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Abstract. In this paper we use topological tools to investigate the structure of
the algebraicK-groupsK4(Z[i]) and K4(Z[ρ]), where i :=

√
−1 andρ := (1 +√

−3)/2. We exploit the close connection between homology groups of GLn(R)
for n 6 5 and those of related classifying spaces, then compute the former using
Voronoi’s reduction theory of positive definite quadratic and Hermitian forms to
produce a very large finite cell complex on which GLn(R) acts. Our main result
is thatK4(Z[i]) andK4(Z[ρ]) have nop-torsion forp > 5.

1. Introduction

1.1. Statement of results.Let Rbe the ring of integers of a number fieldF. Only
very few cases are known where the algebraicK-groupK4(R) has been explicitly
computed, the first suchK4(Z) having been determined as recently as 2000 by
Rognes [17], building on work of Soulé [18]. The goal of this paper is the explicit
topological computation of the torsion (away from 2 and 3) in the groupsK4(R) for
Rone of two special imaginary quadratic examples: theGaussian integersZ[i] and
theEisenstein integersZ[ρ], wherei :=

√
−1 andρ := (1+

√
−3)/2. Our work is

in the spirit of Lee–Szczarba [12–14], Soulé [19], and Elbaz-Vincent–Gangl–Soulé
[7,8] who treatedKN(Z) for smallN, and Staffeldt [20] who investigatedK3(Z[i]).
As in these works, the first step is to compute the cohomology of GLn(R) for n 6
N+1; information from this computation is then assembled into information about
the K-groups following the program in §1.2. Using these computations we show
the following (Theorem 4.1):

Theorem 1.1. The orders of the groups K4
(

Z[i]
)

and K4
(

Z[ρ]
)

are not divisible
by any primes p> 5.

We remark that this result is not new; in fact, Kolster’s work [11] implies the
stronger result thatK4

(

Z[i]
)

andK4
(

Z[ρ]
)

vanish. Indeed, ifR is the ring of inte-
gers of aCM field, then Kolster proved that, assuming the Quillen–Lichtenbaum
conjecture, the orders of the groupsK4n(R), n = 1,2,3, . . . , can be computed in
terms of special values of certainL-functions. This deep connection betweenK-
groups and special values ofL-functions is now a theorem, thanks to the celebrated
work by Voevodsky [21] and Rost, as put into context in [9].
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Our work, on the other hand, treatsK4
(

Z[i]
)

andK4
(

Z[ρ]
)

by completely dif-
ferent methods. We only use the definition of theK-groups and explicit results
about the cohomology of the relevant arithmetic groups [6], together with Arlet-
taz’s bounds on the kernel of the Hurewicz homomorphism [1], to prove Theorem
4.1. This also explains why our calculations do not allow us to say anything for the
primes 2 and 3: both the results of [6] and the injectivity of the Hurewicz map in
our cases only hold away from these primes.

1.2. Outline of method. In the rest of this introduction we outline the main steps
of our argument. These follow the classical approach for computing algebraic K-
groups of number rings due to Quillen [15], which shifts the focus to computing
the homology (with nontrivial coefficients) of certain arithmetic groups.

(i) (Definition) By definition the algebraicK-groupKN(R) of a ringR is a par-
ticular homotopy group of a topological space associated toR: we have
KN(R) = πN+1(BQ(R)), whereBQ(R) is a certain classifying space attached
to the infinite general linear group GL(R). In particularBQ(R) is the clas-
sifying space of the categoryQ(R) of finitely generatedR-modules. This is
known as Quillen’sQ-constructionof algebraicK-theory [16].

(ii) (Homotopy to Homology)The Hurewicz homomorphismπN+1(BQ(R))→
HN+1(BQ(R)) allows one to replace the homotopy group by a homology
group without losing too much information; more precisely, what may get
lost is information about small torsion primes appearing in its finite kernel.

