f1f3

0 0 x7 + 1




so the diagonal components are indeed divisors of xm − 1. The corresponding RGB
generating set of C1 consists of the rows of(

f2 f2
1 x2

0 f3 f1f3

)
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since the third row is mapped to zero by ’. From the diagonal components we may
calculate the dimension of C1 as

∑l
i=1(m− @gii) = 4 + 4 + 0 = 8:

There is no restriction to the semisimple case (corresponding to gcd(m; char F)= 1)
in the Gr1obner basis formulation, that is, the value of m need not be relatively prime
to the characteristic (compare [4,27]). The binary code C2 of index ‘ = 3 and length
n= ‘m= 84; m= 28 whose RGB generating set is given by the rows of


f2
1f2f3

3 f2
1(x

2 + x + 1) 1

0 f4
1f2f3 f2x

0 0 f3
1




has dimension
∑l

i=1(m− @gii) = 14 + 18 + 19 = 51:

Using the restrictions on the oR-diagonal elements of G̃ and Ã imposed by Theorem
2.2 we can, in principle, construct RGB generating sets for all possible codes of a
given index, limited only by the computational eRort involved.

Example 2.8. Suppose that we wish to construct RGB generating sets for all binary
codes of index ‘=3 and length 21 with diagonal components as in C1. Then we may
take

Ã=




f1f3 p q

0 f1f2 r

0 0 1


 ; G̃ =




f2 a b

0 f3 c

0 0 x7 + 1


 : (6)

The equations ÃG̃ = G̃Ã= (x7 + 1)I lead to p= f1a; c= f3r; b= f2q+ ar, while the
degree restrictions on the oR-diagonal elements of G̃ give @a62; @b66; @c66; @p63;
@q63; @r63. Conversely, any set of polynomials satisfying these constraints is valid.
We can choose a; q; r freely and this 2xes the code. Hence there are 211 such codes.
The same analysis can be carried out for other choices of the diagonal components gii.
In the particular case of C1 we 2nd the (unique) solution a=f2

1 ; b=x2; c=f1f3; p=
f3
1 ; q= 1; r = f1.

A generator matrix for the code C, comprising linearly independent rows, can be
constructed directly from any GB generating set G= {gi; i = 1; : : : ; ‘} as follows. The
diagonal component gii and its m− @gii − 1 cyclic shifts xgii; x2gii; : : : ; xm−@gii−1gii are
clearly linearly independent over F (since the leading coeScient of gii is non-zero).
Hence the set of vectors

gi = (0; 0; : : : ; 0; gii; gi; i+1; : : : ; gi‘)

xgi = (0; 0; : : : ; 0; xgii; xgi; i+1; : : : ; xgi‘)

...

xm−@gii−1gi = (0; 0; : : : ; 0; xm−@gii−1gii; xm−@gii−1gi; i+1; : : : ; xm−@gii−1gi‘)
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is also linearly independent over F for each i. The block upper triangular matrix


g11 g12 · · · g1‘
xg11 xg12 : : : xg1‘
...

...
...

xm−@g11−1g11 xm−@g11−1g12 : : : : : : xm−@g11−1g1‘
0 g22 · · · g2‘
0 xg22 · · · xg2‘
...

...
...

0 xm−@g22−1g22 : : : : : : xm−@g22−1g2‘
...

...
. . .

...
0 0 · · · g‘ ‘
0 0 · · · xg‘ ‘
...

...
...

0 0 · · · xm−@g‘ ‘−1g‘ ‘




(7)

is an ‘ × ‘ block matrix in which each block is a truncated circulant. Since the
diagonal components gii all lie in diRerent positions, the rows of this matrix are linearly
independent and therefore form a basis of ‘m−∑l

i=1 @gii vectors in F‘m.

