Automata and affine Kazhdan-Lusztig cells

Paul E. Gunnells
UMass Amherst
AMS May 2010

Finite state automata and regular languages

Consider an alphabet $A=\{a, b, c, \ldots\}$. An automaton over A is a finite directed graph with some extra structure:

- Edges of the graph are labelled with symbols from A.
- There is a unique initial vertex.
- Some vertices are called accepting.

Such a graph determines a language L over A : one follows any directed path starting at the initial vertex and terminating in an accepting vertex, and builds a word by concatenating symbols along the path. A language constructed in this way is called regular.

Finite state automata and regular languages

Example: Let $A=\{0,1,2\}$.

Vertex v_{0} is initial, and vertex v_{4} is the only accepting vertex. Any path beginning at v_{0} and ending at v_{4} gives a word in the language: 02, 20 , $0102,2102,102 \cdots 102, \ldots$. Not every word is accepted, e.g. 01.

Finite state automata and regular languages

Not every language is regular. For instance, let $A=\{0,1\}$ and consider

$$
L=\left\{0^{k} 1^{k} \mid k \geq 1\right\}
$$

Then L is not regular.

Coxeter groups

Let (W, S) be a Coxeter group. Let $\operatorname{Red}(W)$ be the language of all reduced expressions of all elements of W, and let ShortLex $(W) \subset \operatorname{Red}(W)$ be the sublanguage of "lexicographically minimal" expressions.

Theorem. [Brink-Howlett] Both $\operatorname{Red}(W)$ and ShortLex (W) are regular.
In fact they showed more. They proved that W is an automatic group.

Kazhdan-Lusztig cells

Kazhdan-Lusztig cells are subsets of W defined by an equivalence relation using descent sets and Kazhdan-Lusztig polynomials.

Given $w \in W$, let $\mathscr{L}(w)=\{s \in S \mid s w<w\}$ be the left descent set of w.

For any pair $x, y \in W$ we have a polynomial $P_{x, y}(q) \in \mathbb{Z}[q]$, the Kazhdan-Lusztig polynomial. We have $P_{x, y}=0$ unless $x \leq y$ and $P_{x, x}=1$. Otherwise the maximal possible degree of $P_{x, y}$ is $(I(y)-I(x)-1) / 2$. We write $x-y$ if the degree of $P_{x, y}$ is maximal, and write $y-x$ if $x<y$ and $x-y$.

For any x, y we can compute $P_{x, y}$ by an elementary but complicated recursion. It seems very hard to predict whether or not $x-y$.

Kazhdan-Lusztig cells

Now make a directed graph $\Gamma_{\mathscr{L}}$ with vertices W and with an edge $x \rightarrow y$ if $x-y$ and $\mathscr{L}(x) \not \subset \mathscr{L}(y)$.

The left cells of W are the strong connected components of the graph $\Gamma \mathscr{L}$. That is, x and y are in the same left cell if there is a directed path in $\Gamma_{\mathscr{L}}$ from x to y and one from y to x.

Elements x and y are in the same right cell if x^{-1} and y^{-1} are in the same left cell. They're in the same two-sided cell if they're in the same left or right cell.

Example: \tilde{C}_{2}

The colors indicate the two-sided cells, and the connected sets of a given color are the left cells.

Cells as regular languages

In all known examples the cells have a simpler structure than their complicated defintion suggests. Based on this Casselman conjectured the following:

Conjecture. For any Kazhdan-Lusztig cell $C \subset W$, the language $\operatorname{Red}(C)$ is regular.

Main result

Theorem. [G] If W is an affine Weyl group then $\operatorname{Red}(C)$ is regular.

Sketch of Proof

The proof uses two ingredients:

- A new family of automata recognizing $\operatorname{Red}(W)$. Vertices are certain convex unions of alcoves.
- A result of Du implying that any left cell of W can be written as a union of finitely many certain convex sets of alcoves.

The automata

Let $\{\alpha\}$ be the set of positive roots of W. For $N>0$ we take the hyperplane arrangement \mathscr{H}_{N} of all affine hyperplanes

$$
\left\{H_{\alpha, k} \mid k=N, N-1, \ldots, 1-N\right\},
$$

where

$$
H_{\alpha, k}=\{x \mid\langle\alpha, x\rangle=k\} .
$$

The automata

The regions in the complement of \mathscr{H}_{N} give the vertices of the automaton. The identity alcove is the initial vertex. We connect $R \rightarrow R^{\prime}$ by an edge labelled s if R and the identity alcove lie on the same side of the hyperplane determined by s and if $R \cdot s \subset R^{\prime}$. If all vertices are accepting we get $\operatorname{Red}(W)$.

Figure: $\tilde{C}_{2}, N=2$

Cells

Using Du's result, we can show that if N is large enough, any cell C will be a union of regions from the complement of \mathscr{H}_{N}. If we make the corresponding vertices accepting, we get $\operatorname{Red}(C)$.

Figure: $\tilde{C}_{2}, N=2$

Example

The upper left green cell. (Actually here we take a slightly smaller arrangement than \mathscr{H}_{2}, by using $N=1$ for the short roots and $N=2$ for the long roots.)

General W

The same ideas won't directly work for general Coxeter groups. Nevertheless we believe Casselman's conjecture (and even have some evidence).

