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What is Cryptology?

• Cryptography is the process of writing using various
methods (“ciphers”) to keep messages secret.

• Cryptanalysis is the science of attacking ciphers,
finding weaknesses, or even proving that a cipher is
secure.

• Cryptology covers both; it’s the complete science
of secure communication.
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Basic terminology/notation

• P is the plaintext. This is the original readable
message (written in some standard language, like
English, French, Cantonese, Hindi, Icelandic, . . . ).

• C is the ciphertext. This is the output of some
encryption scheme, and is not readable by humans.

• E is the encryption function. We write, for example,

E(P ) = C

to mean that applying the encryption process E to
the plaintext P produces the ciphertext C.

• D is the decryption function, i.e.

D(C) = P.

Note D(E(P )) = P and E(D(C)) = C.
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Basic terminology/notation (cont’d.)

• The encryption key is piece of data that allows the
computation of E. Similarly we have the decryption
key. These may or may not be the same. They also
may not be secret, as we’ll see later on.

• To attack a cipher is to attempt unauthorized
reading of plaintext, or to attempt unauthorized
transmission of ciphertext.
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Shift (aka Cæsar) cipher

• Encode letters by numbers:

A 7→ 0, B 7→ 1, C 7→ 2, . . . , Z 7→ 25.

• Choose a key t, which is a number between 0 and
25 (for Cæsar, t was always 3).

• For each letter P , E is defined by E(P ) = P + t,
i.e. add t to the code for each letter to get a new
letter code. If you wind up with a number over 25,
loop around to the beginning (like on a clock going
past midnight). So, e.g. 25 + 3 = 2.
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Shift (aka Cæsar) cipher (cont’d.)

For example, if we take t = 17, then encrypting the
plaintext

ALLOFGAULISDIVIDEDINTOTHREEPARTS

yields the ciphertext

RCCFWXRLCZJUZMZUVUZEKFKYIVVGRIJK

• Decryption is done by D(C) = C − t.
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Remarks

• How did Cæsar get to rule the known Western world
using this? It’s horrendously insecure.

• Variations:

◦ Affine cipher : Choose a number a and define
E(P ) = aP + t. Must be careful choosing a, e.g.
a = 0 not very useful.

◦ Digraph affine cipher : Choose numbers

a1, a2, b1, b2, t1, t2,

and then encrypt by transforming pairs of letters:

E(P1, P2) = (a1P1+b1P2+t1, a2P1+b2P2+t2).

Again the choices must be made carefully. But
these schemes are still insecure, since natural
languages have statistical biases (the Wheel of
Fortune phenomenon).
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Other uses of cryptography: Protocols

Today we use cryptography for a lot more than just
sending secret messages.

• Authentication. Alice receives ciphertext from Bob.
How can she be sure that the message originated
from Bob? How can she be sure that the message
wasn’t corrupted? How can Bob be sure Alice
received it? How can Alice make sure that Bob
can’t deny having sent it?

• Key exchange. Over an insecure channel, Alice and
Bob exchange two pieces of data that allow them
to compute a common encryption/decryption key.
But any attacker who intercepts the transmissions
can’t recover the key.
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Protocols (cont’d.)

• Zero-knowledge proofs. Alice can unequivocally
convince Bob that she has a certain piece of
information, without revealing the exact piece of
information to Bob.

• Secret sharing. Alice, Bob, Carol, . . . , Yanni, and
Zeke each have a piece of information that is part
of a commonly held secret S.

◦ If N or more of them meet and combine their
knowledge, then S can be reconstructed.

◦ But if less than N get together, S cannot be
reconstructed.

All of these protocols are in common usage in computer
networks today (ATMs, the Web, . . . ). They
are also crucial in sensitive communication between
governments.
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A modicum of mathematics

• Integers. Positive and negative counting numbers
as well as 0, i.e. {. . . ,−2,−1, 0, 1, 2, . . . }.

• Prime. A positive integer that is divisible only by
1 and itself, e.g. 2, 3, 5, 7, 11, . . . , 4136658067, . . . .
The largest known prime today is 220996011−1, and
has 6320430 digits. Integers that aren’t prime are
called composite.

• Factoring. Writing an integer as a product of smaller
integers, e.g. 60 = 22 · 3 · 5.

• Primality test. A test to decide whether or not an
integer is prime. This is not the same as factoring.

