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CONSTRUCTED FROM QUADRATIC CHARACTERS

GAUTAM CHINTA AND PAUL E. GUNNELLS

Abstract. We construct multiple Dirichlet series in several complex
variables whose coefficients involve quadratic residue symbols. The se-
ries are shown to have an analytic continuation and satisfy a certain
group of functional equations. These are the first examples of an infi-
nite collection of unstable Weyl group multiple Dirichlet series in greater
than two variables having the properties predicted in [2].

1. Introduction

Let Φ be an irreducible root system of rank r with Weyl group W , and
let K be a global field containing the nth roots of unity. In [2] is described
a heuristic method to associate to this data a multiple Dirichlet series Z
in r complex variables with coefficients given by nth order Gauss sums.
Moreover, Z is expected to have an analytic continuation to Cr and to satisfy
a group of functional equations isomorphic to W . These Weyl group multiple
Dirichlet series generalize several constructions of multiple Dirichlet series
that have previously appeared in the literature. We present some examples
and outline their connections with analytic number theory and automorphic
forms at the end of this introduction. The paper [2] suggests a method for
the unified treatment of all of these examples.

Brubaker, Bump, and Friedberg [3] have given a precise definition of Z
in the stable case; by definition, this means n is sufficiently large for a fixed
Φ. In [3] the authors show that for such n, the Weyl group multiple Dirich-
let series admit meromorphic continuation and have the expected group of
functional equations. They also prove that the coefficients of the stable se-
ries satisfy a certain twisted multiplicativity (cf. (1.1)) that reduces their
computation to the case of the P -power coefficients, for P a prime in the
ring of integers of the field K. After multiplying by appropriate normalizing
zeta factors, the authors show that the P -parts form a Dirichlet polynomial
whose non-zero coefficients are naturally parametrized by the elements of
the Weyl group W .

In the unstable range, when n is small relative to Φ, one still expects to
be able to construct multiple Dirichlet series with the same properties as
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in the stable range. However, simple examples show that the coefficients of
the P -parts are no longer parametrized solely by the elements of W . We
expect that terms corresponding to the elements of W will be present, but
will form only part of the P -part polynomial. Some progress—including a
beautiful conjectural description of the P -parts for type A unstable series
via Gelfand–Tsetlin patterns—is given in Brubaker, Bump, Friedberg, Hoff-
stein [4]. There one can also find a proof that the multiple Dirichlet series
associated to Φ = A2 are the Whittaker coefficients of Eisenstein series on
the metaplectic cover of GL3. We refer the reader to [4] for further dis-
cussion of the connection between multiple Dirichlet series and Whittaker
coefficients of metaplectic Eisenstein series.

In this paper, we focus on the case n = 2 and Φ simply-laced of rank
r. This assumption on Φ is no loss of generality, since when n = 2 the
non-simply-laced cases described in [2] can be obtained by setting variables
to be equal in a series associated to a simply-laced root system. These
series are unstable for r ≥ 3, and the results of [2, 3] cannot be applied to
derive the desired properties of Z. For such series the quadratic Gauss sums
are essentially quadratic residue symbols, and the associated Weyl group
multiple Dirichlet series can be expressed as sums of quadratic Dirichlet
L-functions. Our main result is that these quadratic Weyl group multiple
Dirichlet series have a meromorphic continuation to Cr and satisfy a group
of functional equations isomorphic to the Weyl groupW . We refer to Section
4 for the exact definition of Z and to Theorems 5.4 and 5.5 for a precise
statement of these results.

For an example, let Φ = Ar and K = Q. Then the series Z has the form∑ a(m1,m2, . . . ,mr)
ms1

1 m
s2
2 · · ·msr

r
,

where the sum is over all positive integers mi. If m1m2 · · ·mr is odd and
squarefree, we have

a(m1,m2, . . . ,mr) =
(
m1

m2

)(
m2

m3

)
· · ·
(
mr−1

mr

)
.

The coefficients satisfy the following twisted multiplicativity property:

(1.1) a(m1m
′
1, . . . ,mrm

′
r) =

a(m1, . . . ,mr)a(m′
1, . . . ,m

′
r)

r−1∏
j=1

(
mj

m′
j+1

)(
m′

j

mj+1

)
,

when (m1 · · ·mr,m
′
1 · · ·m′

r) = 1. The identity (1.1) reduces the description
of the coefficients to that of the coefficients

(1.2) a(pk1 , . . . , pkr),
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where p ranges over all primes. For a fixed prime p, the coefficients (1.2)
can be organized into a generating function

(1.3)
∑

k1,...,kr≥0

a(pk1 , . . . , pkr)
pk1s1 . . . pkrsr

.

One of our main results is an explicit description of this generating function,
given in Theorem 3.4; it turns out that (1.3) is a rational function of the
p−si that is itself invariant under a certain Weyl group action.

We conclude this introduction with a few examples of quadratic multiple
Dirichlet series that have previously appeared in the literature. We refer the
reader to the survey papers [2,13] for a more comprehensive list of examples.

The first example (in more than one variable) was found by Siegel [22]:

(1.4) Z(s, w) =
∑∑
d,m≥1

d,m odd

χd(m̂)
msdw

a(d,m),

where m̂ denotes the part of m relatively prime to the squarefree part of d
and χd is the quadratic character associated to the extension Q(

√
d) of Q.

The multiplicative factor a(d,m) is defined by

a(d,m) =
∏

p prime
pk||d, pl||m

a(pk, pl),

and

(1.5) a(pk, pl) =
{

min(pk/2, pl/2) if min(k, l) is even,
0 otherwise.

Siegel obtained this series as the Mellin transform of a half-integral weight
Eisenstein series for the congruence subgroup Γ0(4). (Actually, Siegel’s series
is a linear combination of series of this form.) As Siegel noted, this integral
representation implies two functional equations for Z(s, w), one coming from
the functional equation of the Eisenstein series, and one coming from the
Mellin transform, via the automorphicity of the Eisenstein series. These
functional equations take the form

Z(s, w) 7→ Z(1− s, w + s− 1/2) and Z(s, w) 7→ Z(s, 3/2− s− w).

These two functional equations commute with one another, and thus gener-
ate a group isomorphic to the Klein four group.

In fact, it turns out that Siegel’s series satisfies a group of twelve functional
equations. In our notation, Siegel’s series is the quadratic series associated
to the root system of type A2. This means that (1.4) actually possesses
a group of functional equations G isomorphic to the direct product of the
Weyl group of type A2 together with order 2 group of symmetries of the
Dynkin diagram of A2. These extra functional equations—which are not at
all obvious from Siegel’s presentation of his series—were first noted in un-
published work of Bump and Hoffstein, who recognized this Mellin transform
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of the metaplectic GL2 Eisenstein series as the Fourier–Whittaker coefficient
of a minimal parabolic metaplectic Eisenstein series on the double cover of
GL3.1 The full group of functional equations, as well as the meromorphic
continuation of Z(s, w), was worked out in detail by Fisher–Friedberg [15],
using methods totally separate from the work of Bump–Hoffstein. For an
application of Z(s, w) to a mean value result for sums of quadratic Dirichlet
L-functions, see Goldfeld–Hoffstein [18] as well as [15].