(iii) (Stability) By a stability result of Quillen [15, p. 198] one can pass from
Q(R) to the categoryQN+1(R) of finitely generatedR-modules of rank6
N + 1 for sufficiently largeN. This amounts to passing from GL(R) to the
finite-dimensional general linear group GLN+1(R).

(iv) (Sandwiching)The homology groups to be determined are thenH∗(BQn(R))
for n 6 N + 1. Rather than compute these directly, one uses the fact that
they can be sandwiched between homology groups of GLn(R), where the
homology is taken with (nontrivial) coefficients in the Steinberg moduleStn
associated to GLn(R).

(v) (Voronoi homology)The standard method to compute the homology groups
Hm(GLn(R),Stn) for a number ringR is via Voronoi complexes. These are
the chain complexes of certain explicit polyhedral reduction domains of a
space of positive definite quadratic or Hermitian forms of a given rank, de-
pending respectively on whetherR = Z or R is imaginary quadratic. The
Voronoi complex provides most of the desired information on the homol-
ogy in question: as in (iv), one might again lose information about small
primes—in particular, such information could be hidden in the higher differ-
entials of a spectral sequence involving the stabilizers of cells in the Voronoi
complex. In any case, one can usually find a small upper bound on the sizes
of those primes, which means that one can effectively determine the homol-
ogy and ultimately theK-groups modulo small primes.

(vi) (Vanishing Results)There are various techniques to show vanishing of ho-
mology groups. As a starting point one has vanishing results forHn(BQ1)
as in Theorem 3.1 below, and forH0(GLn,Stn) as in Lee–Szczarba [14].
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For a givenN, using (ii) and knowing the results of (iv)–(vi) for all 06 n 6 N + 1
is often enough to give a boundp 6 B on the primesp dividing the order of the
torsion subgroupKN,tors(R) of KN(R).

1.3. Outline of paper. In this paper the sections work backwards through the
method outlined in §1.2 to determine the structure ofK4(Z[i]) andK4(Z[ρ]). In §2,
we describe the computation of the Voronoi homology of these two number rings
(i.e., step (v) above). In §3 we use the Voronoi homology and some vanishing
results to determine the groupsHm(BQn(R)) (i.e., step (iv) above). A key role here
is played by Quillen’s stability result (iii) forBQn, which serves as a stopping
criterion. Finally, in §4 we work out the potential primes entering the kernel of the
Hurewicz homomorphism (i.e., step (ii) above), which gives Theorem 1.1.

2. Homology of Voronoi complexes

We first collect the results from [6] concerning the Voronoi complexes attached
to Γ = GLn(Z[i]) or Γ = GLn(Z[ρ]); this is the necessary information needed
for step (v) from §1.2 above. More details about these computations, including
background about how the computations are performed, can be found in[6].

Let F be an imaginary quadratic field with ring of integersR, and letXn :=
GLn(C)/U(n) be the symmetric space of GLn(F ⊗Q R). The spaceXn can be re-
alized as the quotient of the cone of rankn positive definite Hermitian matrices
Cn modulo homotheties (i.e. non-zero scalar multiplication), and a partial Satake
compactificationX∗n of Xn is given by adjoining boundary components toXn given
by the cones of positive semi-definite Hermitian forms with anF-rational nullspace
(again taken up to homotheties). We let∂X∗n := X∗nrXn denote theboundaryof X∗n.
ThenΓ := GLn(R) acts by left multiplication on bothXn andX∗n, and the quotient
Γ\X∗n is a compact Hausdorff space.

