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AsstraAcT. In this paper we use topological tools to investigate the structure of
the algebraic -groupsK,(Z[i]) and K4(Z[ol), wherei := v=1 andp := (1 +
v=3)/2. We exploit the close connection between homology groups gfRjL

for n < 5 and those of related classifying spaces, then compute the former using
Voronoi's reduction theory of positive definite quadratic and Hermitiamfoto
produce a very large finite cell complex on which @R) acts. Our main result

is thatK4(Z[i]) and K4(Z[p]) have nop-torsion forp > 5.

1. INTRODUCTION

1.1. Statement of results. Let R be the ring of integers of a number figkd Only

very few cases are known where the algebk&gigroup K4(R) has been explicitly
computed, the first sucK4(Z) having been determined as recently as 2000 by
Rognes|[[1]7], building on work of Soulé [18]. The goal of this paper ésdkplicit
topological computation of the torsion (away from 2 and 3) in the gréygR) for

R one of two special imaginary quadratic examples:@Gagissian integerg[i] and

the Eisenstein integerg[o], wherei := V-1 andp := (1 + V—=3)/2. Our work is

in the spirit of Lee—Szczarba [12-14], Soulél[19], and Elbaz-VikgBangl-Soulé
[[7,8] who treatedKn(Z) for smallN, and St&eldt [20] who investigate®s(Z[i]).

As in these works, the first step is to compute the cohomology e{Lfor n <

N + 1; information from this computation is then assembled into information about
the K-groups following the program i &1.2. Using these computations we show
the following (Theorenh 4]1):

Theorem 1.1. The orders of the groups 4Z[i]) and Ki(Z[p]) are not divisible
by any primes & 5.

We remark that this result is not new; in fact, Kolster’'s work/[11] implies the
stronger result thak4(Z[i]) andK4(Z[p]) vanish. Indeed, iR is the ring of inte-
gers of aCM field, then Kolster proved that, assuming the Quillen—Lichtenbaum
conjecture, the orders of the grous\(R), n = 1,2,3,..., can be computed in
terms of special values of certainfunctions. This deep connection betwdén
groups and special valuesloffunctions is now a theorem, thanks to the celebrated
work by Voevodsky/[[211] and Rost, as put into context.in [9].

2010Mathematics Subject ClassificatioRrimary 19D50; Secondary 11F75.

Key words and phrasesCohomology of arithmetic groups, Voronoi reduction theory, linear
groups over imaginary quadratic field§;theory of number rings.

MDS was partially supported by the Humboldt Foundation. PG was partiglipasted by the
NSF under contract DMS 1101640. The authors thank the Americéitutesof Mathematics where
this research was initiated.

1



2 M. D. SIKIRIC, H. GANGL, P. E. GUNNELLS, J. HANKE, A. SCHURMANN, AND D. YASK|

Our work, on the other hand, treats(Z[i]) and K4(Z[p]) by completely dif-
ferent methods. We only use the definition of tkegroups and explicit results
about the cohomology of the relevant arithmetic grolps [6], together wildst-Ar
taz’s bounds on the kernel of the Hurewicz homomorphism [1], to prineoiiem
[4.. This also explains why our calculations do not allow us to say anythirigdo
primes 2 and 3: both the results of [6] and the injectivity of the Hurewicz map in
our cases only hold away from these primes.

1.2. Outline of method. In the rest of this introduction we outline the main steps
of our argument. These follow the classical approach for computing raigpek-
groups of number rings due to Quillen [15], which shifts the focus to comgutin
the homology (with nontrivial cacients) of certain arithmetic groups.

(i) (Definition) By definition the algebrai&-groupKy(R) of aringRis a par-

(ii)

(iii)

(iv)

ticular homotopy group of a topological space associateR: tave have
Kn(R) = mns1(BQ(R)), whereBQ(R) is a certain classifying space attached
to the infinite general linear group GR). In particularBQ(R) is the clas-
sifying space of the catego@(R) of finitely generatedr-modules. This is
known as Quillen'Q-constructiorof algebraicK -theory [16].

(Homotopy to Homology) The Hurewicz homomorphiswy.1(BQ(R)) —
Hn:1(BQ(R)) allows one to replace the homotopy group by a homology
group without losing too much information; more precisely, what may get
lost is information about small torsion primes appearing in its finite kernel.
(Stability) By a stability result of Quillen[15, p. 198] one can pass from
Q(R) to the categoryQn+1(R) of finitely generatedR-modules of rank<

N + 1 for suficiently largeN. This amounts to passing from QR)to the
finite-dimensional general linear group Gl (R).

