Weyl group multiple Dirichlet series

Paul E. Gunnells

UMass Amherst

August 2010

Paul E. Gunnells (UMass Amherst) Weyl group multiple Dirichlet series

Let Φ be an irreducible root system of rank r.

Our goal: explain general construction of multiple Dirichlet series in r complex variables $\mathbf{s} = (s_1, \ldots, s_r)$

$$Z(\mathbf{s}) = \sum_{c_1,...,c_r} \frac{a(c_1,...,c_r)}{c_1^{s_1} \dots c_r^{s_r}}$$

satisfying a group of functional equations isomorphic to the Weyl group W of Φ .

The functional equations intermix all the variables, and are closely related to the usual action of W on the space containing Φ .

Example

Let $\Phi = A_2$, $W = \langle \sigma_1, \sigma_2 | \sigma_i^2 = 1, \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$. The desired functional equations look like

 $\underline{\sigma_1: s_1 \to 2 - s_1, s_2 \to s_1 + s_2 - 1, \quad \sigma_2: s_1 \to s_1 + s_2 - 1, s_2 \to 2 - s_2}$

Why?

- Such series provide tools for certain problems in analytic number theory (moments, mean values, ...).
- Conjecturally these series arise as Fourier–Whittaker coefficients of Eisenstein series on metaplectic groups

$$1 \to \mu_n \to \tilde{G}(\mathbb{A}_F) \to G(\mathbb{A}_F) \to 1$$

This has been proved in some cases (type A and type B (double covers)).

- The series are built out of arithmetically interesting data, such as Gauss sums, *n*th power residue symbols, Hilbert symbols, and (sometimes) *L*-functions.
- The objects that arise in the construction have interesting relationships with combinatorics, representation theory, and statistical mechanics.

Maass and the half-integral weight Eisenstein series

Let $E^*(z, s)$ be the half-integral weight Eisenstein series on $\Gamma_0(4)$:

$$E^*(z,s) = \sum_{\Gamma_{\infty} \setminus \Gamma_0(4)} j_{1/2}(\gamma, z)^{-1} \Im(\gamma z)^{s/2}.$$

Maass showed that its dth Fourier coefficient is essentially

 $L(s, \chi_d),$

where χ_d is the quadratic character attached to $\mathbb{Q}(\sqrt{d}/\mathbb{Q})$.

Essentially means up to the Euler 2-factor, archimedian factors, and certain correction factors that have to be inserted when d isn't squarefree.

Siegel, Goldfeld–Hoffstein

Siegel (1956), Goldfeld–Hoffstein (1985):

$$Z(s,w) = \int_0^\infty \left(E^*(iy, s/2) - \text{const term} \right) y^w \frac{dy}{y}$$

The result is a Dirichlet series roughly of the form

$$Z(s,w) \approx \sum_{d} \frac{L(s,\chi_d)}{d^w}.$$

This behaves well in s since it's built from the Dirichlet *L*-functions, and it turns out to have nice analytic properties in w as well. Goldfeld–Hoffstein used this to get estimates for sums like

$$\sum_{\substack{|d| < X \\ d \text{ fund.}}} L(1, \chi_d), \quad \sum_{\substack{|d| < X \\ d \text{ fund.}}} L(\frac{1}{2}, \chi_d).$$

Z(s,w) satisfies a functional equation in s, again because of the Dirichlet *L*-functions. But it turns out that it satisfies extra functional equations.

In fact, Z satisfies a group of 12 functional equations, and is an example of a Weyl group multiple Dirichlet series of type A_2 . There is a subgroup of functional equations isomorphic to $S_3 = W(A_2)$, and an extra one swapping s and w that corresponds to the outer automorphism of the Dynkin diagram:

Connection to A_2

Why is this series related to root system A_2 (besides the fact that there are two variables and I drew the picture that way)?

Imagine expanding the *L*-functions in the rough definition:

$$Z(s,w) = \sum_{d} \frac{L(s,\chi_d)}{d^w} = \sum_{d} d^w \sum_{c} \left(\frac{d}{c}\right) c^{-s} = \sum_{d,c} \left(\frac{d}{c}\right) c^{-s} d^{-w}.$$

$$c \qquad \left(\frac{d}{c}\right) \qquad d$$

The general shape

Heuristically, the multiple Dirichlet series looks like

$$Z(\mathbf{s}) = \sum_{c_1, \dots, c_r} \frac{a(c_1, \dots, c_r)}{c_1^{s_1} \dots c_r^{s_r}}$$

where $a(c_1, \ldots, c_r)$ is a product of *n*th power residue symbols corresponding to the edges of the Dynkin diagram.