A generalization—due to Ash [2, Chapter II] and Koecher [10]—of the polyhe-
dral reduction theory of Voronoi [22] yields aΓ-equivariant explicit decomposition
of X∗n into (Voronoi) cells. Moreover, there are only finitely many cells moduloΓ.
Let Σ∗d := Σd(Γ)∗ be a set of representatives of theΓ-inequivalentd-dimensional
Voronoi cells that meet the interiorXn, and letΣd := Σd(Γ) be the subset of rep-
resentatives of theΓ-inequivalentorientablecells in this dimension; here we call
a cellorientableif all the elements in its stabilizer group preserve its orientation.
One can form a chain complex Vor∗, theVoronoi complex, and one can prove that
modulo small primes the homology of this complex is the homologyH∗(Γ,Stn),
whereStn is the rankn Steinberg module(cf. [4, p. 437]). To keep track of these
small primes explicitly, we make the following definition.

Definition 2.1 (Serre class of small prime power groups). Given k∈ N, we letSp6k

denote the Serre class of finite abelian groups G whose cardinality|G| has all of its
prime divisors p satisfying p6 k.

For any finitely generated abelian group G, there is a unique maximal subgroup
Gp6k of G in the Serre classSp6k. We say that two finitely generated abelian
groups G and G′ areequivalent modulo Sp6k and write G≃/p6k G′ if the quotients
G/Gp6k � G′/G′p6k are isomorphic.

Theorem 2.2( [6, Theorem 3.7]). Let b be an upper bound on the torsion primes
for GLn(R). Then Hm(Vor∗) ≃/p6b Hm−n+1(GLn(R),Stn).
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2.1. Voronoi data for R = Z[i]. We now give results for the Voronoi complexes
and their homology in the cases relevant to our paper. This subsection treats the
Gaussian integers; in §2.2 we treat the Eisenstein integers.

Theorem 2.3( [20]).

1. There is one d-dimensional Voronoi cell forGL2(Z[i]) for each1 6 d 6 3,
and only the 3-dimensional cell is orientable.

2. The number of d-dimensional Voronoi cells forGL3(Z[i]) is given by:

d 2 3 4 5 6 7 8
|Σd(GL3(Z[i]))∗| 2 3 4 5 3 1 1
|Σd(GL3(Z[i]))| 0 0 1 4 3 0 1

Theorem 2.4 ( [6, Table 12]). The number of d-dimensional Voronoi cells for
GL4(Z[i]) is given by:

d 3 4 5 6 7 8 9 10 11 12 13 14 15
|Σd(GL4(Z[i]))∗| 4 10 33 98 258 501 704 628 369 130 31 7 2
|Σd(GL4(Z[i]))| 0 0 5 48 189 435 639 597 346 120 22 2 2

We remark that for GL3(Z[i]) the Voronoi complexes and their homology ranks
were originally computed by Staffeldt [20], who even distilled the 3-part for each
homology group. After calculating the differentials for this complex one obtains
the following homology groups, in agreement with Staffeldt’s results:

Theorem 2.5( [20, Theorems IV, 1.3 and 1.4, p.785]).

(1) Hm(GL2(Z[i]),St2) ≃/p63






Z if m = 2,

0 otherwise,

(2) Hm(GL3(Z[i]),St3) ≃/p63






Z if m = 2,3,6,

0 otherwise.

In particular, from the above theorem we deduce that the only possible torsion
primes for Hm(GLn(Z[i]),Stn) for n = 2,3 are the primes 2 and 3.

For GL4(Z[i]), the last column of [6, Table 12] shows that the elementary divi-
sors of all the differentials in the Voronoi complex are supported on primes6 5. In
fact a closer examination of this table reveals the following:

Theorem 2.6( [6, Theorem 7.2 and Table 12]).

(3) Hm(GL4(Z[i]),St4) ≃/p65






Z2 if m = 5,

Z if m = 4,7,8,10,13,

0 otherwise.

Moreover, the only degrees where5-torsion could occur are m= 1,6 or m> 10.