(Sandwiching)The homology groups to be determined are tHe(BQn(R))

for n < N + 1. Rather than compute these directly, one uses the fact that
they can be sandwiched between homology groups qf(®l. where the
homology is taken with (nontrivial) céicients in the Steinberg modus,
associated to G{(R).

(v) (Moronoi homology) The standard method to compute the homology groups

(vi)

Hm(GLA(R), Sty) for a number ringR is via Voronoi complexesThese are

the chain complexes of certain explicit polyhedral reduction domains of a
space of positive definite quadratic or Hermitian forms of a given rank, de
pending respectively on whethBr= Z or R is imaginary quadratic. The
Voronoi complex provides most of the desired information on the homol-
ogy in question: as in (iv), one might again lose information about small
primes—in particular, such information could be hidden in the highéemdi
entials of a spectral sequence involving the stabilizers of cells in the Vibrono
complex. In any case, one can usually find a small upper bound on tise size
of those primes, which means that one ciadively determine the homol-
ogy and ultimately th&-groups modulo small primes.

(Vanishing Results)There are various techniques to show vanishing of ho-
mology groups. As a starting point one has vanishing resultslféBQ1)

as in Theorerh 311 below, and fbig(GL,, St)) as in Lee-Szczarba[14].
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For a givenN, using (ii) and knowing the results of (iv)—(vi) forall@n< N + 1
is often enough to give a bour@ < B on the primesp dividing the order of the
torsion subgrouy tors(R) of Kn(R).

1.3. Outline of paper. In this paper the sections work backwards through the
method outlined in[&1]2 to determine the structur&gfZ[i]) and K4(Z[p]). In &2,

we describe the computation of the Voronoi homology of these two numbes ring
(i.e., step (v) above). In[83 we use the Voronoi homology and some vagish
results to determine the groupts,(BQn(R)) (i.e., step (iv) above). A key role here
is played by Quillen’s stability result (iii) foBQ,, which serves as a stopping
criterion. Finally, in & we work out the potential primes entering the kerhileo
Hurewicz homomorphism (i.e., step (ii) above), which gives Thedrein 1.1.

2. HoMoLOGY OF VORONOI COMPLEXES

We first collect the results from |[6] concerning the Voronoi complexteshed
toI' = GLn(Z[i]) or I' = GLn(Z[p]); this is the necessary information needed
for step (v) from B1.2 above. More details about these computationsdinglu
background about how the computations are performed, can be foljd in

Let F be an imaginary quadratic field with ring of integdRsand letX, :=
GLn(C)/U(n) be the symmetric space of GE ®g R). The spaceX, can be re-
alized as the quotient of the cone of ramlpositive definite Hermitian matrices
C,, modulo homotheties (i.e. non-zero scalar multiplication), and a partial Satake
compactificationX;, of X, is given by adjoining boundary components{pgiven
by the cones of positive semi-definite Hermitian forms withrarational nullspace
(again taken up to homotheties). Wedet; := X; \ X, denote thdoundaryof X;,.
ThenI" := GLy(R) acts by left multiplication on botb, and X, and the quotient
'\ X, is a compact Hausdfirspace.

A generalization—due to Ashl2, Chapter 1] and Koechel [10]—of thkylpe-
dral reduction theory of Voronai[22] yieldslaequivariant explicit decomposition
of X, into (Voronoi) cells. Moreover, there are only finitely many cells modulo
Let I} := Zq4(I)" be a set of representatives of thenequivalentd-dimensional
Voronoi cells that meet the interiof,, and letZy := Z4(I') be the subset of rep-
resentatives of th€-inequivalentorientablecells in this dimension; here we call
a cellorientableif all the elements in its stabilizer group preserve its orientation.
One can form a chain complex \{oithe Voronoi complexand one can prove that
modulo small primes the homology of this complex is the homolbigil", St,),
whereSt, is the rankn Steinberg modulécf. [4, p. 437]). To keep track of these
small primes explicitly, we make the following definition.

Definition 2.1 (Serre class of small prime power group&jven ke N, we letSp«
denote the Serre class of finite abelian groups G whose cardin@libyas all of its
prime divisors p satisfying g k.

For any finitely generated abelian group G, there is a uniqgue maximalrsupg
Gp«k Of G in the Serre clas$p. We say that two finitely generated abelian
groups G and Gare equivalent modulo Sp<k and write G=, ¢ G’ if the quotients
G/Gpek = G’/G;Kk are isomorphic.

