On the growth of torsion in the cohomology of arithmetic groups

Paul E. Gunnells

UMass Amherst
Oxford 2019

Some data for our groups

Group	$\operatorname{dim} X$	vcd	cusp. range	δ
$\mathrm{GL}_{3}(\mathbb{Z})$	5	3	$[2,3]$	1
$\mathrm{GL}_{4}(\mathbb{Z})$	9	6	$[4,5]$	1
$\mathrm{GL}_{5}(\mathbb{Z})$	14	10	$[6,7,8]$	2
$\mathrm{GL}_{2}\left(\mathcal{O}_{L}\right)$	3	2	$[1,2]$	1
$\mathrm{GL}_{2}\left(\mathcal{O}_{F}\right)$	6	5	$[2,3,4]$	1
$\mathrm{GL}_{2}\left(\mathcal{O}_{E}\right)$	7	6	$[2,3,4,5]$	2

$L=\mathbb{Q}(\sqrt{-d}), F$ cubic of discriminant $-23, E=\mathbb{Q}\left(\zeta_{5}\right)$. In all cases we use $\Gamma_{0}(\mathfrak{n})$ for our congruence subgroups.
Let c be the $\mathrm{B}-\mathrm{V}$ constant $c_{G} \mu(\Gamma)$.

- $\Gamma \subset \operatorname{SL}_{2}(\mathcal{O}), X=\mathfrak{H}_{3}$
- $c=\frac{|\Delta|^{3 / 2}}{48 \pi^{3}} \zeta_{\mathbb{Q}(\sqrt{-1})}(2)=0.0080989140008 \ldots$
- Computations done for $\operatorname{Norm}(\mathfrak{n}) \leq 50000$ (19827 levels).
- Largest torsion at norm 49850, where Voronoi homology is $H_{1}=\mathbb{Z}^{18} \times T$,
$\# T=99407444600099014483472905584891296877204680639$
86416658793798948901127432947695155728875563424 19476442159847189542963526150932346235466883619 33161406412057509780714570218204049314881664033 94721755271280981860183356597634324144243233944 28888397376030584576028245868131438925540733906 14865670538078059046800867779047996070659056392 69615372231493648172254559736578451714510684160 00000000000.

Figure: Levels ordered by norm

Figure: Levels ordered by index

Figure: H_{1} with prime levels indicated for the subgroups of $\mathrm{GL}_{2}(\mathbb{Z}[\sqrt{-1}])$.

Figure: Levels ordered by norm, primes, bigsupport too

Figure: Some partial towers

$\mathbb{Q}(\sqrt{-15})$

- Class number $=2$.
- $c=0.0832543192934909 \ldots$
- Computations done for $\operatorname{Norm}(\mathfrak{n}) \leq 10103$ (8303 levels).
- Largest torsion at norm 10020, where Voronoi homology is $H_{1}=\mathbb{Z}^{142} \times T$,
$\# T=41881066680290026290757971072933010839127589372$
20329609346932099823555080316242246455414143824
81678312213487455195384194363167308898872657519
11158997541503207392603276379894341069429480519
65384392910119014805697326867603260287168237074
47678067481735850787089416159137540458099351433
... 12 lines cut ...
47612937080789420193496465314969566666312118346
35590810694991462262604042802662380942618952274
82502950783747405436363250199487566317958928712
61212179944122598433961964350333355621142142537
01636462958029126592626688000000000000000000000
00.

Figure: Levels ordered by norm

Figure: Levels ordered by index

$F=$ cubic field of discriminant -23

- $\Gamma \subset \mathrm{GL}_{2}\left(\mathcal{O}_{F}\right), X \simeq \mathfrak{H} \times \mathfrak{H}_{3} \times \mathbb{R}$.
- $c=\frac{23^{3 / 2} \operatorname{Reg}_{F}}{48 \pi^{5}} \zeta_{F}(2)=0.002343900569 \ldots$
- Full computations done for $\operatorname{Norm}(\mathfrak{n}) \leq 5480$ (2011 levels). We went further for the most interesting cohomology group.
Note that the constant includes a factor for the regulator, since the symmetric space for GL_{2} includes a flat factor (the locally symmetric space is an S^{1}-bundle over the SL_{2} symmetric space).