From this we see that there is the potential for 5-torsion forHm(GL4(Z[i]),St4).
While there is 5-torsion inH10, and possibly further 5-torsion inHm for m > 6,
we will show that for degreem = 1 (the only relevant degree for theK-groups we
consider) the groupH1 contains no 5-torsion (Proposition 2.7).
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In order to analyzeH1(GL4(Z[i]),St4) more closely, we will need to use spectral
sequences. According to [5, VII.7] there is a spectral sequenceEr

d,q converging to

the equivariant homology groupsHΓd+q(X∗n, ∂X
∗
n;Z) of the homology pair (X∗n, ∂X

∗
n),

and such that
E1

d,q =

⊕

σ∈Σ∗d

Hq(Γσ,Zσ),

whereZσ is the orientation module of the cellσ.

Proposition 2.7. The group H1(GL4(Z[i]),St4) ≃/p63 {0}.

Proof. SinceH1(GL4(Z[i]),St4) is a subquotient of
⊕

d+q=4 E1
d,q, we consider the

individual summandsE1
d,4−d for 0 6 p 6 4:

• Since there are no cells inΣ∗d for d 6 2, we haveE1
0,4 = E1

1,3 = E1
2,2 = 0.

• Consider nowd = 3. There are four cells inΣ∗3, and for each of them the
index 2 subgroup acting trivially on the orientation module has an abelian-
izationZ/3Z up to 2-groups. Thus in particular we have

E1
3,1 =

⊕

σ∈Σ∗3

H1(Stabσ,Zσ) ∈ Sp63,

whereSp63 is as in Definition 2.1, and therefore this term contains no 5-
torsion.
• Finally, for d = 4, there is only one cell (out of ten) inΣ∗4, denoted by
σ1

4, that contains a subgroup of order 5. We must therefore show that
there is no 5-torsion inH1(Stab(σ1

4), Z̃) (whereZ̃ is the orientation module
Zσ1

4
). Indeed, the order-preserving subgroupK1 of Stab(σ1

4) is isomorphic
toZ/4Z×A5, whereA5 is the alternating group on five letters, with abelian-
ization H1(Stab(σ1

4), Z̃) = H1(K1,Z) ≃ Z/4Z, which lies inSp63. Thus
there can be no 5-torsion from here, which completes the proof.

�

2.2. Voronoi homology data for R= Z[ρ]. Now we turn to the Eisenstein case.

Theorem 2.8( [6, Tables 1 and 11]).

1. There is one d-dimensional Voronoi cell forGL2(Z[ρ]) for each1 6 d 6 3,
and only the 3-dimensional cell is orientable.

2. The number of d-dimensional Voronoi cells forGL3(Z[ρ]) is given by:

d 2 3 4 5 6 7 8
|Σd(GL3(Z[ρ]))∗| 1 2 3 4 3 2 2
|Σd(GL3(Z[ρ]))| 0 0 1 2 1 1 2

3. The number of d-dimensional Voronoi cells forGL4(Z[ρ]) is given by:

d 3 4 5 6 7 8 9 10 11 12 13 14 15
|Σd(GL4(Z[ρ]))∗| 2 5 12 34 82 166 277 324 259 142 48 15 5
|Σd(GL4(Z[ρ]))| 0 0 0 8 50 129 228 286 237 122 36 10 5

After calculating the differentials we find the same results as for the homology
of Z[i] above:
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Theorem 2.9( [6, Theorems 7.1 and 7.2 with Propositions 3.2 and 3.6]).

(4) Hm(GL2(Z[ρ]),St2) ≃/p63






Z if m = 2,

0 otherwise,

(5) Hm(GL3(Z[ρ]),St3) ≃/p63






Z if m = 2,3,6,

0 otherwise,

(6) Hm(GL4(Z[ρ]),St4) ≃/p65






Z2 if m = 5,

Z if m = 4,7,8,10,13,

0 otherwise.

Proof. Since the ranks of the homology groups in question have been computed
in [6], we only have to consider the torsion in the respective groups. Forfixed n,
any torsion prime of the homology groupsHm(GLn(Z[ρ]),Stn) must either divide
the order of the stabilizer of some cell inΣ∗d for appropriated, or must divide an
elementary divisor of the differentials in the corresponding Voronoi complex. We
consider these two possibilities in turn.