For instance D_4 , n = 2 leads to a series related to the third moment of quadratic Dirichlet *L*-functions.

- F number field with 2nth roots of unity
- S set of places of F containing archimedian, ramified, and such that \mathcal{O}_S is a PID
- Φ irreducible simply-laced root system of rank r
- $\{\alpha_1, \ldots, \alpha_r\}$ the simple roots
- $\mathbf{m} = (m_1, \ldots, m_r)$ r-tuple of integers in \mathcal{O}_S
- $\mathbf{s} = (s_1, \dots, s_r)$ r-tuple of complex variables

Setup

- $F_S = \prod_{v \in S} F_v$
- $\mathcal{M}(\Phi)$ certain finite-dimensional space of complex-valued functions on $(F_S^{\times})^r$ (to deal with Hilbert symbols and units)
- $\Psi \in \mathcal{M}(\Phi)$
- $H(\mathbf{c}; \mathbf{m})$ to be specified later ... this is the most important part of the definition

The multiple Dirichlet series

Then the multiple Dirichlet series looks like

$$Z(\mathbf{s};\mathbf{m}, \Psi; \Phi, n) = \sum_{\mathbf{c}} \frac{H(\mathbf{c};\mathbf{m}) \Psi(\mathbf{c})}{\prod |c_i|^{s_i}},$$

where $\mathbf{c} = (c_1, \ldots, c_r)$ and each c_i ranges over $(\mathcal{O}_S \setminus \{0\})/\mathcal{O}_S^{\times}$.

The function H

The coefficients H have to be carefully defined to guarantee that Z satisfies the desired group of functional equations. General considerations tell us how to define H in the following cases:

• When $c_1 \cdots c_r$ and $c'_1 \cdots c'_r$ are relatively prime, one uses a "twisted multiplicativity" to construct $H(\mathbf{cc}'; \mathbf{m})$ from $H(\mathbf{c}; \mathbf{m})$ and $H(\mathbf{c}'; \mathbf{m})$. One puts

$$H(\mathbf{cc}';\mathbf{m}) = \varepsilon(\mathbf{c},\mathbf{c}')H(\mathbf{c};\mathbf{m})H(\mathbf{c}';\mathbf{m}),$$

where $\varepsilon(\mathbf{c}, \mathbf{c}')$ is a root of unity built out of residue symbols and root data:

$$\varepsilon(\mathbf{c},\mathbf{c}') = \prod_{i=1}^{r} \left(\frac{c_i}{c_i'}\right) \left(\frac{c_i'}{c_i}\right) \prod_{i \cdots j} \left(\frac{c_i}{c_j'}\right) \left(\frac{c_i'}{c_j}\right).$$

The function H

• When $(c_1 \cdots c_r, m'_1 \cdots m'_r) = 1$, we can define $H(\mathbf{c}; \mathbf{mm'})$ in terms of $H(\mathbf{c}; \mathbf{m})$ and certain power residue symbols:

$$H(\mathbf{c};\mathbf{mm'}) = \prod_{j=1}^{r} \left(\frac{m'_j}{c_j}\right) H(\mathbf{c};\mathbf{m})$$

The function H

So we reduce the definition of H to that of

$$H(\varpi^{k_1},\ldots,\varpi^{k_r};\varpi^{l_1},\ldots,\varpi^{l_r}),$$

where ϖ is a prime in \mathcal{O}_S .

This leads naturally to the generating function

$$N = N(x_1, \dots, x_r)$$

=
$$\sum_{k_1, \dots, k_r \ge 0} H(\varpi^{k_1}, \dots, \varpi^{k_r}; \varpi^{l_1}, \dots, \varpi^{l_r}) x_1^{k_1} \cdots x_r^{k_r}$$

(**m** is fixed). One can ask what properties this series has to satisfy so that one can prove Z satisfies the right group of functional equations.