Example 2.9. For C1 we 2nd the following generator matrix:


1101000 1010000 0010000
0110100 0101000 0001000
0011010 0010100 0000100
0001101 0001010 0000010

0000000 1011000 1110100
0000000 0101100 0111010
0000000 0010110 0011101
0000000 0001011 1001110




:

Previous authors have constructed this form of generator matrix in the 1–generator case
(for example [12,26,33]).
Using the RGB generating set ’(G̃) = {’(g1); : : : ; ’(g‘)} of the code C we can

compute the decomposition of C, regarded as F[x]-module, into its primary components
(cf. [17, Chapter 8]). These are the submodules uC generated by the sets of elements
{u’(gi); i=1; : : : ; ‘} where u is of the form (xm−1)=f"

n for n ∈ N . In the semisimple
case they correspond to the irreducible submodules. However, in order to determine the
RGB generating sets of the components, we 2rst carry out the computation in F[x]‘,
by reducing the generating sets {ugi; i = 1; : : : ; ‘; (xm − 1)ej; j = 1; : : : ; ‘} to Gr1obner
basis form, and thus determining the RGB generating sets for the components of C.
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Example 2.10. C̃1 is the sum of the submodules f1f2C̃1 + K̃, f1f3C̃1 + K̃, and
f2f3C̃3 + K̃ which intersect in K̃. The reduced Gr1obner basis generator matrices of
the summands are

f1f2


 1 f1 f2

1

0 f3 0
0 0 f3


 ; f1f3


f2 0 0

0 1 f1

0 0 f2


 ; f2f3


 1 0 1

0 1 0
0 0 f1




respectively. It now follows that the primary components of C1 have reduced Gr1obner
bases given by

〈f1f2( 1 f1 f2
1 )〉 ⊕ 〈f1f3( 0 1 f1 )〉 ⊕

〈
f2f3

(
1 0 1
0 1 0

)〉

and that the component subcodes have dimensions 3, 3, 2.
Similarly, the component submodules of C̃2 are

f4
1f

4
2


f3

3 f1 0
0 f3 0
0 0 1


 ; f4

1f
4
3


f2 1 x2(x2 + x + 1)f1

0 f2 (x4 + x + 1)f2

0 0 f3
2


 ; f4

2f
4
3


f2

1 f2
1 0

0 f4
1 0

0 0 1




and here the RGB generating set of each of the three primary components of C2

contains three elements. The dimensions of the primary subcodes are 24, 21, and 6.

The matrix Ã in (4) may be interpreted as the matrix of K̃ relative to G̃, where
K̃ is regarded as the kernel of the surjective homomorphism ’|C̃ : C̃ → C, restricting
’ to C̃. By a standard argument ([17, Chapter 7]), the Smith normal form of Ã is a
diagonal matrix D = X ÃY , and the basis of C̃ given by the rows of Y−1G̃ provides
a direct decomposition of C as a direct sum of cyclic submodules. We may use this
to decompose the primary components of C into direct sums of submodules of prime
power order. In the semisimple case the RGB generating sets of the primary components
already give the decomposition, as the following lemma shows.

Lemma 2.11. If gcd(m; char F) = 1 then each primary component of C decomposes
into a direct sum of irreducible cyclic submodules generated by the elements of its
RGB generating set.

Proof. Let f be an irreducible factor of xm−1 corresponding to the primary component
F of C and let xm − 1 = fh. Then the matrix of the reduced Gr1obner basis of the
preimage F̃ has the form

h




c11 c12 : : : c1‘
0 c22 : : : c2‘

: : : : : :
0 0 : : : c‘ ‘


 ;

where the diagonal entries are either 1 or f, and if cjj = f then the corresponding
element of the reduced Gr1obner basis is (xm − 1)ej, while if cjj = 1 then all entries
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Table 1
Irreducible decomposition of C2

Generator Order Dimension

f4
1f

4
2(f

3
3 ; f1; 1) f4

3 12

f4
1f

4
2(0; 0; 1) f4

3 12

f4
1f

4
3(0; f2; (x4 + x + 1)f2) f3

2 9

f4
1f

4
3(f2; xf2

1 ; x
7 + x3 + 1) f4

2 12

f4
2f

4
3(f

2
1 ; f

2
1 ; 0) f2

1 2

f4
2f

4
3(f

2
1 ; f

2
1 ; 1) f4

1 4

above it are zero. Thus, reducing modulo xm − 1, the RGB generating set G corre-
sponds to a matrix in reduced row echelon form. It is obvious that no multiple of any
element of G is contained in the submodule generated by the others, and this gives the
result.

Example 2.12. The code C1 decomposes as the direct sum

〈f1f2( 1 f1 f2
1 )〉 ⊕ 〈f1f3( 0 1 f1 )〉 ⊕ 〈f2f3( 1 0 1 )〉 ⊕ 〈f2f3( 0 1 0 )〉;

where the orders of the cyclic summands are f3; f2; f1; f1, respectively, and their
orders dimensions are 3; 3; 1; 1.

