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Basic problem

Let G = SL4(R), K = SO(4), X = G/K .
Let Γ = Γ0(N) ⊂ SL4(Z) be the subgroup with bottom row congruent to
(0, 0, 0, ∗) mod N.
Our goal is to compute the cohomology

H5(Γ; C) = H5(Γ\X ; C),

and to understand the action of the Hecke operators on this space.
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Why?

The cohomology of any arithmetic group is built out of certain
automorphic forms, yet can be computed using topological tools.

Gives a concrete way to compute automorphic forms that
complements other approaches (e.g., theta series).

Gives explicit examples of various constructions in automorphic forms
(e.g, functorial liftings).

Gives examples of automorphic forms that should be related to
arithmetic objects (e.g., Galois representations). Gives way to test
various “motivic ⇔ automorphic” conjectures.
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Arithmetic groups and automorphic forms

G semisimple connected algebraic group /Q
G = G(R) group of real points (Lie group)
K ⊂ G maximal compact subgroup
X = G/K global symmetric space
Γ ⊂ G(Q) arithmetic subgroup
E finite-dimensional rational complex representation of G(Q)
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Arithmetic groups and automorphic forms

If Γ is torsion-free, then Γ\X is an Eilenberg–Mac Lane space. We have

H∗(Γ;E ) = H∗(Γ\X ;E ),

where E is the local coefficient system attached to E .
True even if Γ has torsion, since we’re using complex representations.
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(g, K )-cohomology

We can get automorphic forms into the picture via the de Rham theorem.
Let Ωp = Ωp(X ,E ) be the space of E -valued p-forms on X . Let
Ωp(X ,E )Γ be the subspace of Γ-invariant forms. We have a differential
d : Ωp → Ωp+1 and have an isomorphism

H∗(Γ;E ) = H∗(Ω∗(X ,E )Γ).
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(g, K )-cohomology

We can identify

Ωp(Γ\X , C) = HomK (∧p(g/k),C∞(Γ\G ))

or more generally

Ωp(Γ\X ,E ) = HomK (∧p(g/k),C∞(Γ\G )⊗ E )

RHS inherits a differential. The cohomology is denoted

H∗(g,K ;C∞(Γ\G )⊗ E )

and is called (g,K )-cohomology.
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Cuspidal cohomology

We have
H∗(Γ;E ) = H∗(g,K ;C∞(Γ\G )⊗ E ).

We can use this to identify important subspaces of the cohomology. For
instance the inclusion

L2
cusp(Γ\G )∞ ↪→ C∞(Γ\G )

induces an injective map

H∗(g,K ; L2
cusp(Γ\G )∞ ⊗ E ) → H∗(g,K ;C∞(Γ\G )⊗ E ).

The image H∗
cusp(Γ;E ) ⊂ H∗(Γ;E ) is called the cuspidal cohomology.
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Borel conjecture

We also have the subspace of automorphic forms

A(Γ,G ) ⊂ C∞(Γ\G )

(subspace of functions that are right K -finite, left Z (g)-finite, and of
moderate growth). ’

Theorem (Franke)

The inclusion A(Γ,G ) → C∞(Γ\G ) induces an isomorphism

H∗(g,K ;A(Γ,G )⊗ E ) → H∗(g,K ;C∞(Γ\G )⊗ E )

Thus we can think of H∗(Γ;E ) as being a concrete realization of certain
automorphic forms, namely those with nonvanishing (g,K )-cohomology.
These were classified by Vogan–Zuckermann.
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Example: SL2 and modular forms

If G = SL2, then G = SL2(R), K = SO(2), and X is the upper halfplane.
Let Γ = Γ0(N) ⊂ SL2(Z), the subgroup of matrices upper triangular
modulo N.
Let Ek be the k-dimensional complex representation of G , say on the
vector space of degree k − 1 homogeneous complex polynomials in two
variables.
We have

H1(Γ;Ek) ' Sk+1(Γ)⊕ Sk+1(Γ)⊕ Eisk+1(Γ),

where Sk+1 is the space of holomorphic weight k + 1 modular forms, and
Eisk+1 is the space of weight k + 1 Eisenstein series.

Paul E. Gunnells (UMass Amherst) Cohomology of subgroups of SL4(Z) 19 January 2009 11 / 32



Virtual cohomological dimension

Let q = q(G) be the Q-rank of G.

Theorem (Borel–Serre)

For all Γ and E as above, we have H i (Γ;E ) = 0 if i > dim X − q.