Theorem 2.2( [6, Theorem 3.7]) Let b be an upper bound on the torsion primes
for GLn(R). Then Hy(Vor,) =/p<b Hm-n+1(GLn(R), Sty).
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2.1. Voronoi data for R = Z[i]. We now give results for the Voronoi complexes
and their homology in the cases relevant to our paper. This subsectitsttrea
Gaussian integers; i §2.2 we treat the Eisenstein integers.

Theorem 2.3( [20]).

1. There is one d-dimensional Voronoi cell fGiL,(Z[i]) for eachl < d < 3,
and only the 3-dimensional cell is orientable.
2. The number of d-dimensional Voronoi cells @k 3(Z[i]) is given by:

d 2 3456 7 8
I=¢(GL3(Z[))*|2 3 4 5 3 1 1
Zq(GLs(Z[i)) [0 0 1 4 3 0 1

Theorem 2.4 ( [6, Table 12]) The number of d-dimensional Voronoi cells for
GL4(Z[i]) is given by:

d 3 4 5 6 7 8 9 10 11 12 13 14 1
Za(GLa(Z[)"] |4 10 33 98 258 501 704 628 369 130 31 7
ZaGLZ[])] |0 0 5 48 189 435 639 597 346 120 22 2

We remark that for Gg(Z[i]) the Voronoi complexes and their homology ranks
were originally computed by Sti@ldt [20], who even distilled the 3-part for each
homology group. After calculating thefigrentials for this complex one obtains
the following homology groups, in agreement with {Edt’s results:

Theorem 2.5( [20, Theorems 1V, 1.3 and 1.4, p.785])

Z ifm=2
1 Hm(GL2(Z[i]), Sb) = 5
(1) m(GL2(Z[i]). St) /p<3{o otherwise
Z ifm=23,6
2 H Ls(Z[i]), = s
) m(GL3(Z[i]). St) ~/p<3 { 0 otherwise

In particular, from the above theorem we deduce that the only possildi®ror
primes for Hyn(GLy(Z[i]), St,) for n = 2,3 are the primes 2 and 3.

For GL4(Z][i]), the last column ofi[B, Table 12] shows that the elementary divi-
sors of all the dterentials in the Voronoi complex are supported on priraés In
fact a closer examination of this table reveals the following:

Theorem 2.6( [6, Theorem 7.2 and Table 12])
Z? ifm=5,
3) Hm(GL4(Z[]), St) ~/p<s { Z  ifm=4,7,810,13
0 otherwise
Moreover, the only degrees whesdorsion could occur are r& 1,6 or m > 10.

From this we see that there is the potential for 5-torsionH{GL4(Z[i]), St).
While there is 5-torsion iH;o, and possibly further 5-torsion iH,, for m > 6,
we will show that for degreen = 1 (the only relevant degree for tiegroups we
consider) the groupl; contains no 5-torsion (Propositibn R.7).
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In order to analyzél;(GL4(Z[i]), Sty) more closely, we will need to use spectral
sequences. According tol[5, VII.7] there is a spectral sequE&ge:onverging to
the equivariant homology grou;b‘s‘d:rq(X;, 0X5,; Z) of the homology pairX,, 0X,),
and such that

Eiq = 6P Ha(Cr Z0),
0'623

whereZ, is the orientation module of the cet.
Proposition 2.7. The group H(GLa4(Z[i]), Sts) ~/p<3 {0}.

Proof. SinceH1(GL4(Z[i]), St) is a subquotient oD, ., Eé’q, we consider the
individual summandg], ;for0< p < 4:

e Since there are no cells ¥, for d < 2, we haveE&4 = Eig = E%,z =0.

e Consider nowd = 3. There are four cells i3, and for each of them the
index 2 subgroup acting trivially on the orientation module has an abelian-
izationZ/3Z up to 2-groups. Thus in particular we have

E}, = (P Hu(Stab.. Z,) € Spe.