First we consider the stabilizers. For ranksn = 2,3, all stabilizers of cells inΣ∗d
lie in Sp63. For rankn = 4, the primep = 5 is the only torsion prime> 3 occurring
for stabilizer orders inΣ∗d, more precisely it occurs ford = 9 (two cells),d = 14
(two cells) andd = 15 (one cell).

Next we consider elementary divisors. In rankn = 2, the elementary divi-
sors occurring are all even, and apart fromm = 2, whereH2(GL2(Z[ρ]),St2) =
H3(Vor∗) = Z moduloSp63, we haveHm(GL2(Z[ρ]),St2) = Hm+1(Vor∗) = 0 mod-
ulo Sp63. In rank n = 3, the only non-trivial elementary divisor for any of the
differentials involved is 9, arising fromd1

8 : E1
8,0 −→ E1

7,0. Moreover, we get
Hm(GL3(Z[ρ]),St3) = Hm+2(Vor∗) = Z moduloSp63 for m= 2,3 or 6, and is zero
otherwise. Finally, for rankn = 4, the only torsion prime> 3 for the homology
groupsHm+3(Vor∗) is d = 5, which divides the elementary divisor 15 ofd1

14. This
completes the proof. �

As with Z[i], a more refined analysis of theGL4(Z[ρ]) case shows thatH1 con-
tains no 5-torsion:

Proposition 2.10.

(7) H1(GL4(Z[ρ]),St4) ≃/p63 {0}.

Proof. The argument is very similar to that of the proof of Proposition 2.7. In rank
4, we have thatH1(GL4(Z[ρ]),St4) is a subquotient of

(8)
⊕

d+q=4

E1
d,q =

⊕

d+q=4

⊕

σ∈Σ∗d

Hq(Γσ,Zσ).

We consider each of these summands in turn.
If d 6 2, then there are no cells of dimensiond to worry about. Ford = 3, there

are two cells inΣ∗3, with stabilizer inSp63, and hence

E1
3,1 =

⊕

σ∈Σ∗3

H1(Stab(σ),Zσ) ∈ Sp63.
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Finally supposed = 4. ThenE1
4,0 = 0 modSp62, as none of the 5 classes in dim 4

is orientable. Thus moduloSp63 all summands in (8) vanish, which completes the
proof. �

3. Vanishing and sandwiching

In this section, we carry out the sandwiching argument (step (iv) of §1.2). As a
first step we invoke a vanishing result for homology groups forBQ1 due to Quillen
[15, p.212]. In our cases this result boils down to the following statement:

Theorem 3.1. For the rings R= Z[i] andZ[ρ], we have

Hn(BQ1) = 0 whenever n> 3 .

ForR= Z[i] a slightly stronger result is proved in [20, Lemma I.1.2]. However,
we will not need this stronger result forZ[i], or its analogue forZ[ρ].

Using our homology data from §2 and Theorem 3.1, we can get for both rings
R= Z[i] andR= Z[ρ] the following result:

Proposition 3.2. H5(BQ) ≃/p63 Z.

Proof. We will successively determineH5(BQj) for j = 1, . . . ,5 and then identify
the last group via stability withH5(BQ). For this, we will combine results from §2
with Quillen’s long exact sequence for differentr, given by
(9)
· · · −→ Hn(BQr−1) −→ Hn(BQr ) −→ Hn−r (GLr ,Str ) −→ Hn−1(BQr−1) −→ · · · .

The case j= 1. By Theorem 3.1 we haveHn(BQ1) = 0 for n > 3.

The case j= 2. From the above sequence (9) forr = 2, we get

H5(BQ1)
︸    ︷︷    ︸

=0

−→ H5(BQ2) −→ H3(GL2,St2) −→ H4(BQ1)
︸    ︷︷    ︸

=0

,

whenceH5(BQ2) = 0 modSp63 by (1) and (4).