Figure: All the Voronoi homology groups for subgroups of $\mathrm{GL}_{2}\left(\mathcal{O}_{F}\right)$ for the cubic field of discriminant -23 , together with the predicted limiting constant (ordered by index of the congruence subgroup). Cuspidal range is H_{2}, H_{3}, H_{4}.

Figure: H_{2}, the most interesting group, by norm

Figure: H_{2}, the most interesting group, by index

Figure: H_{2} with prime levels indicated for the subgroups of $\mathrm{GL}_{2}\left(\mathcal{O}_{F}\right)$ for the cubic field of discriminant -23 .

$E=\mathbb{Q}\left(\zeta_{5}\right)$

- $\Gamma \subset \mathrm{GL}_{2}\left(\mathcal{O}_{E}\right), X \simeq \mathfrak{H}_{3} \times \mathfrak{H}_{3} \times \mathbb{R}$.
- Don't expect exponential torsion growth $(\delta=2)$, so constant is 0 .
- Computations done for $\operatorname{Norm}(\mathfrak{n})<38172$ (2741 levels)

Figure: The (most interesting) group, ordered by index

- $\Gamma \subset \mathrm{GL}_{3}(\mathbb{Z}), X$ has dimension 5 .
- $c=\frac{\sqrt{3}}{288 \pi^{2}} \zeta(3)=0.00073247603662800481 \ldots$
- Computations $\left(H_{2}\right)$ done for $\Gamma_{0}(N), N \leq 641$.
- Largest torsion at $N=570$, where Voronoi homology is $H_{2}=\mathbb{Z}^{484} \times T$,
$\# T=16853256428212926919091386506046007576303755208$ 26880272462076049132232810484870574950214286105 73825604977439626031552020132671158394472458554 36085727860222780889528730541550989755676579381 17768448895558775766757399005134162840461734061 64566680386962872504267631909519596190869144605 43921348096819200.

Figure: All the Voronoi homology groups for subgroups of $\mathrm{GL}_{3}(\mathbb{Z})$, together with the predicted limiting constant (ordered by level). Cuspidal range: $\mathrm{H}_{2}, \mathrm{H}_{3}$.

Figure: All the Voronoi homology groups for subgroups of $\mathrm{GL}_{3}(\mathbb{Z})$, together with the predicted limiting constant (ordered by index). Cuspidal range: $\mathrm{H}_{2}, \mathrm{H}_{3}$.

$\mathrm{GL}_{4} / \mathbb{Q}$

- $\Gamma \subset \mathrm{GL}_{4}(\mathbb{Z}), X$ has dimension 9.
- $c=\frac{31 \sqrt{2}}{259200 \pi^{2}} \zeta(3)=0.0000205999884056288780742643411677 \ldots$
- Computations $\left(H_{3}\right)$ done for $\Gamma_{0}(N), N \leq 119$.
- Largest torsion at $N=114$, where Voronoi homology is $H_{3}=\mathbb{Z}^{69} \times T$,

$$
\# T=2^{12} \cdot 3^{7} \cdot 11^{4}
$$

Figure: All the Voronoi homology groups for subgroups of $\mathrm{GL}_{4}(\mathbb{Z})$, together with the predicted limiting constant (ordered by level). Cuspidal range H_{4}, H_{5}.

Figure: All the Voronoi homology groups for subgroups of $\mathrm{GL}_{4}(\mathbb{Z})$, together with the predicted limiting constant (ordered by index of the congruence subgroup). Cuspidal range H_{4}, H_{5}.

Two conjectures

Conjecture. Let Γ be any arithmetic group. The limit

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\log \left|H^{i}\left(\Gamma_{k} ; \mathbb{Z}\right)_{\text {tors }}\right|}{\left[\Gamma: \Gamma_{k}\right]} \tag{1}
\end{equation*}
$$

should tend to the $\mathrm{B}-\mathrm{V}$ limit when $\delta=1$ and when i is at the top of the cuspidal range and Γ_{k} ranges over congruence subgroups of Γ of increasing prime level.

Conjecture. Let Γ be any arithmetic group. The limit (1) should equal the $\mathrm{B}-\mathrm{V}$ limit as long as Γ_{k} ranges over any set of congruence subgroups of increasing level. In particular, the lim inf

$$
\liminf _{\Gamma_{k}} \frac{\log \left|H^{i}\left(\Gamma_{k} ; \mathbb{Z}\right)_{\text {tors }}\right|}{\left[\Gamma: \Gamma_{k}\right]}
$$

taken over all congruence subgroups, should equal the B-V limit.