The corresponding analysis for C2 requires the construction of the matrices Ã and
their decomposition into Smith normal form. Omitting the details, we 2nd that C2 has
a direct decomposition into irreducible cyclic submodules as shown in Table 1.

We end this section with a result describing the diagonal components of a Gr1obner
basis of a 1-generator code.

Theorem 2.13. Let C be the code generated (as R-module) by (f1; f2; : : : ; f‘). Then
the diagonal components of a Gr1obner basis of the preimage C̃ are

f11 = gcd(f1; xm − 1);

fii =
(xm − 1)gcd(f1; f2; : : : ; fi; xm − 1)

gcd(f1; f2; : : : ; fi−1; xm − 1)
; i = 2; : : : ; ‘:

Proof. A Gr1obner basis is constructed by reducing the matrix whose rows are
(f1; f2; : : : ; f‘); (xm−1) ei; i=1; : : : ; ‘. Consider 2rst the case ‘=2. Let uf1+v(xm−1)=
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d1 = gcd(f1; xm − 1). Then we carry out the following steps:


 f1 f2

xm − 1 0
0 xm − 1


→




d1 Af2

f1 f2

xm − 1 0
0 xm − 1


 →




d1 uf2

0 f2 − f1

d1
uf2

0 −xm − 1
d1

uf2

0 xm − 1




=




d1 uf2

0
xm − 1
d1

vf2

0 −xm − 1
d1

uf2

0 xm − 1




→




d1 uf2

0
xm − 1
d1

f2

0 xm − 1


 ;

where the last step is carried out using the fact that u; v are relatively prime. In the
general case, let the corresponding sequence of operations be de2ned by the entries in
the top left hand 2× 2 submatrix. Thus, in this 2rst sequence the (1; 1) entry has been
replaced by d1, the (2; 1) entry by 0 and the (2; 2) entry by (xm−1)=d1f2. By induction,
suppose that after i¿ 1 steps the (i; i) entry is di = (xm − 1)=(di−1)gcd(di−1; fi), and
the (i+1; i) and (i+1; i+1) entries are 0 and (xm − 1)=difi+1, respectively. Then, by
an identical sequence of operations, the induction step holds, and this completes the
proof.

Application of Corollary 2.4 gives

Corollary 2.14. The dimension of the code generated by (f1; f2; : : : ; f‘) is

m− deg(gcd(f1; f2; : : : ; fl; xm − 1)):

This formula was given by S?eguin and Drolet in [27].

3. Dual codes, parity check matrices

We denote by ai; i = 1; : : : ; ‘ the rows of the matrix Ã determined in Theorem 2.2.
The structure of Ã

T
implies that its rows form a reduced Gr1obner basis for the module

they generate, but with respect to the reverse POT term order (rPOT) in which the basis
vectors are ordered e1 ¡ · · ·¡e‘. (Note that analogous results to those of the previous
section hold for rPOT Gr1obner bases.) The equation G̃

T
Ã
T
=(xm−1)I implies that this

module contains K̃. We de2ne a scalar product on F[x]‘ by 〈u; v〉=∑‘
i=1 uivi, and for

any submodule C̃ the mod-K̃-dual of C̃ by C̃
?
K̃ = {u ∈ F[x]‘: 〈u; c〉 ∈ K̃ for all c ∈

C̃}. By projection this gives the usual scalar product on R‘ and the image ’(C̃
?
) is the

algebraic dual C? = {u ∈ R‘: 〈u; c〉= 0 for all c ∈ C}. Note that this is not the usual
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dual code C⊥, which will be discussed presently. The algebraic dual is characterised
by the following theorem.

Theorem 3.1. The rows of Ã
T

form an rPOT reduced Gr3obner basis for C̃
?
K̃.

Proof. One direction is clear from the equation G̃Ã = (xm − 1)I . Now suppose that

u = (u1; : : : ; u‘) ∈ C̃
?
, that is, G̃uT ∈ K̃. Then u‘g‘ ‘ is divisible by xm − 1 so u‘ is

a multiple of a‘ ‘. Thus, there is a v‘ such that u − v‘aT‘ has last component 0 and

lies in C̃
?
. Suppose that u′ = u − ∑‘−j+1

i=‘ viaTi ∈ C̃
?

has last j − 1 components 0.
Then u′‘−jg‘−j;‘−j is divisible by xm − 1 so u′‘−j is a multiple of a‘−j;‘−j. Subtracting
a multiple of aT‘−j we may remove the (‘ − j)th component of u′, leaving a residual

vector in C̃
?
. By induction, u may be reduced to 0 by {aTi ; i=1; : : : ; ‘} and the theorem

follows.

