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Jeff

Influential work in analytic number theory, automorphic forms (52
pubs on Mathsci, 690 citations)

Excellent mentoring of graduate students, postdocs, other junior
people (look around you!)

Impeccable fashion sense, grooming (cf. the speaker)

Seminal recordings with Graham Nash, Stephen Stills, and Neil Young
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Jeff chillin in his crib
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Jeff plays Central Park
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Jeff visits Dorian at UT
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Happy Birthday!

Happy Birthday Jeff!
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Goal

Our goal is computational investigation of connections between
automorphic forms and elliptic curves over number fields.

Test modularity of E : Given E/F , can we find a suitable automorphic
form f on GL2/F such that L(s, f ) = L(s,E )?

Test converse: Given f that appears to come from an elliptic curve
over F (i.e. has rational Hecke eigenvalues), can one find an elliptic
curve E/F such that L(s,E ) = L(s, f )?

Use input from automorphic forms to build tables of elliptic curves
over F (up to isomorphism).

Note this work is purely computational, although in some cases one can
computationally prove that a given curve E is modular (Faltings–Serre
method).
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Prior work

Antwerp IV (Swinnerton-Dyer, Atkin, Velú, . . . ). Tables of elliptic
curves over Q, weight 2 modular forms and their Hecke eigenvalues.
Conductors up to 200.

Cremona. Extensive table of elliptic curves over Q (currently up to
conductor 350000 as of 5/14). Gold standard.

Cremona, Whitley, Bygott, Lingham. Imaginary quadratic fields.

Socrates–Whitehouse, Dembele. Certain real quadratic fields. Note:
we now know all such elliptic curves are modular (Freitas–Le
Hung–Siksek).

Bober et. al. Database of curves over Q(
√

5).

Paul E. Gunnells (UMass Amherst) MF & EC / NF Thessaloniki 2014 13 / 1



Our work

We treat two different fields that are in some sense as unlike each other as
possible.

G–Hajir–Yasaki (2013). Q(ζ5).

G–Yasaki (2013). Cubic field of discriminant −23.

Donnelly–G–Klages-Mundt–Yasaki (almost done). Cubic field of
discriminant −23.
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The fields

Q(ζ5) is totally complex quartic, Galois, CM, even cyclotomic. Much more
symmetric than it should be.
The cubic field F of discriminant −23 is a nonreal cubic field, so not
Galois. No symmetry. However it is not without charm.

First in list of cubic fields ordered by |disc|.
Galois closure is Hilbert class field of Q(

√
−23).

Minimal volume of a closed hyperbolic 3-manifold is
3 · 233/2ζF (2)/4π4 (Gabai–Meyerhoff–Milley).

Contains the plastic number ρ =
3

√
1 + 3

√
1 + 3
√

1 + · · ·.
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What kinds of automorphic forms are these?
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Q

Recall what happens over Q. First the automorphic side.

Γ0(N) ⊂ SL2(Z)

M2(N) ⊃ S2(N) ⊃ Snew
2 (N)

Given f =
∑

n>0 a(n)qn, q = exp(2πiz), we can make its L-function
L(s, f ) =

∑
a(n)n−s .

Have action of Hecke operators Tp (for p - N), Up (for p|N).
Simultaneously diagonalizable on Snew

2 (N).
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Q

Now the elliptic curve side.

E is given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ Z.

Conductor NE .

For p - NE , put b(p) = p + 1−#E (Fp). If p|NE , then
b(p) ∈ {−1, 0, 1} depending on singularity type mod p.

L-function

L(s,E ) =
∏
p-NE

(1− b(p)p−s + p1−2s)−1
∏
p|NE

(1− b(p)p−s)−1.
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Q

The correspondence is as perfect as one could hope.

Given f rational 2 weight newform of level N, we can find a matching
elliptic curve Ef . Eichler–Shimura construction.

Given an elliptic curve E/Q, one can find a weight 2 newform fE with
matching L-function. Wiles–Taylor–Breuil–Diamond.
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Cohomology of the modular curve

How do we compute with modular forms? We use cohomology instead.
Let Γ ⊂ SL2(Z), YΓ = Γ\H. Then

H∗(Γ;C) ' H∗(YΓ;C) ' S2(Γ)⊕ S2(Γ)⊕ Eis2(Γ).

Moreover these isomorphisms are compatible with Hecke actions.
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Modular symbols

For explicit computations we can use modular symbols. Let
H∗ = H ∪Q ∪∞ and XΓ = Γ\H∗. Let α, β ∈ H∗ rH be cusps of H. Then
we can take an ideal geodesic from α to β and take its image in XΓ. We
get a class {α, β}Γ ∈ H1(XΓ, ∂XΓ;C).
These classes span. We can write down all the relations between them and
can get a concrete model for the relative H1, which is dual to H1. The
Hecke operators act on these symbols.
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Unimodular symbols

Unfortunately this is not yet computable, because this model is infinitely
presented. Instead one works with the unimodular symbols.