Eisenstein cohomology and torsion

- Introduced by Harder.
- X^{BS} Borel-Serre compactification of X.
- $Y:=\Gamma \backslash X, Y^{B S}:=\Gamma \backslash X^{B S}$. We have

$$
H^{*}(\Gamma ; \mathbb{C}) \simeq H^{*}(Y ; \mathbb{C}) \simeq H^{*}\left(Y^{\mathrm{BS}} ; \mathbb{C}\right)
$$

Eisenstein cohomology and torsion

- $\iota: \partial Y^{\mathrm{BS}} \rightarrow Y^{\mathrm{BS}}$, inclusion of the boundary.
- Interior cohomology $H_{!}^{*}\left(Y^{\mathrm{BS}} ; \mathbb{C}\right)$ is the kernel of ι^{*}.
- The goal of Eisenstein cohomology is to construct a Hecke-equivariant section $s: H^{*}\left(\partial Y^{\mathrm{BS}} ; \mathbb{C}\right) \rightarrow H^{*}\left(Y^{\mathrm{BS}} ; \mathbb{C}\right)$ mapping onto a complement $H_{\text {Eis }}^{*}\left(Y^{\mathrm{BS}} ; \mathbb{C}\right)$ of the interior cohomology.

Q: Do we see torsion Eisenstein classes? Of course any such classes would have to be constructed by topological means, not using Eisenstein series. So really we are asking if we see classes on locally symmetric spaces at infinity appearing in the cohomology of our locally symmetric space.

Eisenstein phenomena

We see apparent Eisenstein classes going from H_{2} of GL_{3} to H_{3} of GL_{4} (H_{2} of GL_{3} refers to H^{3}, and H_{3} of GL_{4} refers to H^{6}; these are the vcds).

- At level 114 , the size of the torsion in H_{3} is $2^{12} \cdot 3^{7} \cdot 11^{4}$. The corresponding torsion for GL_{3} in H_{2} is $2^{5} \cdot 3^{3} \cdot 11^{2}$.
- At level 118 , the size of the torsion in H_{3} is $2^{14} \cdot 17^{4}$. The corresponding torsion for GL_{3} in H_{2} is 17^{2}.
- At level 119 , the size of the torsion in H_{3} is $2^{4} \cdot 3^{3} \cdot 31^{4}$. The corresponding torsion for GL_{3} in H_{2} is $2^{2} \cdot 3^{1} \cdot 31^{2}$.

Eisenstein phenomena

We also apparent Eisenstein classes for H_{3} of GL_{3} to H_{4} for GL_{4}; both of these correspond to cohomological degree one below the vcd of their respective groups.

- At level 49 , the size of the torsion in H_{4} is $3^{1} \cdot 7^{2}$. The corresponding torsion for GL_{3} in H_{3} is 7 .
- At level 98, the size of the torsion in H_{4} is 7^{5}. The corresponding torsion for GL_{3} in H_{3} is 7 .

Summary

- We found excellent agreement in our results with the general heuristic espoused by Bergeron-Venkatesh, namely that groups with deficiency 1 should have exponential growth in the torsion in their cohomology. We also found excellent quantitative agreement with their predicted asymptotic limit, suitably interpreted for reductive groups.
- We found that, when the \mathbb{Q}-rank of a group is >0 and the deficiency is 1 , the explosive torsion growth occurs in the top cohomological degree of the cuspidal range and not in other degrees (after accounting for flat factors).
- When the deficiency is >1, we still found interesting torsion in the top degree of the cuspidal range. However, the growth rate of the size of the torsion subgroup appears much lower than that in the deficiency 1 case. Is the growth polynomial or subexponential?

Summary

- For groups of deficiency 1 , the growth of the torsion in towers of congruence subgroups seems to agree with the predicted asymptotic limit, although the convergence seems significantly slower than that experienced by families of congruence subgroups of increasing prime level or simply the family of all congruence subgroups ordered by increasing level.
- The interesting torsion in a group of deficiency 1 appears to tend to transfer to another via Eisenstein cohomology. What is the explanation of when this transfer happens and when it doesn't? Could this be related to divisibility of special values of some L-function by the primes in question?

Thanks

Thank you!