For a rank 3 example, take the Rankin–Selberg convolution of two half-
integral weight Eisenstein series for Γ0(4). This yields the quadratic A3

series, which has the form

(1.6)
∑∑∑

d,n1,n2>0
d,n,n2 odd

χd(n̂1)χd(n̂2)
ns1

1 n
s2
2 d

w
a(n1, n2, d).

Here a(n1, n2, d) is a multiplicative weighting factor first explicitly written
down by Fisher and Friedberg [16] (see also our Example 3.7). It is expected
that the A3 series is a Whittaker coefficient of a minimal parabolic Eisenstein
series on the double cover of GL4. Applications of the A3 series include mean
value results for sums of squares of quadratic Dirichlet L-functions.

More examples of higher rank have also appeared in the literature and
have been applied to analytic number theory. The quadratic D4 series was
treated by Diaconu, Goldfeld and Hoffstein [14], who used it to prove mean
value results for sums of cubes of quadratic Dirichlet L-functions. This was
first proved by Soundararajan [23] by other methods. The results of [14]
and [23] are stated over Q, but the methods of multiple Dirichlet series
work over any global field. One of us (GC) recently used the quadratic A5

series to establish a mean value result for central values of zeta functions
of biquadratic number fields [11]. The results of this paper simultaneously
unify and generalize all of these earlier constructions.

Finally, we remark that one may also construct double Dirichlet series
roughly of the form

(1.7)
∑∑

d,n≥0
d,n odd

χd(n̂)
nsdw

bg(n),

where the bg(n) are Fourier coefficients of a Hecke cuspform g on GL2 or
GL3. These have been studied in the papers [8, 19] (for g on GL2), and
[10, 12] (for g on GL3). Though we do not directly address such series in
this paper, our methods may easily be adapted to establish the analytic
continuation and functional equations of (1.7).

We briefly indicate how to define (1.7) precisely when g is a GL3 form.
This is the heart of the problem, since once the series has been correctly

1A more general connection between double Dirichlet series and Whittaker coefficients
of a metaplectic GL3 Eisenstein series is proven in [4].
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defined, it is easy to mimic the procedure of Section 5 to establish the func-
tional equations and analytic continuation. To precisely define (1.7), it once
again suffices to specify its p-part. Let α1, α2, α3 be the Satake parameters
of g at an unramified prime p. Let f(x1, x2, x3, x4) be the rational func-
tion associated to the root system of type D4 given by Theorem 3.4. (We
take x4 to be the variable corresponding to the central node.) Then the
generating series giving the precise form of the p-part of the series (1.7) is
f(α1x, α2x, α3x, y), where x = p−s, y = p−w.

Acknowledgments. We thank Jim Humphreys for helpful conversations.
We are grateful to Ben Brubaker, Dan Bump, Sol Friedberg, and Jeff Hoff-
stein for making available to us their preprint [4] and for enlightening corre-
spondence. We also thank the organizers of the Bretton Woods Workshop
on Multiple Dirichlet Series (July 2005), where some of this work was carried
out. Finally we thank an anonymous referee for many helpful clarifications.

2. Preliminaries

Let K be a number field with ring of integers O. Let Sf be a finite
set of non-archimedean places such that Sf contains all places dividing 2
and the ring of Sf -integers OSf

has class number 1. Let S∞ be the set of
archimedean places, and let S = Sf ∪ S∞.

Let
(

a
∗
)

be the quadratic residue symbol attached to the extension K(
√
a)

of K, extended as in [15]; we review the definition below. A slightly different
but essentially equivalent formalism appears in the papers [2–4]. We find
the setup of [15] simpler in the quadratic case.

For each place v, let Kv denote the completion of K at v. For v nonar-
chimedean, let Pv be the corresponding ideal of O, and let qv = |Pv| be
its norm. Let C be the product

∏
v∈Sf

Pnv
v where nv is defined to be

max{ordv(4), 1}. Let HC be the narrow ray class group modulo C, and let
RC = HC ⊗ Z/2Z. Write the finite group RC as a direct product of cyclic
groups, choose a generator for each, and let E0 be a set of ideals of O prime
to S that represent these generators. For each E0 ∈ E0, choose mE0 ∈ K×

such that E0OSf
= mE0OSf

. Let E be a full set of representatives for RC

of the form
∏

E0∈E0
E

nE0
0 , with nE0 ∈ Z. If E =

∏
E0∈E0

E
nE0
0 is such a

representative, then let mE =
∏

E0∈E0
m

nE0
E0

. Note that EOSf
= mEOSf

for
all E ∈ E . For convenience we assume that O ∈ E and mO = 1.

Let J (S) be the group of fractional ideals of O coprime to Sf . Let
I, J ∈ J (S) be coprime. Write I = (m)EG2 with E ∈ E , m ∈ K×,
m ≡ 1 mod C, and G ∈ J (S) such that (G, J) = 1. Then, following [15],
the quadratic residue symbol

(
mmE

J

)
is defined, and if I = (m′)E′G′2 is

another such decomposition, then E′ = E and
(

m′mE
J

)
=
(

mmE
J

)
. In view

of this define the quadratic residue symbol
(

I
J

)
to be

(
mmE

J

)
. For I = I0I

2
1

with I0 squarefree, we denote by χI the character χI(J) = χI0(J) =
(

I0
J

)
.
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Further, in the expression χI(Ĵ), we let Ĵ represent the part of J coprime
to I0. This character χI depends on the choices above, but we suppress this
from the notation.

Proposition 2.1 (Reciprocity). [15] Let I, J ∈ J (S) be coprime, and
α(I, J) = χI(J)χJ(I)−1. Then α(I, J) depends only on the images of
I and J in RC .

Proof. See Neukirch [21], Theorem 8.3 of Chapter 6. �

Let I(S) be the set of integral ideals prime to Sf . Let LS(s, χJ) be the L-
function of the character χJ , with the places in S removed. We let LS(s, χJ)
be the product over the places in S. Thus

L(s, χJ) = LS(s, χJ)LS(s, χJ).

If ξ is any idèle class character then the completed L-function L(s, ξ)
satisfies a functional equation

(2.1) L(s, ξ) = ε(s, ξ)L(1− s, ξ−1),

where ε(s, ξ) is the epsilon factor of ξ.

Proposition 2.2. Let E, J ∈ O(S) be squarefree with associated characters
χE , χJ of conductors fE , fJ respectively. Suppose that χJ = χEχI with I ∈
K×, I ≡ 1 mod C. Let ψ be another character unramified outside S. Then

(2.2) ε(s, χJψ) = ε(1/2, χI)ψ(fJ/fE) (|fJ/fE |)1/2−s ε(s, χEψ).

Here ε(1/2, χI) is given by a (normalized) Gauss sum, as in Tate’s thesis.
When χI is a quadratic character, we have ε(1/2, χI) = 1.