«
(}'623

whereS<3 is as in Definitior{ 2.1, and therefore this term contains no 5-
torsion.

e Finally, ford = 4, there is only one cell (out of ten) iB;, denoted by
o’}v that contains a subgroup of order 5. We must therefore show that
there is no 5-torsion irh-Il(Stab(r}l),Z) (whereZ is the orientation module
Zgi). Indeed, the order-preserving subgrddpof Stab@}l) is isomorphic
to Z/4Z x As, whereAs is the alternating group on five letters, with abelian-
ization Hl(Stabér}l),Z) = H1(Ky,Z) ~ Z/4Z, which lies inSp<3. Thus
there can be no 5-torsion from here, which completes the proof.

m|

2.2. Voronoi homology data for R = Z[p]. Now we turn to the Eisenstein case.

Theorem 2.8( [6, Tables 1 and 11])

1. There is one d-dimensional Voronoi cell 16iL,(Z[p]) for eachl < d < 3,
and only the 3-dimensional cell is orientable.

2. The number of d-dimensional Voronoi cells @k 3(Z[p]) is given by:

d 2 34567 8
aGLsZD) 1|1 2 3 4 3 2 2
ZaGLs@Z[p]) |0 0 1T 2 1 1 2

3. The number of d-dimensional Voronoi cells ®k4(Z[p]) is given by:

d 345 6 7 8 9o 10 11 12 13 14 15
Za(GLaZ[oD))'| |2 5 12 34 82 166 277 324 259 142 48 15 |5
ZaGLa(Z[p])] |0 O O 8 50 129 228 286 237 122 36 10 |5

After calculating the dferentials we find the same results as for the homology
of Z[i] above:
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Theorem 2.9( [6, Theorems 7.1 and 7.2 with Propositions 3.2 and 3.6])

Z ifm=2
4 Hn(GL2(Z[p]), Sb) ~ N
(4) m(GL2(Z[p]), Sb) /p<3{0 otherwise
7Z ifm=236
5 Hm(GL3(Z[p)), St) ~ C
(5) m(GL3(Z[p]), S&) /p<3{o otherwise
72 ifm=5,
(6) Hm(GL4a(Z[p]),Sts) ~/p<s { Z ifMm=4,7,8,10,13

0 otherwise

Proof. Since the ranks of the homology groups in question have been computed
in [6], we only have to consider the torsion in the respective groupsfike n,
any torsion prime of the homology groupt,(GLn(Z[p]), St)) must either divide
the order of the stabilizer of some cell Iij for appropriated, or must divide an
elementary divisor of the fferentials in the corresponding Voronoi complex. We
consider these two possibilities in turn.

First we consider the stabilizers. For ramks 2, 3, all stabilizers of cells L
lie in Sp<s. For rankn = 4, the primep = 5 is the only torsion prime 3 occurring
for stabilizer orders irt, more precisely it occurs fat = 9 (two cells),d = 14
(two cells) andd = 15 (one cell).

Next we consider elementary divisors. In rank= 2, the elementary divi-
sors occurring are all even, and apart fram= 2, whereHz(GL2(Z[p]), Sk) =
Hs(Vor,) = Z moduloS <3, we haveHy(GL2(Z[p]), Sb) = Hm,1(Vor,) = 0 mod-
ulo Sps. Inrankn = 3, the only non-trivial elementary divisor for any of the
differentials involved is 9, arising fronié : Eé,o — E%’O. Moreover, we get
Hm(GL3(Z[p]), S&) = Hm2(Vor.) = Z moduloSp3 for m= 2,3 or 6, and is zero
otherwise. Finally, for rank = 4, the only torsion prime- 3 for the homology
groupsHm:3(Vor,) isd = 5, which divides the elementary divisor 15dif4. This
completes the proof. O

As with Z[i], a more refined analysis of tleL4(Z[p]) case shows thdtl; con-
tains no 5-torsion:

Proposition 2.10.
(7) H1(GL4(Z[p]), Sty) ~/p<s {O}.

Proof. The argument is very similar to that of the proof of Proposifioh 2.7. In rank
4, we have thaH;(GL4(Z[p]), St) is a subquotient of

®) D Eiq = D P Hall-Z0)
d+g=4 d+g=4 oeX;

We consider each of these summands in turn.
If d < 2, then there are no cells of dimensidito worry about. Fod = 3, there
are two cells irk3, with stabilizer inSp<s, and hence

E3. = € Hi(Stabg). Z,) € Spea.

*
0'623
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Finally supposel = 4. ThenEi0 =0 modSp<, as none of the 5 classes in dim 4
is orientable. Thus modulS <z all summands if_{8) vanish, which completes the
proof. O

3. VANISHING AND SANDWICHING

In this section, we carry out the sandwiching argument (step (ivj_ o)) 8ARa
first step we invoke a vanishing result for homology group$i@x due to Quillen
[15, p.212]. In our cases this result boils down to the following statement:
Theorem 3.1. For the rings R= Z[i] andZ[p], we have

H.(BQ) =0 whenever re 3.

For R = Z[i] a slightly stronger result is proved in[20, Lemma 1.1.2]. However,

we will not need this stronger result f@fi], or its analogue foZ[].

