Weyl group multiple Dirichlet series

Paul E. Gunnells

UMass Amherst
August 2010

Basic problem

Let Φ be an irreducible root system of rank r.
Our goal: explain general construction of multiple Dirichlet series in r complex variables $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right)$

$$
Z(\mathbf{s})=\sum_{c_{1}, \ldots, c_{r}} \frac{a\left(c_{1}, \ldots, c_{r}\right)}{c_{1}^{s_{1}} \ldots c_{r}^{s_{r}}}
$$

satisfying a group of functional equations isomorphic to the Weyl group W of Φ.

The functional equations intermix all the variables, and are closely related to the usual action of W on the space containing Φ.

Example

Let $\Phi=A_{2}, W=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{i}^{2}=1, \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle$. The desired functional equations look like

$$
\sigma_{1}: s_{1} \rightarrow 2-s_{1}, s_{2} \rightarrow s_{1}+s_{2}-1, \quad \sigma_{2}: s_{1} \rightarrow s_{1}+s_{2}-1, s_{2} \rightarrow 2-s_{2}
$$

Why?

- Such series provide tools for certain problems in analytic number theory (moments, mean values, ...).
- Conjecturally these series arise as Fourier-Whittaker coefficients of Eisenstein series on metaplectic groups

$$
1 \rightarrow \mu_{n} \rightarrow \tilde{G}\left(\mathbb{A}_{F}\right) \rightarrow G\left(\mathbb{A}_{F}\right) \rightarrow 1
$$

This has been proved in some cases (type A and type B (double covers)).

- The series are built out of arithmetically interesting data, such as Gauss sums, nth power residue symbols, Hilbert symbols, and (sometimes) L-functions.
- The objects that arise in the construction have interesting relationships with combinatorics, representation theory, and statistical mechanics.

Maass and the half-integral weight Eisenstein series

Let $E^{*}(z, s)$ be the half-integral weight Eisenstein series on $\Gamma_{0}(4)$:

$$
E^{*}(z, s)=\sum_{\Gamma_{\infty} \backslash \Gamma_{0}(4)} j_{1 / 2}(\gamma, z)^{-1} \Im(\gamma z)^{s / 2}
$$

Maass showed that its d th Fourier coefficient is essentially

$$
L\left(s, \chi_{d}\right)
$$

where χ_{d} is the quadratic character attached to $\mathbb{Q}(\sqrt{d} / \mathbb{Q})$.
Essentially means up to the Euler 2-factor, archimedian factors, and certain correction factors that have to be inserted when d isn't squarefree.

Siegel, Goldfeld-Hoffstein

Siegel (1956), Goldfeld-Hoffstein (1985):

$$
Z(s, w)=\int_{0}^{\infty}\left(E^{*}(i y, s / 2)-\text { const term }\right) y^{w} \frac{d y}{y}
$$

The result is a Dirichlet series roughly of the form

$$
Z(s, w) \approx \sum_{d} \frac{L\left(s, \chi_{d}\right)}{d^{w}}
$$

This behaves well in s since it's built from the Dirichlet L-functions, and it turns out to have nice analytic properties in w as well. Goldfeld-Hoffstein used this to get estimates for sums like

$$
\sum_{\substack{|d|<X \\ d \text { fund. }}} L\left(1, \chi_{d}\right), \sum_{\substack{|d|<X \\ d \text { fund. }}} L\left(\frac{1}{2}, \chi_{d}\right)
$$

Siegel, Goldfeld-Hoffstein

$Z(s, w)$ satisfies a functional equation in s, again because of the Dirichlet L-functions. But it turns out that it satisfies extra functional equations.

In fact, Z satisfies a group of 12 functional equations, and is an example of a Weyl group multiple Dirichlet series of type A_{2}. There is a subgroup of functional equations isomorphic to $S_{3}=W\left(A_{2}\right)$, and an extra one swapping s and w that corresponds to the outer automorphism of the Dynkin diagram:

Connection to A_{2}

Why is this series related to root system A_{2} (besides the fact that there are two variables and I drew the picture that way)?