As a consequence we have

Corollary 3.2. The dimension of C? is
∑‘

i=1(m − @aii) =
∑‘

i=1(m − (m − @gii)) =∑‘
i=1 @gii, and this is also the codimension of C. Thus dimC? = ‘m− dimC.

Example 3.3. From Example 2.8 the mod-K̃-dual (C̃1)?K̃ has rPOT-reduced Gr1obner
basis consisting of the rows of

f1f3 0 0
f3
1 f1f2 0
1 f1 1


 :

The dimension is (7−4)+(7−4)+(7−0)=13 which is equal to 21−8 as expected.
The primary decomposition of C?

1 is

f1f2

(
1 0 0
0 f1 1

)
⊕ f1f3

(
1 0 0
0 f1 1

)
⊕ f2f3

(
1 0 1

)
respectively. The component submodules have dimensions 6; 6; 1.

We now wish to 2nd a generator matrix for the dual code C⊥ and a corresponding
GB generating set. It is convenient to adopt the notation [a] for the m × m circulant
matrix whose 2rst row is the sequence of coeScients {a0; : : : ; am−1} of the polynomial
a(x)mod xm − 1. The isomorphism between the algebra of circulant matrices and R
implies that for two polynomials a; b the congruence ab ≡ 0mod xm−1 corresponds to
the matrix equation [a][b]=0. This means that the rows of [b]T are orthogonal (for the
scalar product over F) to the rows of [a]. Now, if b=+0 ++1x+ · · ·++m−1xm−1 then
[b]T has 2rst row (+0; +m−1; : : : ; +1) so it corresponds to the polynomialb̂=+0++m−1x+
· · · + +1xm−1, that is, [b]T = [b̂]. Also, using f ∼ g to indicate that the polynomial
f is a constant multiple of g, x@bb̂mod xm − 1 ∼ b? = x@bb(x−1) , the conventional
“reciprocal” of b, so that the rows of [b?] are a cyclic permutation of those of [b̂].
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If
∑‘

i=1 aibi ∈ K̃, for polynomials ai; bi, then the corresponding matrix equation is
([a1] [a2] : : : [a‘])([b1] [b2] : : : [b‘])T = 0 and so the rows of ([b̂1] [b̂2] : : : [b̂‘]) are
orthogonal to those of ([a1] [a2] : : : [a‘]).
With these preparations, we can now determine a parity check matrix for C. Denote

by [Ã]; [G̃] the matrices over F derived from Ã; G̃ by replacing each entry by the
corresponding circulant, and setting [xm − 1]= 0 where necessary. This gives [Ã][G̃] =
[G̃][Ã] = 0 and the rows of

[Ã]T =




[a11]T 0 · · · 0
[a12]T [a22]T · · · 0

...
...

. . .
...

[a1‘]T [a2‘]T · · · [a‘ ‘]T


=




[â11] 0 · · · 0
[â12] [â22] · · · 0
...

. . .
...

[â1‘] [â2‘] · · · [â‘ ‘]




are in the dual code C⊥. We already know from Corollary 3.2 that the dimension
of the code generated by the rows of Ã

T
is ‘m − dim(C) and, since the rank of

[aij] is equal to that of [aij]T, it follows that the rank of [Ã]T is ‘m − dim(C). This
means that [Ã]T is a parity check matrix for C. However, the polynomial vectors
corresponding to the rows of [Ã]T do not form a Gr1obner for C⊥, so instead we
de2ne the polynomial matrix H̃ whose (j; i) entry is hji = x@aii âji mod xm − 1. The
rows of [H̃ ] are a permutation of those of [Ã]T and hence [H̃ ] also generates C⊥.
Let P denote the permutation matrix that carries out this transformation and consider
the relation [G̃]TP−1P[Ã]T = ([G̃]TP−1)[H̃ ] = 0. The left-hand factor is derived from
[G̃]T by permuting its columns in the corresponding manner via P−1. Replacing the
circulant matrices in these factors by their polynomial equivalents we obtain


x−@a11 ĝ11 0 · · · 0
x−@a11 ĝ12 x−@a22 ĝ22 · · · 0

...
...