• Probabilistic primality test. A test to decide
whether or not an integer is prime to an
(explicitly computable) high probability. Integers
that pass these tests are called pseudoprimes, and
in applications are just as useful as honest primes.
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Public Key Cryptography

Each user has an encryption function and a
decryption function.

• Alice makes her encryption function EA publicly
known, but keeps her decryption function DA secret.

• Bob wants to send Alice a message P , so he
computes C = EA(P ) and sends it to her.

• Alice receives C and computes P = DA(C).

What makes this different from previous schemes,
and why is it secure? The point is that the
encryption/decryption functions are set up so that DA

is very difficult to compute only knowing EA. Thus,
even if an attacker knows EA, he can’t compute DA

and hence can’t read Bob’s message.
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The RSA scheme

But how can it be that DA isn’t easily computable
from EA? How can there be such functions?

The RSA implementation of public key
cryptography is based on the following empirically
observed fact (here written as if it were carved in
stone):

Multiplying two integers is easy, but
finding a nontrivial factor

of an integer is hard.

In other words, integer multiplication is in practice a
“one-way function.” If a number is large, it’s essentially
impossible to factor it.
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The RSA scheme (cont’d.)

• Alice secretly chooses two large primes p, q. Large
means each has two hundred or so digits.

• She computes N = p · q. Her encryption function
EA is built out of N , so she is essentially making
N publicly known.1

• Her decryption function DA, on the other hand,
needs p and q to work. But knowing N isn’t
enough to figure out p and q!

1Actually she also makes another auxiliary integer e publicly known, but
never mind. Knowledge of e doesn’t help to figure out DA.
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Example of a protocol:
Sender authentication

Each person has his own secret decryption function
D, and everyone knows everyone else’s encryption
function D. Alice receives a message from Bob. How
can she be sure it’s really from him?

• At the very end of his message, Bob attaches an
encrypted digital signature S′ = DB(S).

◦ S is a plaintext phrase (“Look at me; I’m as
helpless as a kitten up a tree; Love, Bob”), but

◦ S′ looks like gibberish (it’s been munged by
the decryption function, which randomly garbles
plaintext just as well as the encryption function).

Hence the whole message P looks like normal
plaintext with some junk at the end (S′).

• Bob then computes C = EA(P ) and sends it to
Alice.
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Example of a protocol:
Sender authentication (cont’d.)

• Alice applies DA to C and recovers P . She notes
the gibberish S′ at the end.

• Alice detaches S′ and computes EB(S′). (Recall
that this function is publicly known).

• Since EB undoes DB, she gets as output S! Now
she knows the message really came from Bob, since
only he knows DB, and to get S as EB(S′) means
that S′ must have been computed using DB.

• Finally she reads the actual message with signature.
Blush, warm heartfelt glow, fade to black.
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What does mathematics offer?

• Other sophisticated implementations of public key
schemes

◦ discrete logarithm schemes
◦ elliptic curve cryptosystems
◦ braid group cryptosystems

• Implementation improvements

◦ effective primality tests
◦ primality certificates
◦ better versions of basic algorithms to speed up

implementations

• Techniques to attack cryptosystems

◦ advanced factoring methods such as the general
number field sieve

◦ other attacks based on statistical/probabilistic
approaches
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Recent accomplishments

A team led by Jens Franke of Bonn University
(Germany) recently2 factored the 174-digit RSA
challenge number RSA-576

1881
9881292060 7963838697

2394616504 3980716356 3379417382
7007633564 2298885971 5234665485
3190606065 0474304531 7388011303
3967161996 9232120573 4031879550

6569962213 0516875930
7650257059

into its two 87-digit prime factors. For this they won
the not too shabby sum of $10,000. Such “challenges”
are the only way we know that RSA is secure. In other
words, factoring isn’t provably hard, just empirically
hard.

2December 3, 2003. In fact this was the day after the discovery of the
largest known prime.
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Appendix: How RSA works

• Alice chooses two primes p, q, and computes N =
pq and ϕ(N) = (p − 1)(q − 1). She also chooses
integers e, d such that ed = 1 mod ϕ(N).

• She publishes the pair (N, e). Her encryption
function is EA(P ) = P e mod N (we are assuming
that plaintext is somehow encoded using integers
mod N).

• Her decryption function is DA(C) = Cd mod N .

The scheme works because (by a result of Fermat
from the 17th century) we have for any P mod N

DA(C) = DA(P e) = P ed = Pϕ(N) = P.

But to compute d from e and N , one needs to factor
N .
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