Imagine expanding the L-functions in the rough definition:

$$
Z(s, w)=\sum_{d} \frac{L\left(s, \chi_{d}\right)}{d^{w}}=\sum_{d} d^{w} \sum_{c}\left(\frac{d}{c}\right) c^{-s}=\sum_{d, c}\left(\frac{d}{c}\right) c^{-s} d^{-w}
$$

The general shape

Heuristically, the multiple Dirichlet series looks like

$$
Z(\mathbf{s})=\sum_{c_{1}, \ldots, c_{r}} \frac{a\left(c_{1}, \ldots, c_{r}\right)}{c_{1}^{s_{1}} \ldots c_{r}^{s_{r}}}
$$

where $a\left(c_{1}, \ldots, c_{r}\right)$ is a product of nth power residue symbols corresponding to the edges of the Dynkin diagram.

For instance $D_{4}, n=2$ leads to a series related to the third moment of quadratic Dirichlet L-functions.

Setup

- F number field with $2 n$th roots of unity
- S set of places of F containing archimedian, ramified, and such that \mathcal{O}_{S} is a PID
- Φ irreducible simply-laced root system of rank r
- $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ the simple roots
- $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right) \quad r$-tuple of integers in \mathcal{O}_{S}
- $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \quad r$-tuple of complex variables

Setup

- $F_{S}=\prod_{v \in S} F_{v}$
- $\mathcal{M}(\Phi)$ certain finite-dimensional space of complex-valued functions on $\left(F_{S}^{\times}\right)^{r}$ (to deal with Hilbert symbols and units)
- $\Psi \in \mathcal{M}(\Phi)$
- $H(\mathbf{c} ; \mathbf{m})$ to be specified later ... this is the most important part of the definition

The multiple Dirichlet series

Then the multiple Dirichlet series looks like

$$
Z(\mathbf{s} ; \mathbf{m}, \Psi ; \Phi, n)=\sum_{\mathbf{c}} \frac{H(\mathbf{c} ; \mathbf{m}) \Psi(\mathbf{c})}{\prod\left|c_{i}\right|^{s_{i}}}
$$

where $\mathbf{c}=\left(c_{1}, \ldots, c_{r}\right)$ and each c_{i} ranges over $\left(\mathcal{O}_{S} \backslash\{0\}\right) / \mathcal{O}_{S}^{\times}$.

The function H

The coefficients H have to be carefully defined to guarantee that Z satisfies the desired group of functional equations. General considerations tell us how to define H in the following cases:

- When $c_{1} \cdots c_{r}$ and $c_{1}^{\prime} \cdots c_{r}^{\prime}$ are relatively prime, one uses a "twisted multiplicativity" to construct $H\left(\mathbf{c c}^{\prime} ; \mathbf{m}\right)$ from $H(\mathbf{c} ; \mathbf{m})$ and $H\left(\mathbf{c}^{\prime} ; \mathbf{m}\right)$. One puts

$$
H\left(\mathbf{c c}^{\prime} ; \mathbf{m}\right)=\varepsilon\left(\mathbf{c}, \mathbf{c}^{\prime}\right) H(\mathbf{c} ; \mathbf{m}) H\left(\mathbf{c}^{\prime} ; \mathbf{m}\right)
$$

where $\varepsilon\left(\mathbf{c}, \mathbf{c}^{\prime}\right)$ is a root of unity built out of residue symbols and root data:

$$
\varepsilon\left(\mathbf{c}, \mathbf{c}^{\prime}\right)=\prod_{i=1}^{r}\left(\frac{c_{i}}{c_{i}^{\prime}}\right)\left(\frac{c_{i}^{\prime}}{c_{i}}\right) \prod_{i-j}\left(\frac{c_{i}}{c_{j}^{\prime}}\right)\left(\frac{c_{i}^{\prime}}{c_{j}}\right) .
$$

The function H

- When $\left(c_{1} \cdots c_{r}, m_{1}^{\prime} \cdots m_{r}^{\prime}\right)=1$, we can define $H\left(\mathbf{c} ; \mathbf{m m}^{\prime}\right)$ in terms of $H(\mathbf{c} ; \mathbf{m})$ and certain power residue symbols:

$$
H\left(\mathbf{c} ; \mathbf{m m}^{\prime}\right)=\prod_{j=1}^{r}\left(\frac{m_{j}^{\prime}}{c_{j}}\right) H(\mathbf{c} ; \mathbf{m})
$$