There are finitely many unimodular symbols mod Γ, and finitely many
relations, but the Hecke operators don’t act directly. However, Manin
showed (with an algorithm) that any modular symbol can be written as a
finite linear combination of unimodular symbols, so one can act by the
Hecke operators.
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General case

What to do in general? Instead of studying automorphic forms directly, we
work with cohomology of arithmetic groups.

Franke: these cohomology spaces can be computed in terms of
certain automorphic forms. (Borel’s conjecture.)

Scholze: in many cases one can attach families of Galois
representations to these cohomology classes. This had been known
before for certain fields. For instance Q(ζ5) had been treated by
Ramakrishnan. But for −23 we have no such result.
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Geometric setup

G reductive connected algebraic group /Q

G = G(R) group of real points (Lie group)

K ⊂ G maximal compact subgroup

AG ⊂ G connected component of group of real points of
maximal Q-split torus in the center of G

X = G/AGK global symmetric space

Γ ⊂ G(Q) arithmetic subgroup

We want to compute H∗(Γ;C) = H∗(Γ\X ;C).
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Q

G SL2/Q

G SL2(R)

K SO(2)

AG trivial

X the upper halfplane H

Γ ⊂ G(Q) congruence subgroup Γ0(N) ⊂ SL2(Z)
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F = Q(ζ5)

G RF/QGL2

G GL2(C)×GL2(C)

K U(2)×U(2)

AG R+

X H3 × H3 × R (7 dimensional)

Γ ⊂ G(Q) congruence subgroup Γ0(n) ⊂ GL2(O)

Note the flat factor in X . SL2 vs GL2.
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F disc −23

G RF/QGL2

G GL2(R)×GL2(C)

K O(2)×U(2)

AG R+

X H× H3 × R (6 dimensional)

Γ ⊂ G(Q) congruence subgroup Γ0(n) ⊂ GL2(O)
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Which cohomology spaces?

Our spaces have more than one nontrivial cohomology group, so it’s not
clear which we want to study. Let d be the dimension of X .

Borel–Serre: We have H i = 0 unless i ≤ ν := d − 1, the virtual
cohomological dimension.

The cuspidal cohomology, that is the cohomology built from cuspidal
automorphic forms via Franke’s theorem, can only appear in a limited
range.
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Cuspidal range

Field Q Imag quadratic Q(ζ5) −23

dimX 2 3 7 6
ν 1 2 6 5

top degree of H∗cusp 1 2 5 4
bottom degree of H∗cusp 1 1 2 2

Note that for our examples, the cuspidal cohomology doesn’t appear in the
top nonvanishing degree Hν . This makes our computations a lot more
difficult than the classical case.
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Explicit reduction theory

For explicit computations we need good models for the locally symmetric
spaces Γ\X . In particular we want to apply tools from combinatorial
topology, so we need analogues of the Farey tessellation (the ideal
triangulation of H with edges the unimodular geodesics).

We use generalizations of Voronoi’s work on reduction theory for positive
definite quadratic forms due to Ash and Koecher.

Q(ζ5): Ash, as part of the team constructing toroidal
compactifications of locally symmetric varieties
(Kempf–Knudsen–Mumford–Rapaport–St. Donat–Tai) developed a
very explicit reduction theory. CM is important here.

−23: Koecher gave a very general construction that works for any
number field. Not as easy to work with, but gives a practical method
to find cell decompositions.
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Cones and perfect forms

We model X via an appropriate cone C of positive definite forms.

For F = Q(ζ5), we use positive definite binary hermitian forms over
F ⊗R, i.e. a product of two 4-dimensional real hermitian cones in two
variables.

For −23, we have to take a “mixed” cone. We take the product of
the cone of positive definite binary quadratic forms/R and the cone of
positive definite binary hermitian forms.
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Cones and perfect forms

In both cases GL2(O) acts, and we can finite an equivariant
decomposition of C into finitely generated polyhedral cones with finitely
many mod GL2(O). The top-dimensional cones are called perfect cones.

We have X ' C/R+, and the perfect cones and their faces pass to cells in
X . We can use complexes built on these cones to replace unimodular
symbols.
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Hecke operators

There is a natural action of the Hecke operators on cohomology, but they
do not act directly on the complex built from the perfect cones.

As for the classical case, one needs a bigger complex, the analogue of the
modular symbols. This is easy to define (sharbly complex). But the
problem then becomes, given a Hecke image of a cycle, how do you
rewrite it as a sum of unimodular cycles (i.e. cycles induced from the faces
of the perfect cones)?
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Hecke operators

This is much more challenging than the classical case. The complexity of
the problem is governed by the gap between the top of the cuspidal range
and the virtual cohomological dimension.