The function N

$$N = N(x_1, \dots, x_r) = \sum_{k_1, \dots, k_r \ge 0} H(\varpi^{k_1}, \dots, \varpi^{k_r}) x_1^{k_1} \cdots x_r^{k_r}.$$

If one puts $x_i = q^{-s_i}$, where $q = |\mathcal{O}_S/\varpi|$, then one can see that the global functional equations imply N must transform a certain way under a certain W-action.

This leads to a connection with characters of representations of \mathfrak{g} , the simple complex Lie algebra attached to Φ .

In this relationship the monomials correspond to certain weight spaces.

Building N

The connection with characters leads to two approaches to defining N:

- Crystal graphs. These are models for \mathfrak{g} representations that have various combinatorial incarnations (Gelfand–Tsetlin patterns, tableaux, Proctor patterns, Littlemann path model, ...). One tries to extract a statistic from the combinatorial model to define the coefficients of N. (Brubaker–Bump–Friedberg, Beineke–Brubaker–Frechette, Chinta–PG)
- Weyl character formula. This is an explicit expression for a given character as a ratio of two polynomials. We take this approach and define a deformation of Weyl's formula that reflects the metaplectacity (metaplectaciousness?) of the setup. (Chinta–PG, Bucur–Diaconu)

WCF

 $\Delta(\mathbf{y})$

- Λ_w weight lattice of Φ
- $\{\omega_1, \ldots, \omega_r\}$ fundamental weights
- $\rho = \sum \omega_i$ the Weyl vector
- $\mathbb{Z}[y_1^{\pm 1}, \dots, y_r^{\pm 1}]$ group ring of the weight lattice $(y_i \leftrightarrow \omega_i)$
- θ a dominant weight

Then according to Weyl the character of the irreducible representation of highest weight θ is

$$\chi_{\theta} = \frac{\sum_{w \in W} \operatorname{sgn}(w) \mathbf{y}^{w(\theta+\rho)-\rho}}{\prod_{\alpha>0} (1-\mathbf{y}^{-\alpha})} = \sum_{w \in W} \operatorname{sgn}(w) \mathbf{y}^{w(\theta+\rho)-\rho} \frac{1}{\Delta(\mathbf{y})}.$$
$$) = \prod_{\alpha>0} (1-\mathbf{y}^{-\alpha}).$$

Our goal now is to define the W-action leading to H. For the application to multiple Dirichlet series, we normalize things slightly differently. Thus we work with the root lattice, introduce some $q = |\mathcal{O}_S/\varpi|$ powers, shift the character around, ...

- Λ root lattice of Φ
- $d: \Lambda \to \mathbb{Z}$ height function on the roots
- $A \simeq \mathbb{C}[x_1^{\pm 1}, \dots, x_r^{\pm 1}]$ complex group ring of Λ $(x_i \leftrightarrow \alpha_i)$
- $\tilde{A} \simeq \mathbb{C}(x_1, \dots, x_r)$ fraction field of A
- $\theta = \rho + \sum l_i \omega_i$ a *strictly* dominant weight (recall that we're defining $H(\mathbf{c}; \mathbf{m})$ when $\mathbf{m} = (\varpi^{l_1}, \dots, \varpi^{l_r})$)

We let the Weyl group act on monomials through a "change of variables" map. This is essentially the same as the geometric action of W on the root lattice (except for the q power).

If $f(\mathbf{x}) = \mathbf{x}^{\beta}$, we put

$$f(w\mathbf{x}^{\beta}) = q^{d(w^{-1}\beta - \beta)}\mathbf{x}^{w^{-1}\beta}$$

Affine action of W

Given any $\lambda \in \Lambda$, we put

$$w \bullet \lambda = w(\lambda - \theta) + \theta,$$

where the action on the right hand side is the usual action on the root lattice. This just performs an affine reflection of $\Lambda \otimes \mathbb{R}$ (the same as the usual w reflection but shifted to have center θ).

If σ_i is a simple reflection, we put

$$\mu_i(\lambda) = d(\sigma_i \bullet \lambda - \lambda).$$

This is just the multiple of α_i needed to go from λ to $\sigma_i \bullet \lambda$.

Affine action of ${\cal W}$

Choose some complex numbers $\gamma(i)$, i = 1, ..., n-1 such that $\gamma(i)\gamma(n-i) = 1/q$. Put $\gamma(0) = -1$.