The function H

So we reduce the definition of H to that of

$$
H\left(\varpi^{k_{1}}, \ldots, \varpi^{k_{r}} ; \varpi^{l_{1}}, \ldots, \varpi^{l_{r}}\right)
$$

where ϖ is a prime in \mathcal{O}_{S}.
This leads naturally to the generating function

$$
\begin{aligned}
& N=N\left(x_{1}, \ldots, x_{r}\right) \\
&=\sum_{k_{1}, \ldots, k_{r} \geq 0} H\left(\varpi^{k_{1}}, \ldots, \varpi^{k_{r}} ; \varpi^{l_{1}}, \ldots, \varpi^{l_{r}}\right) x_{1}^{k_{1}} \cdots x_{r}^{k_{r}}
\end{aligned}
$$

(\mathbf{m} is fixed). One can ask what properties this series has to satisfy so that one can prove Z satisfies the right group of functional equations.

The function N

$$
N=N\left(x_{1}, \ldots, x_{r}\right)=\sum_{k_{1}, \ldots, k_{r} \geq 0} H\left(\varpi^{k_{1}}, \ldots, \varpi^{k_{r}}\right) x_{1}^{k_{1}} \cdots x_{r}^{k_{r}} .
$$

If one puts $x_{i}=q^{-s_{i}}$, where $q=\left|\mathcal{O}_{S} / \varpi\right|$, then one can see that the global functional equations imply N must transform a certain way under a certain W-action.

This leads to a connection with characters of representations of \mathfrak{g}, the simple complex Lie algebra attached to Φ.

In this relationship the monomials correspond to certain weight spaces.

Building N

The connection with characters leads to two approaches to defining N :

- Crystal graphs. These are models for \mathfrak{g} representations that have various combinatorial incarnations (Gelfand-Tsetlin patterns, tableaux, Proctor patterns, Littlemann path model, ...). One tries to extract a statistic from the combinatorial model to define the coefficients of N. (Brubaker-Bump-Friedberg, Beineke-Brubaker-Frechette, Chinta-PG)
- Weyl character formula. This is an explicit expression for a given character as a ratio of two polynomials. We take this approach and define a deformation of Weyl's formula that reflects the metaplectacity (metaplectaciousness?) of the setup. (Chinta-PG, Bucur-Diaconu)

WCF

- $\Lambda_{w} \quad$ weight lattice of Φ
- $\left\{\omega_{1}, \ldots, \omega_{r}\right\}$ fundamental weights
- $\rho=\sum \omega_{i}$ the Weyl vector
- $\mathbb{Z}\left[y_{1}^{ \pm 1}, \ldots, y_{r}^{ \pm 1}\right]$ group ring of the weight lattice $\left(y_{i} \leftrightarrow \omega_{i}\right)$
- θ a dominant weight

Then according to Weyl the character of the irreducible representation of highest weight θ is

$$
\chi_{\theta}=\frac{\sum_{w \in W} \operatorname{sgn}(w) \mathbf{y}^{w(\theta+\rho)-\rho}}{\prod_{\alpha>0}\left(1-\mathbf{y}^{-\alpha}\right)}=\sum_{w \in W} \operatorname{sgn}(w) \mathbf{y}^{w(\theta+\rho)-\rho} \frac{1}{\Delta(\mathbf{y})}
$$

$\Delta(\mathbf{y})=\prod_{\alpha>0}\left(1-\mathbf{y}^{-\alpha}\right)$.