We remark that the Γ-factors of the L-function appear in the contribution
of the archimedean places L(s, χJ). When the base field K is totally real,
these Γ-factors will depend on χJ , but only on the narrow ray class of J.
For example, when K = Q and d a fundamental discriminant, the Γ-factor
of L(s, χd) is Γ( s

2) if d > 0 and Γ( s+1
2 ) if d < 0.

3. A Weyl group action on rational functions

Let Φ be an irreducible simply laced root system of rank r with Weyl
group W . Choose an ordering of the roots and let Φ = Φ+ ∪ Φ− be the
decomposition into positive and negative roots. Let

Σ = {α1, α2, . . . , αr}
be the set of simple roots and let σi be the Weyl group element corresponding
to the reflection through the hyperplane perpendicular to αi. We say that i
and j are adjacent if i 6= j and (σiσj)3 = 1. The Weyl group W is generated
by the simple reflections σ1, σ2, . . . , σr, which satisfy the relations

(3.1) (σiσj)r(i,j) = 1 with r(i, j) =

 3 if i and j are adjacent,
1 if i = j, and
2 otherwise,
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for 1 ≤ i, j ≤ r. The action of the generators σi on the roots is

(3.2) σiαj =

 αi + αj if i and j are adjacent,
−αj if i = j, and
αj otherwise.

Though it will play no role in this section, we will assume that the indices
are ordered so that for each j, the i adjacent to j are either all less than j
or all greater than j.

Let l denote the length function on W with respect to the generators
σ1, σ2, . . . , σr, and define

sgn(w) = (−1)l(w).

Let ΛΦ be the lattice generated by the roots. Any α ∈ ΛΦ has a unique
representation as an integral linear combination of the simple roots:

(3.3) α = k1α1 + k2α2 + · · ·+ krαr.

We call the set Supp(α) of j such that kj 6= 0 in (3.3) the support of α. We
put

d(α) = k1 + k2 + · · ·+ kr.

Introduce a partial ordering on ΛΦ by defining α � 0 if each ki ≥ 0 in (3.3).
Given α, β ∈ ΛΦ, define α � β if α− β � 0.

Let

ρ =
1
2

∑
α∈Φ+

α

be half the sum of the positive roots. For each w in the Weyl group set

Φ(w) = {α ∈ Φ+ : w(α) ∈ Φ−}.

We gather some simple properties of W we will need later.

Lemma 3.1. Let w ∈W .
(a) The cardinality of Φ(w) is the length l(w) of w.
(b) We have

(3.4) ρ− wρ =
∑

α∈Φ(w−1)

α.

(c) Let σi ∈W be a generator such that l(σiw) = l(w) + 1. Then

Φ(σiw) = Φ(w) ∪ {w−1αi}.

(d) Let σi ∈W be a generator such that l(wσi) = l(w) + 1. Then

Φ(wσi) = σi (Φ(w)) ∪ {αi}.

(e) The set of simple reflections σi occurring in any reduced expression
for w is uniquely determined by w.

(f) Let J = Supp(ρ− wρ). Then w lies in the subgroup 〈σj | j ∈ J〉.
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Proof. Statements (a)–(e) can be easily found in many standard references,
e.g. [20]. We were unable to locate a precise reference for (f), and so for
the convenience of the reader provide a proof. We will prove (f) under the
assumption that W is a simply-laced Weyl group. Note that by (b) the set
Supp(ρ − wρ) makes sense for any w ∈ W . We proceed by induction on
l(w).

First assume l(w) = 1, so that w = σi, a simple reflection. Then ρ−σiρ =
αi. Hence the result is true in this case.

Now assume the result is true for lengths up to l(w). By (e) it suffices to
check the truth of the statement on any reduced expression for w. Let σiu
be a reduced expression for w, so that l(u) = l(w)−1. Let J = Supp(ρ−uρ)
and write ρ− uρ =

∑
j∈J kjαj , where kj > 0. By (b) and (d), we have

(3.5) ρ− wρ =
∑

α∈Φ(w−1)

α = αi +
∑

α∈σiΦ(u−1)

α = αi +
∑
j∈J

kjσi(αj).

Write the last expression as

(3.6) αi +
∑

j=1,...,r

k′jαj =
∑

j=1,...,r

k′′jαj .

We claim k′′j 6= 0 if j ∈ J . Indeed, assume j 6= i. If j is not adjacent to i, then
σi(αj) = αj . On the other hand if j is adjacent to i, then σi(αj) = αi + αj .
Hence if j 6= i we must have k′′j = k′j ≥ kj .

Now supppose j = i. Then the only problem is that we might have
k′i = −1, which would lead to an expression for ρ − wρ not involving αi.
However, by (3.5) and (3.6) we have

(3.7)
∑

α∈σiΦ(u−1)

α =
∑

j=1,...,r

k′jαj ,

and the left of (3.7) is a sum over positive roots. Thus k′′i = 1 + k′i > 0.
This completes the proof. �

Let F = C(x) = C(x1, x2, . . . , xr) be the field of rational functions in
the variables x1, x2, . . . , xr. For any α ∈ ΛΦ, let xα ∈ F be the monomial
xk1

1 x
k2
2 · · ·xkr

r , where the exponents ki are determined as in (3.3). Our imme-
diate goal is to define an action of the Weyl group W on F . It will turn out
that to construct a multiple Dirichlet series with group of functional equa-
tions isomorphic to the group W , it suffices to construct a rational function
f invariant under this W -action and satisfying certain limiting conditions,
see Section 5 and Proposition 5.1.

We define this W -action in stages. First, for x = (x1, x2, . . . , xr) define
σix = x′, where

(3.8) x′j =

 xixj
√
q if i and j are adjacent,

1/(qxj) if i = j, and
xj otherwise.
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It is easy to see that

(3.9)
σ2

i x = x for all i,
σiσjσix = σjσiσjx if i and j are adjacent,
σiσjx = σjσix otherwise.

Next, define εix = x′, where

(3.10) x′j =
{
−xj if i and j are adjacent,
xj otherwise.

Clearly ε2i x = x and εiεjx = εjεix, and we have

(3.11) σiεjx =
{
εiεjσix if i and j are adjacent,
εjσix otherwise.

For f ∈ F define

(3.12) f+
i (x) =

f(x) + f(εix)
2

and f−i (x) =
f(x)− f(εix)

2
.

Finally we can define the action of W on F for a generator σi ∈W :

(3.13) (f |σi)(x) = − 1− qxi

qxi(1− xi)
f+

i (σix) +
1

xi
√
q
f−i (σix)

Lemma 3.2. The definition (3.13) extends to give an action of W on F .

Proof. The proof amounts to verifying that the relations (3.1) are respected
by (3.13). These are straightforward computations that involve identities
in rational functions that are independent of f and the global structure of
the root system Φ. We will show in detail that f |σ2

i = f , and will explain
what computations are involved in proving f |σiσjσi = f |σjσiσj when i is
adjacent to j. The final relation, that f |σiσj = f |σjσi when i and j are not
adjacent, is proved by the same technique and will be left to the reader.