The case j= 3. Now we invoke another result of Staffeldt’s who showed (see
[20, proof of Theorem I.1.1] that

(10) H4(BQ2) = H4(BQ3) = Z modSp63 .

From (9) forr = 3 we get the exact sequence, working modSp63,

H5(BQ2) −→ H5(BQ3) −→ H2(GL3,St3)
︸          ︷︷          ︸

=Z (by (2), (5))

−→ H4(BQ2)
︸    ︷︷    ︸

=Z (by (10))

−→ H4(BQ3)
︸    ︷︷    ︸

=Z (by (10))

−→ H1(GL3,St3)
︸          ︷︷          ︸

=0 (by (2), (5))

.

Since the leftmost groupH5(BQ2) vanishes moduloSp63 by the casej = 2, this
sequence implies thatH5(BQ3) = Z modSp63.

The case j= 4. Moreover, sinceH2(GL4,St4) = H1(GL4,St4) = 0 modSp63

by Theorem 2.6 and Proposition 2.7, the sequence (9) forr = 4 gives in a similar
way that

(11) H5(BQ4) = H5(BQ3) = Z modSp63 .

The case j= 5. This is the most complicated of all the cases to handle. Note
that BQ is anH-space which implies thatH∗(BQ) ⊗ Q is the enveloping algebra
of π∗(BQ) ⊗ Q. We know thatK0(Z[i]) = Z, K1(Z[i]) = Z/2 andK2(Z[i]) = 0
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[3, Appendix] as well asK3(Z[i]) = Z ⊕ Z/24 (cf. Weibel [23], Theorem 73 in
combination with Example 28), so moduloSp63 we have that

π1(BQ) ⊗ Q = K0(Z[i]) ⊗ Q = Q ,
thatπ2(BQ) ⊗ Q = π3(BQ) ⊗ Q = 0, and that

π4(BQ) ⊗ Q = K3(Z[i]) ⊗ Q = Q .
HenceH5(BQ) ⊗ Q contains the product ofπ1(BQ) ⊗ Q by π4(BQ) ⊗ Q and so its
dimension is at least 1.

The stability result foreshadowed in step (iii) of §1.2 (resulting for a Euclidean
domainΛ from H0(GLn(Λ),Stn) = 0 for n > 3, [13, Corollary to Theorem 4.1]),
now implies that one hasH5(BQ) = H5(BQ5) . By the above we get that the rank
of H5(BQ5) = H5(BQ) is at least 1.

Therefore, invoking yet again Quillen’s exact sequence (9), this time for r = 5,
and using the above result thatH5(BQ4) is equal toZ moduloSp63, we deduce
from

H5(BQ4)
︸    ︷︷    ︸

=Z by (11)

−→ H5(BQ5) −→ H0(GL5,St5)
︸          ︷︷          ︸

=0

that H5(BQ) = H5(BQ5) must be equal toZ moduloSp63 as well. ThusH5(BQ)
cannot contain anyp-torsion withp > 3. �

4. Relating K4(O) and H5(BQ(O)) via the Hurewicz homomorphism

It is well known that for a number ringR the spaceBQ(R) is an infinite loop
space. Hence a theorem due to Arlettaz [1, Theorem 1.5] shows that the kernel
of the corresponding Hurewicz homomorphismK4(R) = π5(BQ) → H5(BQ) is
certainly annihilated by 144 (cf. Definition 1.3 in loc.cit., where this number is
denotedR5). Thus that kernel lies inSp63 (Definition 2.1).

Therefore this Hurewicz homomorphism is injective moduloSp63. For R= Z[i]
orZ[ρ], Proposition 3.2 implies thatH5(BQ) contains nop-torsion forp > 3. After
invoking Quillen’s result thatK2n(R) is finitely generated and Borel’s result that the
rank of K2n(R) is zero for any number ringR andn > 0, we obtain the following
theorem:

Theorem 4.1. The groups K4(Z[i]) and K4(Z[ρ]) lie in Sp63.
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[6] M. Dutour Sikirić, H. Gangl, P. E. Gunnells, J. Hanke, A. Schürmann, and D. Yasaki,On the
cohomology of linear groups over imaginary quadratic fields, J. Pure Appl. Algebra220(2016),
no. 7, 2564–2589.



