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1. Introduction

These are the notes from the TWIGS1 talk on stratified spaces. The theory of
these spaces is the work of many people, including Whitney, Thom, Mather, Hardt,
Hironaka, and ÃLojasiewicz. The best places to read about the theory i know about
are are [1, 4, 5]. Another reference is the first chapter of [6], but I’m not as familiar
with this.

2. The basic idea

Most people are familiar with manifolds: a manifold is a topological space that
locally looks like Rn (plus other stuff such as countable basis, Hausdorff.) Roughly
speaking, a stratified space is a topological space that is built from manifolds in a
nice way.

Definition 2.1. Let X ⊂ Rn be a closed subset. Then X is said to be stratified

if there is a poset I and a locally finite collection of disjoint locally closed subsets
Si, i ∈ I such that

(1) Z =
⋃

Si
(2) Si ∩ Sj is nonempty if and only if Si ⊂ Sj, and this happens if and only if

i = j or i < j (this is called the axiom of the frontier)
(3) Each Si is a locally closed smooth submanifold of Rn

The pieces Si are called strata. The set of strata is itself a poset, with the relation
induced from inclusion.

Note: locally closed means each subset is the intersection of a closed and open
subset. For example, the open 2D disc of radius 1 embedded is R3 is locally closed.
Any open set is locally closed. Also, since X is closed, the axiom of the frontier
implies that the closure of each stratum is a union of strata.

The decomposition above is called a stratification. We caution that there are
actually several different definitions of stratification floating around the literature, in
which one requires more or less than the above (see the last section for an example
or requiring more). For example, sometimes the axiom of the frontier is omitted
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from the definition, and a stratification satisfying the axiom of the frontier is called a
primary stratification. However, the above definition seems to require the least while
still being useful, and so we will use it.

3. Examples

There are many examples of such spaces, and in fact this is the main point about
them: they arise naturally in many situations where manifolds just won’t do.

Example 3.1. A manifold with boundary M is a stratified space. One stratum is
the boundary ∂M , and the other stratum is the complement M r ∂M . Note that
strata need not be connected. All the above conditions are obviously met.

Example 3.2. More generally we can take M to be a manifold with corners. This
is a space that is locally modelled not on Rn, or even Hn (the halfspace {x ∈ Rn |
x1 ≥ 0}), but rather the “corner spaces” Hn,k = {x ∈ Rn | x1, . . . , xk ≥ 0}, where
k = 0, . . . , n. A manifold with corners is homeomorphic to a manifold with boundary
(simply “round off” the corners into Hn’s), but it is useful in many applications to
have the additional structure of the corners.

Example 3.3. Affine algebraic varieties over C are stratified spaces. Recall that an
affine algebraic variety is the zero set of a set of polynomials f1, . . . , fk ⊂ C[x1, . . . , xn].
For example, the variety C = {x2 + y2 − z2 = 0} ⊂ C3 is a double cone (as usual it’s
easiest to picture the real points of such a space). This fails to be a manifold at the
origin, and we can stratify it by taking the strata to be C r {0} and {0}.

Another example is provided by the variety P ⊂ C3 defined by the vanishing of
the polynomial f = x2 + y3 + z5. The origin O is a singular point; observe that the
gradient of f vanishes there. Otherwise P is a manifold.

In fact the hypersurface P is a very interesting example. Take a small sphere S5
ε

of radius ε centered at the origin, and consider the intersection L = P ∩ S5
ε . This

is called the link of the isolated singular point O. One can show that L is uniquely
determined if ε is sufficiently small. If P were a manifold at O, then this intersection
would be a 3-sphere, since P has real dimension 4. But one can show that actually
L is diffeomorphic to the Poincare homology 3-sphere. Thus L is a 3-manifold whose
homology coincides with that of S3, yet L is not diffeomorphic to S3. In fact, L
isn’t simply-connected; its fundamental group is isomorphic to the binary icosahedral
group, which has the presentation 〈a, b, c | a2 = b3 = c5 = abc〉. For more about this
beautiful manifold see the extremely entertaining [3].

To see how affine varieties can be stratified, let X ⊂ Cn be defined by the van-
ishing of the polynomials f1, . . . , fk, where k ≤ n. Assume for simplicity that the
codimension of X in Cn is k. The fi determine a k×n matrix J , the jacobian matrix,
in which the (i, j)th entry is the polynomial ∂fi/∂xj. Let Σ(X) ⊂ X be the subva-
riety on which this matrix has rank less than k. Then Σ(X) is called the singular
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locus. We have that Σ(X) is a proper subvariety of X (possibly empty), and that
Y0 := XrΣ(X) is a manifold of complex codimension k.(2) This is the first step in the
stratification. To get the full stratification, we inductively let Σj(X) = Σ(Σj−1(X))
and put Yj = Σj(X) r Σj+1(X). Then the Yj are the strata of our stratification.

In the examples above, the varieties are only defined by one equation (i.e. they
are hypersurfaces). Thus the jacobian is just the gradient, and the singular locus is
given by all points on the varieties where the gradient vanishes. In both cases this is
just the origin.