. . .
...

x−@a11 ĝ1‘ x−@a22 ĝ2‘ · · · x−@a‘ ‘ ĝ‘ ‘


 ;




x@a11 â11 0 · · · 0
x@a22 â12 x@a22 â22 · · · 0

...
...

. . .
...

x@a‘ ‘ â1‘ x@a‘ ‘ â2‘ · · · x@a‘ ‘ â‘ ‘




=




g?11 0 · · · 0
x−@a11 ĝ12 g?22 · · · 0

...
...

. . .
...

x−@a11 ĝ1‘ x−@a22 ĝ2‘ · · · g?‘ ‘


 ;




a?11 0 · · · 0
x@a22 â12 a?22 · · · 0

...
...

. . .
...

x@a‘ ‘ â1‘ x@a‘ ‘ â2‘ · · · a?‘ ‘


 ;

≡ 0mod xm − 1

where each entry is interpreted modulo xm − 1. It follows that this product is equal to
a lower triangular matrix of the form

(xm − 1)




1 0 · · · 0
m21 1 · · · 0
...

...
. . .

...
m‘1 m‘2 · · · 1


 :
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This can be reduced to (xm − 1)I by a sequence of left multiplications by elementary
matrices, none of which changes the diagonal entries. Carrying out the same sequence
on the left-hand factor above gives a relation G̃

′
H̃ = (xm − 1)I and applying the rPOT

analogues of Theorem 2.2 and (7) gives the following result.

Theorem 3.4. The rows of H̃ form an rPOT Gr3obner (usually not reduced) for the
preimage C̃⊥ of C⊥ in F[x]‘. Redundant rows of the parity check matrix [H̃ ] may
be removed to form a parity check matrix with linearly independent rows by omitting
all but the /rst m− @aii rows in each block row.

Example 3.5. The construction of a parity check matrix for C1 by this theorem begins
with the matrix Ã de2ned in Example 2.8, namely

 (x + 1)(x3 + x2 + 1) (x + 1)3 1
0 (x + 1)(x3 + x + 1) x + 1
0 0 1




from which on transposing and replacing each entry aij by âij we obtain
 x6 + x5 + x3 + 1 0 0

x6 + x5 + x4 + 1 x5 + x4 + x3 + 1 0
1 x6 + 1 1


 :

Multiplying each row by the corresponding x@aii gives the rPOT Gr1obner matrix
 x4 + x3 + x2 + 1 0 0

x4 + x3 + x2 + x x4 + x2 + x + 1 0
1 x6 + 1 1




from which, on replacing each polynomial by the corresponding circulant and dropping
the redundant rows, we obtain the parity check matrix



1011100 0000000 0000000
0101110 0000000 0000000
0010111 0000000 0000000

0111100 1110100 0000000
0011110 0111010 0000000
0001111 0011101 0000000

1000000 1000001 1000000
0100000 1100000 0100000
0010000 0110000 0010000
0001000 0011000 0001000
0000100 0001100 0000100
0000010 0000110 0000010
0000001 0000011 0000001




:
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For the analysis of self-dual codes of index 2 in the following section it is convenient
to have a formula, in the index 2 case, for the POT RGB generating set of the dual
code C⊥ in terms of an rPOT GB generating set.

Theorem 3.6. Let {(a 0); (b c)} be any rPOT Gr3obner of a submodule D̃ of
F[x]2. Let ua + vb = d = gcd(a; b); where v is chosen so that @v¡@(a=d). Then
{(d vc); (0 a=dc)} is the POT-reduced Gr3obner basis of D̃.

Proof. The transformations are as follows:


a 0
b c

xm − 1 0
0 xm − 1


→




a 0
b c
d vc
0 xm − 1


 →




d vc
0 c − b

dvc
0 a

dvc
0 xm − 1




→




d vc
0 a

duc
0 a

dvc
0 xm − 1


 →

(
d vc
0 a

dc

)
:

These are straightforward apart from the last step. First, we use the fact that u; v are
relatively prime. Second, the equation expressing K̃⊆ D̃ is(

u 0
v w

)(
a 0
b c

)
=
(
xm − 1 0

0 xm − 1

)
from which va+wb= 0; v(a=d) +w(b=d) = 0 and hence (a=d) divides w. Thus (a=d)c
divides wc = xm − 1.