Define

ci(x) =
1
2

(
qxi − 1

qxi(1− xi)
+

1
√
qxi

)
, and

di(x) =
1
2

(
qxi − 1

qxi(1− xi)
− 1
√
qxi

)
for i = 1, 2, . . . , r. We can rewrite (3.13) as

(3.14) (f |σi)(x) = ci(x)f(σix) + di(x)f(εiσix).

It is then easy to compute

(f |σ2
i )(x) = (ci(x)ci(σix) + di(x)di(σix))f(x)

+ (ci(x)di(σix) + di(x)ci(σix))f(εix).

Hence for f |σ2
i = f we need

ci(x)ci(σix) + di(x)di(σix) = 1,(3.15a)

ci(x)di(σix) + di(x)ci(σix) = 0.(3.15b)
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This is quickly seen as follows. Let

A =
qxi − 1

qxi(1− xi)
, B =

1
√
qxi

.

Then ci(x) = (A + B)/2 and di(x) = (A − B)/2. One can check that
ci(σix) = (A−1 +B−1)/2 and di(σix) = (A−1 −B−1)/2, so (3.15a)–(3.15b)
follow easily.

Now we suppose i is adjacent to j, and consider F1 = f |σiσjσi and F2 =
f |σjσiσj . Repeatedly applying (3.14) and the relations (3.9) and (3.11), we
can write both F1 and F2 as linear combinations of the four functions

f(σiσjσix), f(εiσiσjσix), f(εjσiσjσix), and f(εiεjσiσjσix).

Comparing coefficients of these linear combinations gives four identities in
rational functions that must be satisfied for F1 to equal F2. For instance,
the identity needed for equality of the coefficients of f(σiσjσix) in F1, F2 is

ci(x)cj(σix)ci(σjσix) + di(x)d2(εiσix)di(εiσjσix) =

cj(x)ci(σjx)cj(σiσjx) + dj(x)d2(εjσjx)dj(εjσiσjx).

Such identities are easily verified with the aid of a computer algebra system.
This completes the proof. �

Lemma 3.3. Let g, h ∈ F and w ∈W .
(a) (g + h)|w = g|w + h|w
(b) If g(x) = gα(x) = xα is a monomial, then

g(wx) = qd(wα−α)/2xwα.

(c) If g is an even function of all the xj, then

(gh|w)(x) = g(wx) · (h|w)(x).

Proof. Each part of the Lemma can be proven by first establishing the result
for the generators σi, and then verifying that if the result is true for w1, w2 ∈
W, then it is true for the product w1w2. Part (a) is obvious. For part (b),
we have g(σix) = qd(σiα−α)/2xσiα by (3.2) and (3.8). Assume (b) holds for
w1, w2 ∈W . Then we have

w1w2(xα) = qd(w2α−α)/2w1(xw2α)

= qd(w2α−α)/2qd(w1w2α−w2α)/2xw1w2α

= qd((w1w2)α−α)/2x(w1w2)α,

as required. For part (c), first note that if g is an even function of xj for
each index j adjacent to i, then

(gh|σi)(x) = g(σix) · (h|σi)(x).

Part (b) implies that if g(x) is even in any variable, then g(σix) is even in
the same variable. The proof of (c) is now easily completed. �

We now state the main result of this section.
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Theorem 3.4. There exists a rational function f ∈ F that is W -invariant
under the | operation induced by (3.13) and satisfies

(1) for each i = 1, 2, . . . , r, the function f satisfies the following limiting
condition: if xj = 0 for every j adjacent to i, then

(3.16) f(x)(1− xi) is independent of xi.

(2) f(0, 0, . . . , 0) = 1.

Remark 3.5. We expect that the rational function satisfying the conditions
of Theorem 3.4 is unique. We have verified the uniqueness by a laborious
induction for the root systems An (n ≤ 5) and D4.

Example 3.6. For the root system A2, the rational function f satisfying
the conditions of Theorem 3.4 is

(3.17) fA2 = fA2(x1, x2) =
1− x1x2

(1− x1)(1− x2)(1− qx2
1x

2
2)
.

The Taylor series coefficients of fA2 coincide with the q-part of Siegel’s series
(1.4). That is, if we write

f(x1, x2) =
∑
k,l≥0

akl(q)xk
1x

l
2,

then

akl(q) =
{

min(qk/2, ql/2) if min(k, l) is even,
0 otherwise.

This should be compared with (1.5).

Example 3.7. For the root system A3, with central node corresponding to
x2, the rational function is fA3 = fA3(x1, x2, x3) =

1− x1x2 − x2x3 + x1x2x3 + qx1x
2
2x3 − qx2

1x
2
2x3 − qx1x

2
2x

2
3 + qx2

1x
3
2x

2
3

(1− x1)(1− x2)(1− x3)(1− qx2
1x

2
2)(1− qx2

2x
2
3)(1− q2x2

1x
2
2x

2
3)

.

This can be expressed in terms of the A2 rational function fA2 from Example
3.6. Indeed, for |xi| < 1/q, we have

(3.18) fA3(x1, x2, x3) =
1

1− qx1x2
2x3

∫
fA2(x1, t)fA2(x2t

−1, x3)
dt

t
,

where the integral is taken over the circle |t| = 1/q.
The identity (3.18) originates in the representation of the A3 multiple

Dirichlet series (1.6) as a Rankin-Selberg convolution of two metaplectic
Eisenstein series on the double cover of GL2 (cf. Section 1). The factor
(1 − qx1x

2
2x3)−1 can be interpreted as the q-part of the normalizing zeta

factor arising in the convolution, cf. [5, Section 1.1].

The relation between the above examples and the results of [2–4] is dis-
cussed in Remark 3.12 at the end of this section.

Since W is finite, it is easy to construct functions in F that are W -
invariant by averaging over the group. The difficulty lies in finding the
proper function to average so that the condition (3.16) is satisfied.
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To this end, define

∆(x) =
∏

α∈Φ+

(1− qd(α)x2α),

and let
j(w,x) = ∆(x)/∆(wx).

Then j satisfies the one-cocycle relation

(3.19) j(ww′,x) = j(w,w′x)j(w′,x).

Lemma 3.8. We have
j(σi,x) = −qx2

i

for each simple reflection σi. Moreover, let w ∈ W and let α = ρ − w−1ρ.
Then we have

j(w,x) = sgn(w)qd(α)x2α.

Proof. The second statement follows from the first and the cocycle relation
(3.19). For the first, write

∆(x) = (1− qd(αi)x2αi)
∏

α∈Φ+

α 6=αi

(1− qd(α)x2α).

Using Lemma 3.3,

∆(σix) = (1− qd(αi)qd(σiαi−αi)x2σiαi)
∏

α∈Φ+

α 6=αi

(1− qd(α)qd(σiα−α)x2σiα)

= (1− q−d(αi)x−2αi)
∏

α∈Φ+

α 6=αi

(1− qd(σiα)x2σiα)

since σiαi = −αi. But by Lemma 3.1 the positive roots in Φ+\{αi} are
permuted by σi. Therefore

∆(σix) = − 1
qx2

i

∆(x),

as claimed. �

We are now ready to construct the function whose existence is claimed in
Theorem 3.4. Define

(3.20) f0(x) =
∑

w∈W

j(w,x)(1|w)(x),

and put

(3.21) f(x) = f0(x)∆(x)−1.