For our fields this gap is 1. That is, the cusp classes don’t show up in the
top degree but in degree one below. This also happens for SL4(Z). In prior
work with Ash–McConnell we developed an algorithm to treat this case.
The ideas underlying this algorithm were extended by G–Yasaki to handle
Q(ζ5), −23. Also GL2/real quadratic and GL3/imaginary quadratic.

New phenomena occur that reflect the presence of the flat factor.

Need to hear more? Ask me . . .
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Elliptic curves

Now suppose we’ve computed various Hecke eigenclasses that appear to
be attached to elliptic curves. We can then take their levels and attempt
to find elliptic curves /F that agree (i.e., have the same conductor and
match the Hecke eigenvalues). We have several techniques at our disposal:

Search over box of Weierstrass equations.

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ O.

Torsion families. Have explicit families of curves with prescribed
torsion (Kubert). If l |#E (O/pO) for certain (infinitely many) p then
l |#E (F )tors . So we can look in such families for curves /F (note that
this requires knowledge of the Hecke eigenvalues).
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Elliptic curves

Over −23, we found the curve

y2 + (a2 + 1)xy + ay

= x3 + (−a2 + a + 1)x2 + (−249910a2 + 438560a− 331055)x

+86253321a2 − 151364024a + 114261323

with conductor (3a2 − 14a + 1) of norm 2065 by searching for curves with
F -rational 6-torsion. Here a3 − a2 + 1 = 0.
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Elliptic curves

Twisting. We can construct new curves via quadratic twists. If the
twist d ∈ O is small enough, the conductor of Ed might be within our
search region. For instance this is how we found the curve

y2 + (a2 + a)xy + a2y

= x3 +(−a2−a)x2 +(−212a2 +305a−181)x−1422a2 +2466a−2087

with conductor (−15a2 + 8a− 1) and norm conductor 3025.
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Elliptic curves

The most powerful technique is that of Cremona–Lingham. Their
algorithm expresses searching for elliptic curves of a given conductor in
terms of finding S-integral points on certain elliptic curves /Q.

This exchanges one hard problem for another. Nevertheless it’s a useful
algorithm.

The current best implementation of this is in MAGMA by Steve Donnelly.
In fact he extended this algorithm substantially in the course of this work.
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F = Q(ζ5)

Over this field we found excellent agreement between the cohomology and
elliptic curves.

For every elliptic curve over F within the range of our computation
(all ideals of norm ≤ 4941, and prime ideals of norm ≤ 7921), we
found a matching cohomology class.

For every cohomology class, we were able to find a matching elliptic
curve except in one case. At level norm 3025 there is an abelian
surface over F+ = Q(

√
5) such that when we base change its

automorphic form to F , the Euler factors become rational. This
phenomenon was already observed by Cremona over imaginary
quadratic fields.
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F = Q(ζ5)

The curve of smallest conductor norm is

[a1, a2, a3, a4, a6] = [−ζ − 1, ζ2 − 1, 1,−ζ2, 0], (1)

which has conductor norm 701. In his thesis, Andrew Jones
(Sheffield) extended Faltings–Serre to this setting and has proved
that this curve is modular. He also produced examples for other
complex quartic fields.
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F disc −23

Over this field we’ve gone much further.

Not only have we computed cohomology much further, we’ve also
enumerated curves up to isomorphism in isogeny classes (using work
of Billerey).

We’ve also applied heuristics for dimensions of the subspace of
Eisenstein cohomology and for old/newclasses to make predictions
about conductors of elliptic curves should exist.

Printed out, the resulting table has 171 pages and goes up to
conductor norm 19987.

We’re (reasonably) confident that the table is complete up to norm
11575 is complete. Namely we have 212 levels with nontrivial
unexplained newspace (all of dimension ≥ 2, none of dimension 1).
Looking hard for curves at these levels found nothing.
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Highlights

We finish with some examples over the cubic field.

The first curve occurs at level norm 89:

[a + 1, 2a2 + 2a + 2, 2a2 + a, 8a2 + 2a− 3, 6a2 − 2a− 5].

It has 10-torsion and rank 0. There are three other curves in its
isogeny class.

The first curve with nontrivial rank occurs at level norm 719:

[a2 + 1, 2a2 + 2a + 2,−a, 12a2 + a− 5, 7a2 − 7a− 9].

It has rank 1 and no torsion. It is alone in its isogeny class.

The first curve of rank 2 occurs at level norm 9173:

[1, a2 + 2,−a2 + 1, a2 + 2a− 1, a2].

Again it is alone in its isogeny class.
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The End

Thank you!
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