Using our homology data froni B2 and Theorem 3.1, we can get for bajb rin
R = Z[i] andR = Z[p] the following result:

Proposition 3.2. Hg(BQ) ~/p<3 Z.

Proof. We will successively determinds(BQj) for j = 1,...,5 and then identify
the last group via stability witlis(BQ). For this, we will combine results froni 82
with Quillen’s long exact sequence forfiidirentr, given by

(9).. — Hp(BQ-1) — Hn(BQ) — Hnr(GLy, St) — Hp-1(BQ-1) — -+ .
The case g 1. By Theoreni 3.1 we havid,(BQ,) = 0 forn > 3.
The case i 2. From the above sequen¢e (9) foe 2, we get
Hs(BQ1) — Hs(BQz) — H3(GLz, Sk) — Ha(BQy),
-0 =0
whenceHs(BQ) = 0 mod Sp<s by (1) and [#).

The case = 3. Now we invoke another result of Staldt's who showed (see
[20, proof of Theorem I.1.1] that

(10) Ha(BQz) = Ha(BQ3) =Z mod Spes.
From [9) forr = 3 we get the exact sequence, working nids,
H5(BQz) — Hs(BQs) — Ha(GLs, Sk) — Ha(BQ:) — Ha(BQs) — Hi(GLs, St) .
N— —— N——— N——— N— ——
=Z (by (2, (@) =Z (by (10)) =Z (by {10)) =0 (by @), [3))

Since the leftmost grous(BQ,) vanishes modul& <3 by the casg = 2, this
sequence implies th&ts(BQs) = Z mod Spcs.

The case j 4. Moreover, sincéHy(GLg, St) = H1(GLs, St) = 0 modSp<s
by Theoreni 2J6 and Propositibn 2.7, the sequelce (9) fod gives in a similar
way that

(11) Hs5(BQg) = H5(BQ3) =Z mod Spes.
The case 5. This is the most complicated of all the cases to handle. Note

that BQ is anH-space which implies thail,.(BQ) ® Q is the enveloping algebra
of 7.(BQ) ® Q. We know thatKo(Z[i]) = Z, K1(Z[i]) = Z/2 andKy(Z[i]) = 0
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[B, Appendix] as well axk3(Z[i]) = Z @ Z/24 (cf. Weibel [23], Theorem 73 in
combination with Example 28), so moduf<z we have that

m1(BQ®Q = Ko(Z[i) ®Q = Q,
thatm(BQ) ® Q = 73(BQ) ® Q = 0, and that

m(BQ ®Q = Ks(Z[i)) ®Q = Q.
HenceHs(BQ) ® Q contains the product of;(BQ) ® Q by 74(BQ) ® Q and so its
dimension is at least 1.

The stability result foreshadowed in step (iii) @ 81.2 (resulting for a Eualide
domainA from Ho(GLn(A), Sty) = O forn > 3, [13, Corollary to Theorem 4.1]),
now implies that one ha$is(BQ) = Hs(BQs) . By the above we get that the rank
of H5(BQs) = Hs(BQ) is at least 1.

Therefore, invoking yet again Quillen’s exact sequente (9), this time £05,
and using the above result thid(BQs) is equal toZ modulo Sp<3, we deduce
from

H5(BQ4) — Hs(BQs) — Ho(GLs, Sk)
S—— S———

=Z by (1) =0
that Hs(BQ) = Hs(BQs) must be equal t@ moduloSp<3 as well. ThusHs(BQ)
cannot contain anp-torsion withp > 3. O

4. ReLatiNG K4(O) anp Hs(BQ(O)) via THE HUREWICZ HOMOMORPHISM

It is well known that for a number ringR the spaceBQ(R) is an infinite loop
space. Hence a theorem due to Arletlaz [1, Theorem 1.5] shows thaeithel k
of the corresponding Hurewicz homomorphista(R) = n5(BQ) — Hs5(BQ) is
certainly annihilated by 144 (cf. Definition 1.3 in loc.cit., where this number is
denotedRs). Thus that kernel lies it p<3 (Definition[2.1).

Therefore this Hurewicz homomorphism is injective modsijs. For R = Z[i]
or Z[p], Proposition 3.2 implies thatis(BQ) contains ngp-torsion forp > 3. After
invoking Quillen’s result thaKon(R) is finitely generated and Borel’s result that the
rank of Kon(R) is zero for any number ring andn > 0, we obtain the following
theorem:

Theorem 4.1. The groups K(Z[i]) and Ka(Z[p]) lie in Sp<s.
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