We claim f(x) satisfies the conditions of Theorem 3.4.
The invariance of f is clear. To verify the limiting condition (3.16) we

need the following lemma:

Lemma 3.9. Let w be an element of the Weyl group W .
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(a) xρ−wρ(1|w)(x) is regular at the origin.
(b) xρ−σiwρ

(
1
xi
|w
)

(x) is regular at the origin for i = 1, 2, . . . , r.

Proof. The proof of the lemma is by induction on the length of w. If w is
the identity element, (a) and (b) above are trivial. Suppose (a) and (b) are
true for w0 ∈W and that i is such that l(σiw0) = l(w0) + 1. Then

(1|σiw0)(x) =
(

qxi − 1
qxi(1− xi)

)∣∣∣∣w0(3.22)

=
[
g1(xi) + g2(xi) 1

xi

]∣∣∣w0(3.23)

where

g1(xi) =
q − 1

q(1− x2
i )

and g2(xi) =
qx2

i − 1
q(1− x2

i )
are both even functions of xi. Therefore, by Lemma 3.3 (c),

(1|σiw0)(x) = g1(w0x)(1|w0)(x) + g2(w0x)( 1
xi
|w0)(x).

Since gi(wx) is regular at the origin for i = 1, 2, to finish the proof of (a)
we must show that

xρ−σiw0ρ(1|w0)(x) and xρ−σiw0ρ( 1
xi
|w0)(x)

are both regular at the origin. The second statement term is regular by
virtue of the inductive hypothesis. As for the first, by induction it suffices
to show that ρ− σiw0ρ � ρ− w0ρ, or equivalently, by Lemma 3.1 (d), that

(3.24)
∑

α∈Φ(w−1
0 )

α �
∑

α∈Φ(w−1
0 )

σi(α) + αi.

In fact we claim that for each α ∈ Φ(w−1
0 ) either

(3.25) α � σiα or σiα ∈ Φ(w−1
0 ).

Indeed, we know that α−σiαmust be an integral multiple of αi, say α−σiα =
nαi. If n ≤ 0 then the first alternative in (3.25) holds. If n > 0, then

w−1
0 σi(α) = w−1

0 (σiα− α+ α) =

w−1
0 (α) + w−1

0 (σiα− α) = w−1
0 α− nw−1

0 (αi) ∈ Φ−.

Now α is in Φ(w−1
0 ) and αi is not. Therefore w−1

0 σi(α) is in Φ− and σi(α) ∈
Φ(w−1

0 ). The proof of (b) is similar. �

Proof of Theorem 3.4. Let f be defined as in (3.21). To complete the proof
of Theorem 3.4, we verify that f satisfies the limiting condition (3.16).

Fix an index i with neighbors j1, . . . , jk. Let W0 be the subgroup of W
generated by the σj with j 6= i and j 6= j1, . . . jk. If we set xj1 = · · · = xjr =
0 in

(3.26) f(x) = ∆(x)−1
∑

w∈W

j(w,x)(1|w)(x),
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then Lemmas 3.1(e), 3.8, and 3.9(a) imply that every summand in (3.26)
vanishes except for those with w in the group generated by σi and W0. Since
σi is in the centralizer of W0, (3.26) becomes

∆(x)−1
∑

w∈W0

[1 + j(σi,x)(1|σi)]|w.

The term in the brackets equals

1 +
qx2

i − xi

1− xi
=

1− qx2
i

1− xi

by (3.22). Since each w ∈ W0 is composed of reflections σj for j neither

neighboring nor equal to i, the term 1−qx2
i

1−xi
can be pulled outside the sum-

mation, and leaves behind a factor of 1/(1 − xi) after 1 − qx2
i cancels with

the same term in ∆. This completes the proof of Theorem 3.4. �

For use in the following sections, we establish some further properties of
the invariant function f . Write f(x) = f(x; q) as a power series in the xi :

(3.27) f(x; q) =
∑

k1,...,kr≥0

a(k1, . . . , kr; q)xk1
1 · · ·xkr

r .

We will often write f(x) or a(k1, . . . , kr) when the dependence on q is not
relevant. The main fact about the q-dependence relevant for us is the fol-
lowing:

Proposition 3.10. For Φ fixed, there exists constants C1, C2 > 0 such that
a(k1, . . . , kr; q) < C1q

C2|k|, where |k| := k1 + · · ·+ kr.

Proof. From the definition of f , it is clear that its numerator is polynomial
in q and that its denominator is a finite product of terms of the form (1 −
ql0xl1

1 · · ·xlr
r ) for some positive integers li. Expanding this out in a geometric

series gives us the polynomial bound in q. �

The reason for the introduction of the Weyl group action (3.13) and the
relevance to L-functions will be made more clear in the next section. We
conclude this section by explaining a consequence of the W -invariance of the
function f . Take the power series expansion of f in r−1 of the variables xi.
Thus the coefficients of this expansion will be functions of the one remaining
variable, xj0 , say. The invariance of f under σj0 will force these coefficients
to satisfy certain functional equations. We make this explicit.

Proposition 3.11. Fix q and an index j0. Let

k̂ = (k1, . . . , kj0−1, kj0+1, . . . , kr)

be an (r − 1)-tuple of nonnegative integers. Define

T (xj0 ; k̂) =
∞∑

kj0
=0

a(k1, . . . , kj0−1, kj0 , kj0+1, . . . , kr)x
kj0
j0
.
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Let n(k̂) =
∑

j adj(j,j0)

kj.

(a) If n(k̂) = 2γ is even, then

(1− x)T (xj0 ; k̂) = (1− 1/(qxj0))(xj0

√
q)2γT

(
1
qxj0

; k̂
)
.

(b) If n(k̂) = 2γ + 1 is odd, then

T (xj0 ; k̂) = (xj0

√
q)2γT

(
1
qxj0

; k̂
)
.

(c) Let C1, C2 be the constants of Proposition 3.10. For |xj0 | < q−C2,
we have

|T (xj0 , k̂)| < C1q
−C2|k̂|,

where |k̂| =
∑
j 6=j0

kj.

Proof. From (3.13) and the invariance of f under σj0 , we know that (1 −
xj0)f

+
j0

(x) = (1− 1
qxj0

))f+
j0

(σj0x). Comparing the coefficients of

f+
j0

(x) =
∑

k̂ : n(k̂) even

T (xj0 ; k̂)
∏
j 6=j0

x
kj

j

and

f+
j0

(σj0x) =
∑

k̂ : n(k̂) even

T

(
1
qxj0

; k̂
)(∏

j 6=j0

x
kj

j

)( ∏
j:j,j0 adj.

(xj0

√
q)kj

)

yields (a). The proof of (b) follows after a similar comparison of f−j0(x) and
f−j0(σj0x).