The number ν = dim X − q is called the virtual cohomological dimension.
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Cuspidal range

The cuspidal cohomology doesn’t appear in every cohomological degree.
In fact, one can show that H i

cusp(Γ;E ) = 0 unless the degree i lies in a
small interval about (dim X )/2 (Li–Schwermer, Saper).

n 2 3 4 5 6 7 8 9

dim X 2 5 9 14 20 27 35 44
ν(Γ) 1 3 6 10 15 21 28 36

top degree of H∗
cusp 1 3 5 8 11 15 19 24

bottom degree of H∗
cusp 1 2 4 6 9 12 16 20

Table: The virtual cohomological dimension and the cuspidal range for subgroups
of SLn(Z)
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Connection with arithmetic geometry

The groups H∗(Γ;E ) have an action of the Hecke operators, which are
endomorphisms of the cohomology associated to certain finite index
subgroups of Γ.
We expect eigenclasses of these operators to reveal arithmetic information
in the cohomology.
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Galois representations and eigenclasses

G = SLn/Q, Γ = Γ0(N)
Gal(Q̄/Q) absolute Galois group of Q
ρ : Gal(Q̄/Q) → GLn(Qp) continuous semisimple Galois representation
unramified outside pN.
Frobl Frobenius congugacy class over l .
We can consider the characteristic polynomial

det(1− ρ(Frobl)T ),
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On the cohomology side, for each prime l not dividing N we have Hecke
operators T (l , k), k = 1, . . . , n − 1. These operators generalize the
classical operator Tl on modular forms.
If ξ is a Hecke eigenclass, define the Hecke polynomial

H(ξ) =
∑
k

(−1)k lk(k−1)/2a(l , k)T k ∈ C[T ].

where a(l , k) is the eigenvalue of T (l , k).
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Fix an isomorphism Q̄p ' C.

Conjecture (Ash)

For any Hecke eigenclass ξ of level N, there is a Galois representation
ρ : Gal(Q̄/Q) → GLn(Qp) unramified outside pN such that for every prime
l not dividing pN, we have

H(ξ) = det(1− ρ(Frobl)T ).

This is the conjecture we’re ultimately testing. Note that as stated the
conjecture is primarily of interest in the case of nonselfdual eigenclasses,
since one knows how to attach Galois representations to selfdual classes
(Clozel). (Selfdual classes have palindromic and real eigenvalues.)
Note that Γ\X is not an algebraic variety, so can’t use etale cohomology
to look for Galois action.
Also of interest: consider torsion coefficients (will be the subject of later
work).
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Our goals

Compute H5(Γ0(N); C) for as big a range of levels N as possible. The
degree 5 is chosen because it’s in the cuspidal range, and is as close
to the vcd ν(Γ) as possible (more below).

Compute the action of the Hecke operators on this space.

Identify Galois representations attached to the cohomology

Try to understand whatever we can about this cohomology space.
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Tools to compute the cohomology

For modular forms, i.e. the cohomology of subgroups of SL2(Z), we can
use modular symbols to perform computations.
Recall that X is the upper halfplane. Let X ∗ = X ∪Q ∪ {i∞}. Given two
cusps q1, q2 ∈ X ∗ r X , we can form the geodesic from q1 to q2 and can
look at the image in Γ\X ∗.
This gives a relative homology class

[q1, q2] ∈ H1(Γ\X ∗, cusps; C) ' H1(Γ\X ; C).

One knows that the vector space generated by the symbols [q1, q2] maps
surjectively onto the cohomology, and can determine the relations:

[q1, q2] = −[q2, q1]

[q1, q2] + [q2, q3] + [q3, q1] = 0.

[γq1, γq2] = [q1, q2], γ ∈ Γ.

Paul E. Gunnells (UMass Amherst) Cohomology of subgroups of SL4(Z) 19 January 2009 19 / 32



Hecke action

The Hecke operators act on the modular symbols. Given Tl , we can find
finitely many matrices {γi} such that, if ξ = [q1, q2], then

Tlξ =
∑

i

[γiq1, γiq2]

Moreover, we can identify a special set of modular symbols—the
unimodular symbols—that

is finite modulo Γ and

spans H1(Γ).

These are the SL2(Z)-translates of [0, i∞]. The Hecke operators do not
preserve the subspace of unimodular symbols, but there is an algorithm
(“Manin’s trick”) to write any modular symbol as a linear combination of
unimodular symbols.
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n > 2

The situation for n > 2 is more complicated:

There is an analogue of the modular and unimodular symbols, and
they provide a model for Hν(Γ; C). One takes n-tuples of cusps
[q1, . . . , qn] modulo relations, where now cusp means a minimal
boundary component in a certain Satake compactification X ∗.

One can describe an analogue of Manin’s trick (Ash–Rudolph)

BUT: usually Hν
cusp = 0, since ν(Γ) usually falls outside the cuspidal

range.

Remark: for n = 3, one can use modular symbols to compute cuspidal
cohomology (Ash–Grayson–Green).
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n = 4

Nevertheless, we can overcome these problems, at least for n = 4 (the first
interesting case):

We can define an explicit complex computing H∗(Γ; C), the sharbly
complex (named in honor of Sczarba and Lee).

We can identify a finite subcomplex mod Γ, using the well-rounded
retract of Ash–Soule–Lannes (equivalently, Voronoi’s work on perfect
quadratic forms).