More generally, an rPOT Gr1obner of a submodule of F[x]‘ can be converted into a
POT Gr1obner basis by a sequence of such transformations de2ned by 2×2 submatrices.
If G̃ is the generator matrix of the rPOT Gr1obner basis then we perform in succession
the 2× 2 transformations de2ned by the lower triangular submatrices indexed by(

11 12
21 22

)
;

(
11 13
31 33

)
; : : : ;

(
11 1‘
‘1 ‘ ‘

)

and making the consequent changes in the corresponding rows and columns of G̃ at
each step. The result is a matrix, with zeros in its 2rst column apart from the (1; 1)
position, such that the submatrix indexed by (i; j); 26i; j6‘ remains lower triangular.
The process continues with this submatrix and eventually gives a generator in upper
triangular form.

4. Self-dual codes of index 2

In this section we classify completely the self-dual codes of index 2. We divide the
irreducible factors fn; n ∈ N of xm − 1=

∏s
n=1 f

"
n into two types according to whether
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or not f?
n ∼ fn. Let I ⊆N be the set of indices of irreducible factors having this

property. The other irreducible factors then fall into reciprocal pairs. Let J ⊆N be a
set of indices comprising one element of each of these pairs and de2ne the map 0 from
J to the complementary subset N \ (I ∪ J ) by f?

j =f0( j). Throughout this section the
subscripts i; j; n will be assumed to run through the set I; J; N without further comment.
The factorisation of xm − 1 may be expressed as

xm − 1 ∼
∏

f"
i

∏
f"
j

∏
f"
0( j);

where f?
i ∼ fi; f?

j ∼ f0( j); f?
0( j) ∼ fj and we note that @f0(n)=@fn. For convenience

we denote the monic factor c
∏

f1i
i
∏

f1j
j
∏

f10( j)
0( j) , where c is an appropriate constant,

by the triple [1i; 1j; 10( j)]. Throughout the following argument we will freely choose
monic representatives without further mention. Now any code C of index 2 corresponds
to a submodule C̃⊆F[x]2 with minimal Gr1obner basis matrix

G̃ =
(
[1i; 1j; 10( j)] v[+i; +j; +0( j)]

0 [2i; 2j; 20( j)]

)
; (8)

where v is relatively prime to xm− 1. The divisibility condition derived by multiplying
the 2rst row by (xm − 1)=[1i; 1j; 10( j)] implies

2n6"− 1n + +n: (9)

The complementary matrix Ã is(
["−1i; "−1j; "−10( j)] −v["−1i++i−2i; "−1j + +j−2j; "−10( j) ++0( j)−20( j)]

0 ["−2i; "−2j; "−20( j)]

)
:

Theorem 3.4 may be applied to show that C̃⊥ has rPOT Gr1obner matrix H̃ given
by(

["−1i; "−10( j); "−1j] 0
v′["−1i++i−2i; "−10( j) ++0( j)−20( j); "−1j++j−2j] ["−2i; "−20( j); "−2j]

)
;

(10)

where v′ =−xrv̂ with r de2ned so as to compensate for the replacement of f̂ n by f?
n

in the (2; 1) entry. Explicitly, r =
∑

@fn(1n − +n) (where, of course, xr is interpreted
modulo xm− 1). Note that v′ is relatively prime to xm− 1. Next, by applying Theorem
3.6 to H̃ (and in the notation used there) we obtain a matrix for the POT Gr1obner
basis of C̃⊥ in the form

L̃=
(
d u["− 2i; "− 20( j); "− 2j]
0 (a=d)["− 2i; "− 20( j); "− 2j]

)
; (11)

where for the moment we leave a; d unevaluated.
Now suppose that C is self-dual so that G̃; H̃ represent bases for the same space C̃.

Then there are (inverse) matrices E; F such that EG̃= H̃ ; FH̃ = G̃. With E=(eij); F =
(fij) we have the following consequences derived from divisibility conditions. From
EG̃ = H̃
(i) 21i6"; 1j + 10( j)6", e11 = ["− 21i; "− 1j − 10( j); "− 1j − 10( j)],
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(ii) 21i6"+ +i − 2i; 1j + 10( j)6"+ +j − 2j; 1j + 10( j)6"+ +0( j) − 20( j); e21 = v′["−
21i + +i − 2i; "− 1j − 10( j) + +0( j) − 20( j); "− 1j − 10( j) + +j − 2j],

(iii) [using e11 from (i)] e12 =−v["− 21i + +i − 2i; "− 1j − 10( j) + +j − 2j; "− 1j
−10( j) + +0( j) − 20( j)],