�

Remark 3.12. The rational functions of Theorem 3.4 will be used to define
the p-parts of the multiple Dirichlet series of the following section. (Here p
is a prime of norm q.) An alternative description of the p-parts of multiple
Dirichlet series is given in the papers [2–4]. The first two of these papers
deal with stable Weyl group multiple Dirichlet series constructed from nth

order characters and Gauss sums. As noted in the introduction, the series
studied in this paper (the n = 2 case) fall outside the stable range provided
Φ 6= A2.

To conclude this section, we describe the precise connection between the
p-part polynomial of [2–4] and invariant rational function f constructed
above. Our function f consists of both the p-part polynomial and the p-part
of the normalizing zeta factors of [2–4]. In Eq. (30) of [3], the normalizing
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zeta factor of the quadratic multiple Dirichlet series associated to the root
system Φ of rank r is defined to be

(3.28)
∏

α∈Φ+

ζ(2〈α, s〉 − d(α) + 1).

Here, s is an r-tuple of complex numbers and

〈α, s〉 = α1s1 + · · ·+ αrsr.

(Note: the formula of [3] is related to ours by the change of variable si 7→
2si−1/2.) Thus, setting xi = q−si , this product of zeta functions has p-part

(3.29) D(x) =
∏

α∈Φ+

(1− qd(α)−1x2α).

Then f(x)D(x) is a polynomial in the xi.After making the change of variable
xi 7→ xi

√
q, this is the p-part polynomial of [2–4].

Let us compare our Examples 3.6 and 3.7 with the formulas of [2–4]. We
begin with the A2 series, (3.17). Multiply fA2(x, y) by (1− x2)(1− y2)(1−
qx2y2). The result N(x, y;A2) is a sum of 6 terms which correspond to the 6
elements of the Weyl group W. Make the change of variable x→ x

√
q, y →

y
√
q in N(x, y;A2) to get

1 +
√
qx+

√
qy − q3/2x2y − q3/2xy2 + q2x2y2.

Then the coefficient of xk1yk2 is precisely the coefficient H(pk1 , pk2) given in
(13) of [2], after replacing g(1, p) by

√
q and g(p, p2) by −q. Thus, in this

stable example, our result is identical to the result of [2].
Turning to Example 3.7, multiplying fA3 by

(1− x2
1)(1− x2

2)(1− x2
3)(1− qx2

1x
2
2)(1− qx2

2x
2
3)(1− q2x2

1x
2
2x

2
3)

yields a sum of 26 terms. After changes of variables as in the paragraph
above, 24 of these terms correspond to the 24 elements of the Weyl group
of A3 under the association (6) of [3]. However, (6) of [3] is intended to be
applicable only in the stable case; the missing 2 terms are a manifestation
of the instability of this example.

To investigate the connection between f and the Weyl group, consider
the rational function f0 = f0(x; q) from (3.20). Expand f0 as a power series
in the variables xi:

(3.30) f0(x; q) =
∑

k1,...,kr≥0

a(k1, . . . , kr; q)xk1
1 · · ·xkr

r .

It is not difficult to see that (3.30) contains terms in bijection with the Weyl
group. Indeed, consider the function f0(x; 1) obtained by formally setting
q = 1 and applying the definition (3.20). If q = 1, then the W -action (3.13)
simplifies considerably, and one readily computes

f0(x; 1) =
∑

w∈W

(−1)l(w)+d(ρ−wρ)xρ−wρ.
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Since ρ lies in the interior of the Weyl chamber, it follows that the monomials
xρ−wρ are all distinct. This proves that (3.30) contains terms in bijection
with W . This also shows that, as functions in q, the coefficents of the
unstable terms vanish when q = 1.

Finally, we note that Brubaker, Bump, Friedberg and Hoffstein [4] have
given a conjecture for the p-parts, applicable for all n when Φ = Ar. In
this conjecture the terms of the numerator are parametrized not by Weyl
group elements, but rather by Gelfand–Tsetlin patterns of rank r with top
row (r, r−1, . . . , 2, 1). These terms include terms parametrized by the Weyl
group; as monomials they coincide with the xρ−wρ from above. Moreover,
the additional unstable terms in their conjectural p-parts satisfy a remark-
able geometric property. Let P be the convex polytope obtained by taking
the convex hull of the points ρ − wρ,w ∈ W in the vector space ΛΦ ⊗ R.
Then the unstable terms are supported on monomials xα with α ∈ ΛΦ and
lying in P .

The authors of [4] provide much convincing evidence for their conjecture,
including verification that for n = 2, the conjecture agrees with our results
for Ar, r ≤ 5. Unfortunately, our methods do not readily provide a means
to attack their conjecture as it appears difficult to extract the coefficients of
the numerator of the rational function of Theorem 3.4 from the definition
(3.21), and because lots of cancellation occurs during the averaging process.
The connection between our construction and that of [4] is currently under
investigation by the authors in joint work with Bump and Friedberg.

4. Definition of the quadratic Weyl group multiple Dirichlet
series

We continue to let Φ denote an irreducible simply-laced root system of
rank r. We recall our convention on the ordering of the indices: for each j,
the i which are adjacent to j are either all less than j or all greater than j.

Let
Ψ = (ψ1, ψ2, . . . , ψr)

be a collection of r idèle class characters unramified outside of S. Given a
collection I = (I1, . . . , Ir) of ideals in I(S) we denote by Ψ(I) the product∏

i

ψi(Ci).

and by H(I) the coefficient H(I1, I2, . . . , Ir) defined below.

Definition 4.1. The coefficient H(I1, I2 . . . , Ir) is defined by the following
two conditions:

(1) Suppose I = (P k1 , . . . , P kr), where P is a fixed prime ideal of norm
q. Then

H(P k1 , . . . , P kr) = a(k1, . . . , kr; q).
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(2) Given ideals Ij , I ′j ∈ I(S) with (I1I2 · · · Ir, I ′1I ′2 · · · I ′r) = 1 we have

H(I1I ′1, . . . , IrI
′
r)

H(I1, . . . , Ir)H(I ′1, . . . , I ′r)
=
∏

i,j adj.
i<j

(
Ii
I ′j

)(
I ′i
Ij

)

Note that the second condition and Proposition 3.10 imply the bound

(4.1) |H(I1, . . . , Ir)| << |I1 · · · Ir|C

for some constant C. If the ideals I1, . . . , Ir is are pairwise relatively prime,
then H(I) has an especially simple form:

Lemma 4.2. If the ideals I1, . . . , Ir ∈ I(s) are pairwise relatively prime,
then

H(I1, . . . , Ir) =
∏

i,j adj.
i<j

(
Ii
Ij

)
.

Proof. We have

H(I1, I2, . . . , Ir) = H(I1, 1, . . . , 1)H(1, I2, . . . , Ir)
∏

i,1 adj.

(
C1

Ci

)
.

Now use the fact that H(C, 1 . . . , 1) = 1 and induct. �

We may finally define the family of multiple Dirichlet series that is the
main subject of this paper. For an r-tuple s = (s1, . . . , sr) of complex
numbers, define

(4.2) ZS(s,Ψ) =
∑

I=(I1,...,Ir)∈I(S)r

Ψ(I)H(I)∏
j |Ij |sj

By the (4.1) we see that the sum defining ZS(s,Ψ) will converge absolutely
for Re(sj) sufficiently large, 1 ≤ j ≤ r.