ON THE TOPOLOGICAL COMPUTATION OFK4 OF THE GAUSSIAN AND EISENSTEIN INTEGERS9

[7] P. Elbaz-Vincent, H. Gangl, and C. Soulé,Quelques calculs de la cohomologie deGLN(Z) et
de la K-théorie deZ, C. R. Math. Acad. Sci. Paris335(2002), no. 4, 321–324.

[8] P. Elbaz-Vincent, H. Gangl, and C. Soulé,Perfect forms, K-theory and the cohomology of
modular groups, Adv. Math.245(2013), 587–624.

[9] C. Haesemeyer and C. A. Weibel,The Norm Residue Theorem in Motivic Cohomology, in
preparation.

[10] M. Koecher,Beiträge zu einer Reduktionstheorie in Positivitätsbereichen I, Math. Ann.141
(1960), 384–432.

[11] M. Kolster,Higher relative class number formulae, Math. Ann.323(2002), no. 4, 667–692.
[12] R. Lee and R. H. Szczarba,The group K3(Z) is cyclic of order forty-eight, Ann. of Math. (2)

104(1976), no. 1, 31–60.
[13] R. Lee and R. H. Szczarba,On the homology and cohomology of congruence subgroups, Invent.

Math.33 (1976), no. 1, 15–53.
[14] R. Lee and R. H. Szczarba,On the torsion in K4(Z) and K5(Z), Duke Math. J.45 (1978), no. 1,

101–129.
[15] D. Quillen,Finite generation of the groups Ki of rings of algebraic integers, AlgebraicK-theory,

I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer,
Berlin, 1973, pp. 179–198. Lecture Notes in Math., Vol. 341.

[16] D. Quillen,Higher algebraic K-theory I, AlgebraicK-theory, I: HigherK-theories (Proc. Conf.,
Battelle Memorial Inst., Seattle, Wash., 1972), Springer, Berlin, 1973,pp. 85–147. Lecture
Notes in Math., Vol. 341.

[17] J. Rognes,K4(Z) is the trivial group, Topology39 (2000), no. 2, 267–281.
[18] C. Soulé,On the3-torsion in K4(Z), Topology39 (2000), no. 2, 259–265.
[19] C. Soulé,The cohomology ofSL3(Z), Topology17 (1978), no. 1, 1–22.
[20] R. E. Staffeldt, Reduction theory and K3 of the Gaussian integers, Duke Math. J.46 (1979),

no. 4, 773–798.
[21] V. Voevodsky,On motivic cohomology withZ/l-coefficients, Ann. of Math. (2)174 (2011),

no. 1, 401–438.
[22] G. Voronoi,Nouvelles applications des paramètres continues à la théorie des formes quadra-

tiques 1: Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew.
Math133(1908), no. 1, 97–178.

[23] C. Weibel,Algebraic K-theory of rings of integers in local and global fields, Handbook of
K-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 139–190.

Mathieu Dutour Sikirić, Rudjer Bosković Institute, Bijenicka 54, 10000 Zagreb, Croatia
E-mail address: mathieu.dutour@gmail.com

Department of Mathematical Sciences, South Road, Durham DH1 3LE, United Kingdom
E-mail address: herbert.gangl@durham.ac.uk

P. E. Gunnells, Department of Mathematics and Statistics, LGRT 1115L, University of Mas-
sachusetts, Amherst, MA 01003, USA

E-mail address: gunnells@math.umass.edu

J. Hanke, Princeton, NJ 08542, USA
E-mail address: jonhanke@gmail.com
URL: http://www.jonhanke.com
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