Deformation of the WCF

Our goal now is to define the W-action leading to H. For the application to multiple Dirichlet series, we normalize things slightly differently. Thus we work with the root lattice, introduce some $q=\left|\mathcal{O}_{S} / \varpi\right|$ powers, shift the character around, \ldots

- Λ root lattice of Φ
- $d: \Lambda \rightarrow \mathbb{Z}$ height function on the roots
- $A \simeq \mathbb{C}\left[x_{1}^{ \pm 1}, \ldots, x_{r}^{ \pm 1}\right] \quad$ complex group ring of $\Lambda\left(x_{i} \leftrightarrow \alpha_{i}\right)$
- $\tilde{A} \simeq \mathbb{C}\left(x_{1}, \ldots, x_{r}\right) \quad$ fraction field of A
- $\theta=\rho+\sum l_{i} \omega_{i} \quad$ a strictly dominant weight (recall that we're defining $H(\mathbf{c} ; \mathbf{m})$ when $\left.\mathbf{m}=\left(\varpi^{l_{1}}, \ldots, \varpi^{l_{r}}\right)\right)$

The action on monomials

We let the Weyl group act on monomials through a "change of variables" map. This is essentially the same as the geometric action of W on the root lattice (except for the q power).

If $f(\mathbf{x})=\mathbf{x}^{\beta}$, we put

$$
f\left(w \mathbf{x}^{\beta}\right)=q^{d\left(w^{-1} \beta-\beta\right)} \mathbf{x}^{w^{-1} \beta} .
$$

Affine action of W

Given any $\lambda \in \Lambda$, we put

$$
w \bullet \lambda=w(\lambda-\theta)+\theta
$$

where the action on the right hand side is the usual action on the root lattice. This just performs an affine reflection of $\Lambda \otimes \mathbb{R}$ (the same as the usual w reflection but shifted to have center θ).

If σ_{i} is a simple reflection, we put

$$
\mu_{i}(\lambda)=d\left(\sigma_{i} \bullet \lambda-\lambda\right)
$$

This is just the multiple of α_{i} needed to go from λ to $\sigma_{i} \bullet \lambda$.

Affine action of W

Gauss sums

Choose some complex numbers $\gamma(i), i=1, \ldots, n-1$ such that $\gamma(i) \gamma(n-i)=1 / q$. Put $\gamma(0)=-1$.

Ultimately these numbers will be Gauss sums (the same ones appearing in the metaplectic cocycle), but actually any complex numbers satisfying these relations will work.

Extend $\gamma(i)$ to all integers by reducing $i \bmod n$.

Homogeneous decomposition

The action on a monomial $f(\mathbf{x})=\mathbf{x}^{\beta}$ depends on the congruence class of the monomial $\bmod n \Lambda$.

To treat general rational functions, we decompose \tilde{A} into homogeneous parts

$$
\tilde{A}=\bigoplus_{\lambda \in \Lambda / n \Lambda} \tilde{A}_{\lambda} .
$$

A_{λ} consists of those rational function f / g where all monomials in g lie in $n \Lambda$ and those in f map to λ modulo $n \Lambda$.
e.g.,

$$
\frac{1-x y}{x^{2}-y^{2}}=\frac{1}{x^{2}-y^{2}}-\frac{x y}{x^{2}-y^{2}}
$$

Finally

Theorem (Chinta-PG) Suppose $f \in A_{\beta}$. Let σ_{i} be a simple reflection and let $(k)_{n}$ be the remainder upon division of k by n. Then

$$
\begin{align*}
\left(\left.f\right|_{\theta} \sigma_{i}\right)(\mathbf{x}) & =\left(q x_{i}\right)^{l_{i}+1-\left(\mu_{i}(\beta)\right)_{n}} \frac{1-1 / q}{1-q^{n-1} x_{i}^{n}} f\left(\sigma_{i} \mathbf{x}\right) \tag{P}\\
& -\gamma\left(\mu_{i}(\beta)\right) \cdot\left(q x_{i}\right)^{l_{i}+1-n} \frac{1-\left(q x_{i}\right)^{n}}{\left(1-q^{n-1} x_{i}^{n}\right)} f\left(\sigma_{i} \mathbf{x}\right) \tag{Q}
\end{align*}
$$

extends to a W-action on $\mathbb{C}\left(x_{1}, \ldots, x_{r}\right)$.

The W-action

The W-action

The W-action

The W-action

Making the multiple Dirichlet series

Theorem (Chinta-PG)

- Put $\Delta(\mathbf{x})=\prod_{\alpha>0}\left(1-q^{n} \mathbf{x}^{n \alpha}\right)$ and $D(\mathbf{x})=\prod_{\alpha>0}\left(1-q^{n-1} \mathbf{x}^{n \alpha}\right)$. Then

$$
h(\mathbf{x})=\sum_{w \in W} \frac{\left(\left.1\right|_{\theta} w\right)(\mathbf{x})}{\Delta(w \mathbf{x})}
$$

is a rational function such that $h D$ is a polynomial.