We will find it convenient to extend this definition to allow linear combi-
nations of idèle class characters in place of Ψ. If

Ξ =
∑

bΨΨ

for some collection of complex numbers bΨ, we define

ZS(s,Ξ) =
∑

bΨZS(s,Ψ).

In the particular applications we have in mind, the r-tuple Ξ will consist
of combinations of idèle class characters and characteristic functions δE for
classes E in RC .

Remark 4.3. The coefficient function H is similar to but slightly different
from the function of the same name in [2–4]. To compare the two, denote
the function in [2–4] by HWMD. As explained in Remark 3.12, the coefficient
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generating function f(x; q) contains both the P -part polynomial of [2–4] and
the normalizing zeta factor (3.28). Therefore, we expect the equality

(4.3) D(x)
∑

k1,...,kr

H(P k1 , . . . , P kr)xk1
1 · · ·xkr

r

=
∑

k1,...,kr

HWMD(P k1 , . . . , P kr)yk1
1 · · · ykr

r

where xi
√
q = yi and D is the denominator given in (3.29). The coefficients

on the right hand side are to be understood to mean those defined in [2] when
Φ = A2 and to mean those conjectured in [4] when Φ = Ar for r ≥ 3, n = 2.
As mentioned in Remark 3.12, we have checked equality of (4.3) for r ≤ 5,
n = 2.

5. Functional equations and analytic continuation

In this section we show that the family of multiple Dirichlet series ZS(s,Ψ)
as Ψ ranges over r-tuples of quadratic idèle class characters unramified out-
side of S satisfies a group of functional equations isomorphic to W , the Weyl
group of the root system Φ. Summing over the jth

0 index in the series (4.2)
defining ZS(s,Ψ) will produce an L-function having a functional equation
as sj0 7→ 1− sj0 . This functional equation will induce a functional equation
in the multiple Dirichlet series relating the values at s = (s1, . . . , sr) to the
values at σj0s = (s′1, . . . , s

′
r), where

(5.1) s′j =

 sj + sj0 − 1/2 if j and j0 are adjacent,
1− sj0 if j = j0, and
sj otherwise.

These functional equations are involutions generating the group of functional
equations of ZS(s,Ψ). Note that if we set xj = q−sj , then this action
corresponds to the action (3.8) of W on x = (x1, . . . , xr) by the variable
change xj = q−sj .

We now exhibit the functional equations in detail. Fix an index j0. Then
summing (4.2) over this index first produces
(5.2)∑
j=1,...,r

j 6=j0

∑
Ij∈I(S)

∏
j 6=j0

ψj(Ij)∏
j 6=j0

|Ij |sj
·
∑

Ij0
∈I(S)

H(I1, . . . , Ij0−1, Ij0 , Ij0+1, . . . , Ir)
|Ij0 |sj0

ψj0(Ij0).

Our goal is to express the innermost sum as the product of a partial L-series
with a Dirichlet polynomial, and to exhibit the precise functional equation
that it satisfies.

Let N =
∏

j 6=j0
Ij and let M =

∏
j:j,j0 adj. Ij . We will assume that j0 > j

for all indices j adjacent to j0. Setting ψ = ψj0 and s = sj0 , we begin by
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removing the ideals relatively prime to N from the inner sum above:∑
Ij0

∈I(S)

H(I1, . . . , Ij0 , . . . , Ir)
|Ij0 |s

ψ(Ij0)

=
∑

I|N∞

∑
(J,N)=1

H(I1, . . . , IJ, . . . , Ir)
|IJ |s

ψ(IJ)

=
∑

I|N∞

H(I1, . . . , I, . . . , Ir)
|I|s

ψ(I)

 ∑
(J,N)=1

ψ(J)
|J |s

∏
j:j,j0 adj.

(
Ij
J

)
= LSN

(s, ψχM )
∑

I|N∞

H(I1, . . . , I, . . . , Ir)
|I|s

ψ(I),

where SN is the set of places in S together with the places dividing N . (If
we had chosen j0 such that all j adjacent to j0 had been greater than j0 the
only difference would be that the partial L-function in front would instead
be associated to the character ψψMχM where ψM is the (unramified outside
S) idèle class character given by J 7→ α(I, J) which depends only on the
class of M in RC .) The sum over I|N∞ decomposes as a product over the
primes dividing N . Let P be a prime divisor of N . Let βj be the order
of P in Ij and let I(P )

j denote the part of Ij relatively prime to P . Thus

Ij = I
(P )
j P βj . Then∑

I|N∞

H(I1, . . . , I, . . . , Ir)
|I|s

ψ(I)(5.3)

=
∑

I|N∞

(I,P )=1

∞∑
k=0

H(I(P )
1 P β1 , . . . , IP k, . . . , I

(P )
r P βr)

|I|s|P |ks
ψ(IP k).

Using the twisted multiplicativity, the termH(I(P )
1 P β1 , . . . , IP k, . . . , I

(P )
r P βr)

in the numerator can be pulled apart to yield

(5.4) H(I(P )
1 , . . . , I, . . . , I(P )

r )H(P β1 , . . . , P k, . . . , P βr)

×

 ∏
i<j,adj.
i,j 6=j0

(
I

(P )
i

P βj

)(
P βi

I
(P )
j

)
 ∏

j:j,j0 adj.

(
I

(P )
j

P k

)(
P βj

I

) .
The first bracketed product of characters is a constant which can be pulled
outside the summation and will be ignored. Summing over k we get

∞∑
k=0

H(P β1 , . . . , P k, . . . , P βr)
|P |ks

ψ(P k)
∏

j:j,j0 adj.

(
I

(P )
j

P k

)
.
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Thus, up to a constant of absolute value 1, (5.3) is

(5.5)
∏
P |N

P βj ||Ij

∞∑
k=0

H(P β1 , . . . , P k, . . . , P βr)
|P |ks

ψ(P k)

(
M (P )

P k

)
.

Write M = M0M
2
1M

2
2 with M0 squarefree and (M0M1,M2) = 1. There-

fore, M1 consists of primes which divide M to odd power and M2 of primes
dividing M to even order. In further evaluating the product (5.5), we dis-
tinguish three cases: P relatively prime to M , P divides M to odd order,
and P divides M to even order.

Case 1: P relatively prime to M . This means that for all the neighbors j
of j0, P βj = 1. By the limiting condition of Theorem 3.4 we conclude that

∞∑
k=0

H(P β1 , . . . , P k, . . . , P βr)
|P |ks

ψ(P k)χM (P k)

is a constant (independent of s) multiple of

(1− ψ(P )χM (P )|P |−s)−1,

the P -part of the L-function L(s, ψχM ). The constant is given by the k = 0
term:

(5.6) H(P β1 , . . . , P k, . . . , P βr) << |P |C(β1+···+βr).

Case 2: P divides M to odd order. Let the order of P in M be 2γ + 1.
Let ε = ±1 be ψ(P )

(
M(P )

P

)
. Thus the P -part of (5.5) is

HP (s) :=
∞∑

k=0

H(P β1 , . . . , P k, . . . , P βr)
|P |ks

εk.

