Automata and affine Kazhdan-Lusztig cells

Paul E. Gunnells

UMass Amherst

AMS May 2010

Paul E. Gunnells (UMass Amherst)

Automata and affine KL Cells

AMS May 2010 1 / 16

Finite state automata and regular languages

Consider an alphabet $A = \{a, b, c, ...\}$. An *automaton over* A is a finite directed graph with some extra structure:

- Edges of the graph are labelled with symbols from A.
- There is a unique *initial* vertex.
- Some vertices are called *accepting*.

Such a graph determines a language L over A: one follows any directed path starting at the initial vertex and terminating in an accepting vertex, and builds a word by concatenating symbols along the path. A language constructed in this way is called *regular*.

イロト イポト イヨト イヨト 二日

Finite state automata and regular languages

Example: Let $A = \{0, 1, 2\}$.

Vertex v_0 is initial, and vertex v_4 is the only accepting vertex. Any path beginning at v_0 and ending at v_4 gives a word in the language: 02, 20, 0102, 2102, $102 \cdots 102, \ldots$ Not every word is accepted, e.g. 01.

Finite state automata and regular languages

Not every language is regular. For instance, let $A = \{0, 1\}$ and consider

$$L = \{0^{k}1^{k} \mid k \ge 1\}.$$

Then *L* is not regular.

< ロ > < 同 > < 回 > < 回 > < 回

Let (W, S) be a Coxeter group. Let Red(W) be the language of all reduced expressions of all elements of W, and let $ShortLex(W) \subset Red(W)$ be the sublanguage of "lexicographically minimal" expressions.

Theorem. [Brink–Howlett] Both Red(W) and ShortLex(W) are regular.

In fact they showed more. They proved that W is an *automatic group*.

Kazhdan–Lusztig cells

Kazhdan-Lusztig cells are subsets of W defined by an equivalence relation using descent sets and Kazhdan-Lusztig polynomials.

Given $w \in W$, let $\mathscr{L}(w) = \{s \in S \mid sw < w\}$ be the left descent set of w.

For any pair $x, y \in W$ we have a polynomial $P_{x,y}(q) \in \mathbb{Z}[q]$, the *Kazhdan–Lusztig polynomial*. We have $P_{x,y} = 0$ unless $x \leq y$ and $P_{x,x} = 1$. Otherwise the maximal possible degree of $P_{x,y}$ is (l(y) - l(x) - 1)/2. We write x - y if the degree of $P_{x,y}$ is maximal, and write y - x if x < y and x - y.

For any x, y we can compute $P_{x,y}$ by an elementary but complicated recursion. It seems very hard to predict whether or not x—y.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Now make a directed graph $\Gamma_{\mathscr{L}}$ with vertices W and with an edge $x \to y$ if x - y and $\mathscr{L}(x) \not\subset \mathscr{L}(y)$.

The *left cells* of W are the strong connected components of the graph $\Gamma_{\mathscr{L}}$. That is, x and y are in the same left cell if there is a directed path in $\Gamma_{\mathscr{L}}$ from x to y and one from y to x.

Elements x and y are in the same right cell if x^{-1} and y^{-1} are in the same left cell. They're in the same two-sided cell if they're in the same left or right cell.

Example: \tilde{C}_2

The colors indicate the two-sided cells, and the connected sets of a given color are the left cells.

Paul E. Gunnells (UMass Amherst)

Automata and affine KL Cells

AMS May 2010 8 / 16

3

(日) (同) (三) (三)

In all known examples the cells have a simpler structure than their complicated definition suggests. Based on this Casselman conjectured the following:

Conjecture. For any Kazhdan–Lusztig cell $C \subset W$, the language Red(C) is regular.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem. [G] If W is an affine Weyl group then Red(C) is regular.

Paul E. Gunnells (UMass Amherst)

Automata and affine KL Cells

AMS May 2010 10 / 16

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

The proof uses two ingredients:

- A new family of automata recognizing Red(W). Vertices are certain convex unions of alcoves.
- A result of Du implying that any left cell of W can be written as a union of finitely many certain convex sets of alcoves.

- 4 同 6 4 日 6 4 日 6

Let $\{\alpha\}$ be the set of positive roots of W. For N > 0 we take the hyperplane arrangement \mathscr{H}_N of all affine hyperplanes

$$\{H_{\alpha,k} \mid k=N, N-1, \ldots, 1-N\},\$$

where

$$H_{\alpha,k} = \{ x \mid \langle \alpha, x \rangle = k \}.$$

Paul E. Gunnells (UMass Amherst)

Automata and affine KL Cells

AMS May 2010 12 / 16

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The automata

The regions in the complement of \mathscr{H}_N give the vertices of the automaton. The identity alcove is the initial vertex. We connect $R \to R'$ by an edge labelled s if R and the identity alcove lie on the same side of the hyperplane determined by s and if $R \cdot s \subset R'$. If all vertices are accepting we get $\operatorname{Red}(W)$.

Figure: \tilde{C}_2 , N = 2

Automata and affine KL Cells

Cells

Using Du's result, we can show that if N is large enough, any cell C will be a union of regions from the complement of \mathcal{H}_N . If we make the corresponding vertices accepting, we get Red(C).

Figure:
$$\tilde{C}_2, N = 2$$

A (10) < A (10) </p>

Example

The upper left green cell. (Actually here we take a slightly smaller arrangement than \mathscr{H}_2 , by using N = 1 for the short roots and N = 2 for the long roots.)

General W

The same ideas won't directly work for general Coxeter groups. Nevertheless we believe Casselman's conjecture (and even have some evidence).