Ultimately these numbers will be Gauss sums (the same ones appearing in the metaplectic cocycle), but actually any complex numbers satisfying these relations will work.

Extend $\gamma(i)$ to all integers by reducing $i \mod n$.

Homogeneous decomposition

The action on a monomial $f(\mathbf{x}) = \mathbf{x}^{\beta}$ depends on the congruence class of the monomial mod $n\Lambda$.

To treat general rational functions, we decompose \tilde{A} into homogeneous parts

$$\tilde{A} = \bigoplus_{\lambda \in \Lambda/n\Lambda} \tilde{A}_{\lambda}.$$

 A_{λ} consists of those rational function f/g where all monomials in g lie in $n\Lambda$ and those in f map to λ modulo $n\Lambda$.

$$\frac{1-xy}{x^2-y^2} = \frac{1}{x^2-y^2} - \frac{xy}{x^2-y^2}$$

Theorem (Chinta–PG) Suppose $f \in A_{\beta}$. Let σ_i be a simple reflection and let $(k)_n$ be the remainder upon division of k by n. Then

$$(f|_{\theta}\sigma_{i})(\mathbf{x}) = (qx_{i})^{l_{i}+1-(\mu_{i}(\beta))_{n}} \frac{1-1/q}{1-q^{n-1}x_{i}^{n}} f(\sigma_{i}\mathbf{x})$$
(P)
$$-\gamma(\mu_{i}(\beta)) \cdot (qx_{i})^{l_{i}+1-n} \frac{1-(qx_{i})^{n}}{(1-q^{n-1}x_{i}^{n})} f(\sigma_{i}\mathbf{x})$$
(Q)

extends to a W-action on $\mathbb{C}(x_1,\ldots,x_r)$.

 Paul E. Gunnells (UMass Amherst)
 Weyl group multiple Dirichlet series
 August 2

Making the multiple Dirichlet series

Theorem (Chinta–PG)

• Put $\Delta(\mathbf{x}) = \prod_{\alpha>0} (1 - q^n \mathbf{x}^{n\alpha})$ and $D(\mathbf{x}) = \prod_{\alpha>0} (1 - q^{n-1} \mathbf{x}^{n\alpha})$. Then (1) and (1)

$$h(\mathbf{x}) = \sum_{w \in W} \frac{(1|_{\theta}w)(\mathbf{x})}{\Delta(w\mathbf{x})}$$

is a rational function such that hD is a polynomial.

• Let N = hD, define H by

$$N = \sum_{k_1,\dots,k_r \ge 0} H(\varpi^{k_1},\dots,\varpi^{k_r};\varpi^{l_1},\dots,\varpi^{l_r}) x_1^{k_1}\cdots x_r^{k_r},$$

and specialize the $\gamma(i)$ to the appropriate Gauss sums. Then the resulting multiple Dirichlet series $Z(\mathbf{s}; \mathbf{m}, \Psi; \Phi, n)$ has analytic continuation to \mathbb{C}^r and satisfies a group of functional equations isomorphic to W.

$$A_2$$
 examples $(n=2)$

Here $g_1 = q\gamma(1)$ and the notation (a, b) means

$$\theta = (a+1)\omega_1 + (b+1)\omega_2.$$

- The WCF method works for all Φ, whereas the crystal graph approach has only been worked out for some (classical) Φ. Can one do the latter for all Φ uniformly? (Kim-Lee, McNamara)
- Prove that Z is a Whittaker coefficient of a metaplectic Eisenstein series. (Chinta–Offen)
- Prove that the crystal graph descriptions and the WCF descriptions coincide. (Chinta–Offen + McNamara)
- Develop multiple Dirichlet series on affine Weyl groups and crystallographic Coxeter groups (Bucur–Diaconu, Lee)
- What is the geometric interpretation of Weyl group multiple Dirichlet series over function fields?

References

- Gautam Chinta and PG, Weyl group multiple Dirichlet series constructed from quadratic twists, Invent. Math. 167 (2007), no.2, 327–353.
- Gautam Chinta, Sol Friedberg, and PG, On the p-parts of quadratic Weyl multiple Dirichlet series, J. Reine Angew. Math.
 623 (2008), 1–23.
- Gautam Chinta and PG, Weyl group multiple Dirichlet series of $type A_2$, to appear in the Lang memorial volume.
- _____, Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23 (2010), 189–215.