(iv) [using e21 from (ii)] vv′["− 21i + 2+i − 2i; "− 1j − 10( j) + +j + +0( j) − 20( j); "
−1j − 10( j) + +j + +0( j) − 2j] + e22[2i; 2j; 20( j)] = ["− 2i; "− 20( j); "− 2j]:

Similarly, from FH̃ = G̃
(v) "622i; "62j + 20( j); f22 = [22i − "; 2j + 20( j) − "; 2j + 20( j) − "],
(vi) "6+i+2i; "6+j+20( j); "6+0( j)+2j; f12=v[+i+2i−"; +j+20( j)−"; +0( j)+2j−"],
(vii) [using f22 from (v)] f21 =−v′[+i + 2i − "; +0( j) + 2j − "; +j + 20( j) − "],
(viii) [using f12 from (vi)] f11["− 1i; "− 10( j); "− 1j] + vv′[2+i − 1i; +j + +0( j)

−10( j); +j + +0( j) − 1j] = [1i; 1j; 10( j)].

Next, the diagonal entries of L̃ are equal to those of G̃ so
(ix) d= [1i; 1j; 10( j)]; (a=d)["− 2i; "− 20( j); "− 2j] = ["− 1i − 1i + "− 2i; "

−10( j) − 1j + "− 20( j); "− 1j − 10( j) + "− 2j] = [2i; 2j; 20( j)], hence 1j + 2i
="; 1j + 10( j) + 2j + 20( j) = 2".

It now follows that C has dimension m since
(x) dimC=

∑
@fi(1i + 2i) +

∑
@fj(1j + 10( j) + 2j + 20( j)) =

∑
@fi(") +

∑
@fj(2")

=m:

From the conditions thus determined it follows that (iv) and (viii) may be divided
through by their right-hand sides, and that the resulting equations are identical apart
from the coeScients e22; f11, which are therefore equal. We write w for their common
value in
(xi) vv′[2+i − 21i; +j + +0( j) − 1j − 10( j); +j + +0( j) − 1j − 10( j)] + w[22i − "; 2j

+20( j) − "; 2j + 20( j) − "] = [0; 0; 0]:
We have now determined a set of necessary conditions on 1n; +n; 2n; v (contained in (i),
(ii), (v), (vi), (ix), (xi)) for the structure of a minimal Gr1obner basis of a self-dual
code of index 2. Their suSciency follows from the fact that if these conditions hold
then the inverse matrices

E =
(

[22i− "; 2j+20( j)− "; 2j+20( j)− "] −v[+i−1i; +j+20( j)− "; +0( j) +2j− "]
v′[+i−1i; +0( j) +2j− "; +j+20( j)− "] w

)

F =
(

w v[+i−1i; +j+20( j)− "; +0( j) +2j− "]
−v′[+i−1i; +0( j) +2j− "; +j+20( j)− "] [22i − "; 2j + 20( j) − "; 2j + 20( j) − "]

)

are well de2ned, have determinant 1, and satisfy EG̃= H̃ ; FH̃ = G̃, which implies that

C̃ = C̃
⊥
. We have therefore proved the following characterisation.

Theorem 4.1. The code C of index 2 is self-dual if and only if each minimal Gr3obner
basis of C̃ has a generator matrix(

[1i; 1j; 10( j)] v[+i; +j +0( j)]
0 [2i; 2j; 20( j)]

)
;
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where
(a) 21i6"; 1j + 10( j)6";
(b) 21i6"+ +i − 2i; 1j + 10( j)6"+ +j − 2j; 1j + 10( j)6"+ +0( j) − 20( j);
(c) "6+i + 2i; "6+j + 20( j); "6+0( j) + 2j;
(d) 1i + 2i = "; 1j + 10( j) + 2j + 20( j) = 2";
(e) vv′[2+i−21i; +j++0( j)−1j−10( j); +j++0( j)−1j−10( j)] ≡ 1mod [22i−1i; 2j+20( j)−

"; 2j+20( j)−"], where v′=−xrv̂; r=
∑

i @fi(1i−+i)+
∑

j @fj(1j+10( j)−+j−+0( j)):
In the special case [2i; 2j; 20( j)] = xm − 1 the reduced Gr3obner basis generating set of
C is (1 v) where vv̂ ≡ −1mod xm − 1 and @v¡m.
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