- Let $N=h D$, define H by

$$
N=\sum_{k_{1}, \ldots, k_{r} \geq 0} H\left(\varpi^{k_{1}}, \ldots, \varpi^{k_{r}} ; \varpi^{l_{1}}, \ldots, \varpi^{l_{r}}\right) x_{1}^{k_{1}} \cdots x_{r}^{k_{r}},
$$

and specialize the $\gamma(i)$ to the appropriate Gauss sums. Then the resulting multiple Dirichlet series $Z(\mathbf{s} ; \mathbf{m}, \Psi ; \Phi, n)$ has analytic continuation to \mathbb{C}^{r} and satisfies a group of functional equations isomorphic to W.
A_{2} examples $(n=2)$

Here $g_{1}=q \gamma(1)$ and the notation (a, b) means

$$
\theta=(a+1) \omega_{1}+(b+1) \omega_{2} .
$$

- $(0,0): 1+g_{1} x+g_{1} y-g_{1} q x^{2} y-g_{1} q x y^{2}-q^{2} x^{2} y^{2}$
- $(1,0): 1-q x^{2}+g_{1} y-g_{1} q x^{2} y+g_{1} q^{2} x^{2} y+q^{3} x^{3} y-g_{1} q^{3} x^{2} y^{3}-q^{4} x^{3} y^{3}$
- $(1,1): 1-q x^{2}-q y^{2}+q^{2} x^{2} y^{2}-q^{3} x^{2} y^{2}+q^{4} x^{4} y^{2}+q^{4} x^{2} y^{4}-q^{5} x^{4} y^{4}$
- $(2,1)$:

$$
\begin{aligned}
& 1-q x^{2}+q^{2} x^{2}+g_{1} q^{2} x^{3}-q y^{2}+q^{2} x^{2} y^{2}-2 q^{3} x^{2} y^{2}+q^{4} x^{2} y^{2}-g_{1} q^{3} x^{3} y^{2}+ \\
& g_{1} q^{4} x^{3} y^{2}+q^{4} x^{4} y^{2}-q^{5} x^{4} y^{2}-g_{1} q^{5} x^{5} y^{2}+q^{4} x^{2} y^{4}-q^{5} x^{2} y^{4}-g_{1} 5^{5} x^{3} y^{4}+ \\
& g_{1} q^{6} x^{3} y^{4}-q^{5} x^{4} y^{4}+q^{6} x^{4} y^{4}+g_{1} q^{6} x^{5} y^{4}-g_{1} q^{7} x^{5} y^{4}+q^{7} x^{3} y^{5}-q^{8} x^{5} y^{5}
\end{aligned}
$$

Open questions

- The WCF method works for all Φ, whereas the crystal graph approach has only been worked out for some (classical) Φ. Can one do the latter for all Φ uniformly? (Kim-Lee, McNamara)
- Prove that Z is a Whittaker coefficient of a metaplectic Eisenstein series. (Chinta-Offen)
- Prove that the crystal graph descriptions and the WCF descriptions coincide. (Chinta-Offen + McNamara)
- Develop multiple Dirichlet series on affine Weyl groups and crystallographic Coxeter groups (Bucur-Diaconu, Lee)
- What is the geometric interpretation of Weyl group multiple Dirichlet series over function fields?

References

- Gautam Chinta and PG, Weyl group multiple Dirichlet series constructed from quadratic twists, Invent. Math. 167 (2007), no.2, 327-353.
- Gautam Chinta, Sol Friedberg, and PG, On the p-parts of quadratic Weyl multiple Dirichlet series, J. Reine Angew. Math. 623 (2008), 1-23.
- Gautam Chinta and PG, Weyl group multiple Dirichlet series of type A_{2}, to appear in the Lang memorial volume.
- _ Constructing Weyl group multiple Dirichlet series, J. Amer. Math. Soc. 23 (2010), 189-215.