We can formulate an analogue of the Manin trick to compute the
Hecke action on Hν−1(Γ; C). (G)

The first two can be done for any n. The last one has only been tested in
dimension 4.
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Remark about other cases

This setup is also useful in other cases, such as

RF/Q(SL2), where F is real quadratic (Hilbert modular case) or F is
complex quartic. (G–Yasaki)

RF/Q(SL3), where F is complex quadratic.

In all these cases, the cuspidal cohomology meets Hν−1 and not Hν .
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Results

We have computed H5(Γ0(N); C) for N prime and ≤ 211, and for
composite N up to 52. The biggest computation involed matrices of size
845712× 3277686 (N = 211).

No nonselfdual cuspidal classes were found :(

We found Eisenstein classes (boundary cohomology) attached to
weight 2 and weight 4 modular forms.

We found Eisenstein classes attached to SL3 cuspidal cohomology.

Found selfdual cuspidal classes that are apparently functorial lifts of
Siegel modular forms.

For N prime we believe this is a complete description of the cohomology,
apart from nonselfdual classes.

Paul E. Gunnells (UMass Amherst) Cohomology of subgroups of SL4(Z) 19 January 2009 24 / 32



Eisenstein cohomology

X̄ partial bordification of X due to Borel–Serre
Γ\X̄ Borel–Serre compactification (orbifold with corners)
∂(Γ\X̄ ) = Γ\X̄ r Γ\X .
We have

H∗(Γ\X̄ ; C) ' H∗(Γ\X ; C).

The inclusion ∂(Γ\X̄ ) ↪→ Γ\X̄ induces a restriction map

H∗(Γ\X̄ ; C) → H∗(∂(Γ\X̄ ); C),

and Eisenstein classes are those restricting nontrivially to the boundary
(Harder–Schwermer–Mannkopf)
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Weights 2 and 4

Each weight 2 eigenform f contributes to H5(Γ; C) in two different ways,
with the Hecke polynomials

(1− l2T )(1− l3T )(1− αT + lT 2)

and
(1− T )(1− lT )(1− l2αT + l5T 2),

where Tl f = αf .
A weight 4 eigenform g contributes with Hecke polynomial

(1− lT )(1− l2T )(1− βT + l3T 2),

where Tlg = βg , if and only if the central special value of the L-function
of g vanishes.
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SL3 cuspidal classes

These cohomology classes were originally computed by
Ash–Grayson–Green.
An SL3 cuspidal class with eigenvalues γ and γ′ contributes in two
different ways, with the Hecke polynomials

(1− l3T )(1− γT + lγ′T 2 − l3T 3)

and
(1− T )(1− lγT + l3γ′T 2 − l6T 3).
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Siegel modular forms

Recall the paramodular group of prime level

K (p) =


Z pZ Z Z
Z Z Z p−1Z
Z pZ Z Z
pZ pZ pZ Z

 ⊂ Sp4(Q).

Let S3(p) be the space of weight three paramodular forms (they are all
cuspforms; there are no Eisenstein series).
This space contains the subspace S3

G(p) of Gritsenko lifts, which are lifts
from certain weight 3 Jacobi forms to S3(p).
Let S3

nG(p) be the complement to S3
G(p) in S3(p).
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Siegel modular forms

The space of cuspidal paramodular forms is known pretty explicitly. First
we have a dimension formula due to Ibukiyama.
Let κ(a) be the Kronecker symbol ( a

p ). Define functions f , g : Z → Q by

f (p) =


2/5 if p ≡ 2, 3 mod 5,

1/5 if p = 5,

0 otherwise,

and

g(p) =

{
1/6 if p ≡ 5 mod 12,

0 otherwise.
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Ibukiyama’s theorem

Theorem (Ibukiyama)

For p prime we have dim S3(2) = dim S3(3) = 0. For p ≥ 5, we have

dim S3(p) = (p2 − 1)/2880

+ (p + 1)(1− κ(−1))/64 + 5(p − 1)(1 + κ(−1))/192

+ (p + 1)(1− κ(−3))/72 + (p − 1)(1 + κ(−3))/36

+ (1− κ(2))/8 + f (p) + g(p)− 1.

Using this one can easily compute the dimension of S3
nG(p).
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Hecke eigenvalues

Next, Poor and Yuen have developed a technique to compute Hecke
eigenvales for forms in S3

nG(p).
Putting these two together, we find

For all p, the dimension of the subspace of H5(Γ0(p); C) not
accounted for by the Eisenstein classes above matches 2 dim S3

nG(p)
according to Ibukiyama.

In cases where we have computed the Hecke action on this subspace,
we find full agreement with the data produced by Poor–Yuen.
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To do

Prove that the Eisenstein classes we see actually occur for all p.

Prove that we do indeed have a lift from Siegel modular forms to the
cohomology.

Investigate nontrivial coefficients, torsion coefficients.
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