For another example, consider the Whitney cusp, which is the variety X defined
by x3 + z2x2 − y2 = 0. A picture of its real points is shown in Figure 1. Computing
the gradient shows that Σ(X) is defined by x = y = 0, which is the z-axis. Σ(X) is
clearly a submanifold, so there are only two strata in the stratification.

Figure 1. The Whitney cusp

Example 3.4. What’s the largest interesting class of spaces that can be stratified?
One answer is the class of semianalytic spaces. By definition, a real semianalytic

set is a subset X of Rn if locally at each point it is defined by a finite collection of
equalities f1 = · · · = fk = 0 and inequalities g1 > 0, . . . , gl > 0 in which the functions
fi, gj are analytic. This includes the case where the functions are polynomials, in
which case X is called semialgebraic. There is also a complex version, in which Rn

is replaced by Cn, and the inequalities gj > 0 are replaced with gj 6= 0. Thus this
includes the affine algebraic variety example above (and the real version includes the
picture). That such spaces admit stratifications is due to ÃLojasiewicz. Apparently

2It’s a subvariety because the condition that J have rank < k can be expressed by requiring that
all k × k minors of J vanish. Thus Σ(X) is defined by finitely many polynomial equations.
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the original source for this result is a set of unpublished lecture notes from IHES in
1965, but one can also look at [4, p. 1583] and the references given there.

Example 3.5. The examples above were stratifications of singular spaces, namely
spaces that aren’t themselves manifolds. In fact we were really trying to decompose
the singular spaces into manifolds. However, sometimes it can be useful to decompose
manifolds into strata to reveal some additional structure.

As an example, recall that the (real) grassmannian G(k, n) is the manifold parametriz-
ing all k-dimensional subspaces of Rn. We get a stratification here by fixing a flag

0 ( F1 ( · · · ( Fn−1 ( Rn, where Fi is a subspace of dimension i. Each k-
dimensional subspace V ⊂ Rn determines a sequence m(V ) of nondecreasing integers
m1, . . . ,mn−1, where mi is the dimension of V ∩ Fi. Fix such a sequence m, and let
Sm ⊂ G(k, n) be the subvariety of all V such that m(V ) = m. Note that Sm may
very well be empty, depending on m. There are only finitely many Sm, and they
form a stratification of G(k, n) called the Schubert stratification. (The varieties Sm

are called Schubert cells.) For example, there are 6 Schubert cells in the stratification
of G(2, 4). Representative planes for the 6 cells are shown in Figure 2 (actually, we
cheat and draw the pictures using lines in P3(R) instead of 2-planes in R4).

This example also shows that even though the strata are assumed to be manifolds,
their closures need not be. For a very rewarding exercise, try to determine the
topology of all the closures of the Schubert cells in this case.

Figure 2. Six Schubert cells in G(2, 4)

Example 3.6. For a final example, suppose that a finite group G acts on a manifold
M . For any subgroup H ⊂ G, let MH be the set of all m ∈ M whose stabilizer
is equal to H. Then as H ranges over all subgroups of G, we get a stratification
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called the stabilizer stratification. Again, it’s not hard to cook up examples where
the closures of strata aren’t manifolds.

4. Whitney stratifications

Consider the Whitney cusp X with its decomposition into two strata S0 and S1.
A close inspection of its geometry reveals that the origin O “looks different” from
the other points in the 1-dimensional stratum S1. Here’s one way to see what I mean
by this. Take a point p ∈ S1, take a plane P through p that is transverse to S1,
and consider the intersection of a small disc Dε ⊂ P with X. (Here we’re working
with the real points of X.) Then if ε is sufficiently small and p is not the origin,
the intersection looks like a little X with center P ∩ S1. But if p = O, we get a
different intersection: it’s a V , not an X. This is telling us that the geometry is
locally different around O.

The first point of a stratification is that it is a decomposition of a space X into
simpler pieces, namely manifolds. But we can require more. We can require that the
geometry of X looks the same at every point in a given stratum. I don’t want to
make this precise here, but it’s clear that this fails for the cusp, and the obvious fix
is to work with three strata instead of two. Namely, we take for our stratification the
sets X r S1, S1 r O, and O.

How do we determine that O should be pulled out of S1? This was Whitney’s great
insight.

Definition 4.1. Let X be a stratified space with strata Si. We say the stratification is
a Whitney stratification if the following conditions are satisfied for any pair Sα < Sβ:

Suppose {xi} ⊂ Sα is a sequence converging to y ∈ Sβ, and {yi} ⊂ Sβ is a sequence
also converging to y. Let τ be the limit of the sequence of tangent spaces Tyi

Sβ, and
let ` be the limiting secant line for the sequence `i = xiyi. Then

(A) TySα ⊂ τ and
(B) ` ⊂ τ

For an exercise, you can check that the stratification of the cusp isn’t Whitney
unless O is taken to be a separate stratum. For a recent exposition of the construction
of Whitney stratifications, one can look at [2].
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