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Finite state automata and regular languages

Consider an alphabet A = {a, b, c , . . . }. An automaton over A is a finite
directed graph with some extra structure:

Edges of the graph are labelled with symbols from A.

There is a unique initial vertex.

Some vertices are called accepting.

Such a graph determines a language L over A: one follows any directed
path starting at the initial vertex and terminating in an accepting vertex,
and builds a word by concatenating symbols along the path. A language
constructed in this way is called regular.
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Finite state automata and regular languages

Example: Let A = {0, 1, 2}.
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Vertex v0 is initial, and vertex v4 is the only accepting vertex. Any path
beginning at v0 and ending at v4 gives a word in the language: 02, 20,
0102, 2102, 102 · · · 102,. . . . Not every word is accepted, e.g. 01.
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Finite state automata and regular languages

Not every language is regular. For instance, let A = {0, 1} and consider

L = {0k1k | k ≥ 1}.

Then L is not regular.
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Coxeter groups

Let (W , S) be a Coxeter group. Let Red(W ) be the language of all
reduced expressions of all elements of W , and let
ShortLex(W ) ⊂ Red(W ) be the sublanguage of “lexicographically
minimal” expressions.

Theorem. [Brink–Howlett] Both Red(W ) and ShortLex(W ) are regular.

In fact they showed more. They proved that W is an automatic group.
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Kazhdan–Lusztig cells

Kazhdan–Lusztig cells are subsets of W defined by an equivalence relation
using descent sets and Kazhdan–Lusztig polynomials.

Given w ∈ W , let L (w) = {s ∈ S | sw < w} be the left descent set of w .

For any pair x , y ∈ W we have a polynomial Px ,y (q) ∈ Z[q], the
Kazhdan–Lusztig polynomial. We have Px ,y = 0 unless x ≤ y and
Px ,x = 1. Otherwise the maximal possible degree of Px ,y is
(l(y) − l(x) − 1)/2. We write x−−y if the degree of Px ,y is maximal, and
write y−−x if x < y and x−−y .

For any x , y we can compute Px ,y by an elementary but complicated
recursion. It seems very hard to predict whether or not x−−y .
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Kazhdan–Lusztig cells

Now make a directed graph ΓL with vertices W and with an edge x → y

if x−−y and L (x) 6⊂ L (y).

The left cells of W are the strong connected components of the graph ΓL .
That is, x and y are in the same left cell if there is a directed path in ΓL

from x to y and one from y to x .

Elements x and y are in the same right cell if x−1 and y−1 are in the same
left cell. They’re in the same two-sided cell if they’re in the same left or

right cell.
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Example: C̃2

The colors indicate the two-sided cells, and the connected sets of a given
color are the left cells.
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Cells as regular languages

In all known examples the cells have a simpler structure than their
complicated defintion suggests. Based on this Casselman conjectured the
following:

Conjecture. For any Kazhdan–Lusztig cell C ⊂ W, the language Red(C )
is regular.
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Main result

Theorem. [G] If W is an affine Weyl group then Red(C ) is regular.
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Sketch of Proof

The proof uses two ingredients:

A new family of automata recognizing Red(W ). Vertices are certain
convex unions of alcoves.

A result of Du implying that any left cell of W can be written as a
union of finitely many certain convex sets of alcoves.
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The automata

Let {α} be the set of positive roots of W . For N > 0 we take the
hyperplane arrangement HN of all affine hyperplanes

{Hα,k | k = N, N − 1, . . . , 1 − N},

where
Hα,k = {x | 〈α, x〉 = k}.
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The automata

The regions in the complement of HN give the vertices of the automaton.
The identity alcove is the initial vertex. We connect R → R ′ by an edge
labelled s if R and the identity alcove lie on the same side of the
hyperplane determined by s and if R · s ⊂ R ′. If all vertices are accepting
we get Red(W ).

Figure: C̃2, N = 2
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Cells

Using Du’s result, we can show that if N is large enough, any cell C will
be a union of regions from the complement of HN . If we make the
corresponding vertices accepting, we get Red(C ).

Figure: C̃2,N = 2
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Example

The upper left green cell. (Actually here we take a slightly smaller
arrangement than H2, by using N = 1 for the short roots and N = 2 for
the long roots.)
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General W

The same ideas won’t directly work for general Coxeter groups.
Nevertheless we believe Casselman’s conjecture (and even have some
evidence).
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