By virtue of the functional equation satisfied by f−i (Proposition 3.11),
HP (s) satisfies

HP (s) = |P |γ(1−2s)HP (1− s).
Taking the product over all P dividing M to odd order, we have

(5.7)
∏

ordP (M)odd

HP (s) = |M1|1−2s
∏

ordP (M)odd

HP (1− s).

Case 3: P divides M to even order. Let the order of P in M be 2γ. In
this case, χM(P ) = χM since χM depends only on the squarefree part of M .
The P -part of (5.5) is

HP (s) :=
∞∑

k=0

H(P β1 , . . . , P k, . . . , P βr)
|P |ks

ψχM (P k).

Again by Proposition 3.11, this can be written as

(1− ψχM (P )|P |−s)−1HP (s),
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where HP (S) satisfies

HP (s) = |P |2γ(1/2−s)HP (1− s).

Taking the product over all P dividing M to even order, we have

(5.8)
∏

ordP (M)even

HP (s) = |M2|1−2s
∏

ordP (M)even

HP (1− s).

Putting together the 3 cases above, we get an expression for (5.2) in terms
of an L-function.

Proposition 5.1. Fix ideals Ij ∈ I(S) for j 6= j0. Then∑
Ij0

∈I(S)

H(I1, . . . , Ij0 , . . . , Ir)
|Ij0 |s

ψ(Ij0) = LS(s, ψχM )Q(s)

where Q(s) is a finite Euler product depending on the ideals I1, . . . Ij0−1, Ij0+1, . . . , Ir
and the character ψ which satisfies

(5.9) Q(s) = |M1M2|1−2sQ(1− s).

For s > C2, there exists C3 such that

|Q(s)| < |N |C3 .

Here, C2 is the constant from Proposition 3.11.

Proof. The only unproven part of the Proposition is the claim about the size
of Q(s). It follows from Proposition 3.11 that

|Q(s)| < C
ω(N)
1 |N |C2

where ω(N) is the number of prime divisors of N . Hence we may take
C3 = C2 + log2C1. �

Let

L̂S(s, ψχM ) :=
∑

Ij0
∈I(S)

H(I1, . . . , Ij0 , . . . , Ir)
|Ij0 |s

ψ(Ij0).

Note that (5.9) forces Q(s) to be a Dirichlet polynomial. Therefore, Q(s)
is an entire function of s. This implies that L̂S(s, ψχM ), has an analytic
continuation to s ∈ C, with at most a simple pole at s = 1. This simple pole
will exist if and only if ψχM is the trivial character. Moreover, L̂S(s, ψχM )
will satisfy a functional equation as s 7→ 1− s.

Proposition 5.2. There is a factor A(s, ψ,E) depending only on ψ and the
class E ∈ E of M such that

LS(s, ψχM )L̂S(s, ψχM ) = A(s, ψ,E)M1/2−sLS(1− s, ψχM )L̂S(1− s, ψχM ).

In fact, LS(s, ψχM ) also depends only on ψ and the class of M in E. The
function A(s, ψ,E) is of the form A

1/2−s
0 where A0 = |fM |

|M0fE | .
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This is immediate from (5.9), the functional equation (2.1) of the L-
function L(s, ψχM ) and the description of the epsilon factor in Proposition
2.2. We emphasize that the fact that Lv(s, ψχM ) depends only on ψ and
the class of M in E is true for both the archimedean and nonarchimedean
places v ∈ S—see the remark after Propostion 2.2.

In the usual way, we can use the functional equation of the preceding
proposition to obtain a convexity estimate for L̂S :

L̂S(s, ψχM ) << |N |C3 |M |2C2+1

for Re(s) > −C2, with the implicit constant depending on the set S and
Im(s). This final estimate allows us to analytically continue ZS(s,Ψ) slightly
beyond the initial domain of absolute convergence.

Proposition 5.3. For each j0, the multiple Dirichlet series ZS(s,Ψ) has
an analytic continuation to the the domain

Ω = {(s1, . . . , sr) ∈ Cr : Re(sj0) > −C2,Re(sj) > C3+2C2+2, for j 6= j0}.

The actual constants C1, C2, C3 are unimportant. The point is that the
base of the tube domain described in the previous proposition is the com-
plement of a compact subset of the base of the orthant

X = {Re(sj) > 0 for j = 1, 2, . . . , r}.

Let E be a class in E . Let δj0,E be the function on I(S)r defined by

δj0,E(I1, . . . , Ir) =

 1 if
∏

j:j,j0 adj.

Ij ∼ E

0 otherwise.

Write
ZS(s,Ψ) =

∑
E∈E

ZS(s,Ψδj0,E).

Then

ZS(s,Ψδj0,E) =
∑

j=1,...,r
j 6=j0

∑
Ij∈I(S)

∏
j 6=j0

ψj(Ij)∏
j 6=j0

|Ij |sj
L̂S(s, ψχM ).

Write B(s, ψ, E) = LS(s, ψ, χM ) and multiple ZS(s,Ψδj0,E) by this factor.
Then, using Proposition 5.2, we have the functional equation

B(s, ψ,E)ZS(s,Ψδj0,E) = A(s, ψ,E)B(1− s, ψ,E)ZS(σj0s,Ψδj0,E).

Recall that the action of W on s was given in (5.1). Summing over E we
get the functional equation for ZS(s,Ψ).

Theorem 5.4. For each j0 = 1, 2, . . . , r,

ZS(s,Ψ) =
∑
E∈E

A(s, ψ,E)
B(1− s, ψ,E)
B(s, ψ,E)

ZS(σj0s,Ψδj0,E).
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Let ~ZS(s) be the vector consisting of the ZS(s,Ψ) as Ψ ranges over r-
tuples of quadratic idèle class characters unramified outside of S. Writing
an arbitrary element w ∈ W in terms of the simple reflections, we may
express Theorem 5.4 as

(5.10) ~ZS(s) = Φ(s;w)~ZS(ws)

for some matrix Φ(s;w).

Theorem 5.5. The function ZS(s,Ψ) has an analytic continuation to Cr.
The collection of these functions as Ψ ranges over r-tuples of quadratic idèle
class characters unramified outside of S satisfies a group of functional equa-
tions isomorphic to W . This action of W is given by Theorem 5.4 and
(5.10). Finally, ZS(s,Ψ) is analytic outside the hyperplanes (ws)j = 1, for
w ∈W, 1 ≤ j ≤ r. Here (ws)j denotes the jth component of ws.

Proof. The argument is identical to that given in the proof of Theorem 5.9
of [3], and we do not repeat the details here. However, for the convenience of
the reader, we give a sketch. Using the functional equations (5.10), we may
extend the domain of analyticity of ZS(s,Ψ) to translates of Ω by the group
W . The union of the translates forms a tube domain in Cr whose base is
the complement of a compact subset of Rr. We may then apply Bochner’s
theorem [1] to extend ZS(s,Ψ) to an analytic function on all of Cr. �
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