TORUS ORBITS ON HOMOGENEOUS VARIETIES AND KAC
POLYNOMIALS OF QUIVERS

PAUL E. GUNNELLS, EMMANUEL LETELLIER, AND FERNANDO RODRIGUEZ VILLEGAS

AsstracT. In this paper we prove that the counting polynomials of éertiarus orbits in
products of partial flag varieties coincides with the Kagpolmials of supernova quivers,
which arise in the study of the moduli spaces of certain ir@gmeromorphic connec-
tions on trivial bundles over the projective line. We alsova that these polynomials
can be expressed as a specialization of Tutte polynomialertdin graphs providing a
combinatorial proof of the non-negativity of their dheients and a new way to compute
them.
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1. INTRODUCTION

1.1. Quivers and Kac polynomials. Given a fieldk andk parabolic subgroupBs, ..., Pk

of GL, (), we form the cartesian product of partial flag varietles= (GL,/Py) x --- x
(GL/Px) on which GL acts diagonally by left multiplication. To each parabd#ccor-
responds a unique partitiqi of r (given by the size of the blocks). From theuple
u = (b ..., 15 we define in a natural way (see for instancel [10]) a starathamiver
I" with k legs whose lengths are the lengths of the partitjohs. .,z minus 1. We also
define fromu a dimension vectov of I with coordinater on the central vertex and coor-
dinatesn — ui,n -} — ... on the nodes of theth leg. Denote by, ¢ GL, the one
dimensional subgroup of central matrices. The&te} of GL,-orbits of 7 whose stabilizer
is, moduloZ;, a unipotent group is in bijection with the isomorphism sksof absolutely
indecomposable representations Bf\) over the fieldk. Hence the size o(Fg) coin-
cides with the evaluation atof the Kac polynomialAr(t) of (T, v), see§2.1.2. Now it is
known from Crawley-Boevey and van den Bergh [3] that whendingension vectov is
indivisible i.e. the gcd of the parts of the partitionsi = 1,...,k, is one), the polynomial
Ar(t) coincides (up to a known power gj with the Poincag polynomial of some quiver
varieties)is(v) attached tol{, v). Let us give a concrete description of this quiver variety.
Assume giverk distinct pointsay, . .., ax € C and agenerictuple Cs, ..., Ck) of semisim-
ple adjoint orbits ofyl, (C) such that the multiplicities of the eigenvalues®fis given by
the partitiony'. By Crawley-Boevey[2] we can identify this quiver variety;(v) with the
moduli space of meromorphic connections

k

V:d—ZAi dz

= 24

on the trivial rankr vector bundle over the Riemann sph&fewith residuesA; € C; for
i =1,...,kand with no further pole ab, i.e. Ay +--- + A = 0.

In conclusion, when ngl.g)i,j = 1, the counting oveF, of the GL-orbits of ¥ with
unipotent stabilizer (moduld;) gives the Poinc#&r polynomial of the moduli space of
some regular connections (i.e connections with simplegatepuncturesy, ..., ak) on
the trivial rankr vector bundle oveP*. In general (i.e. without assuming QQqu,j = 1),
it is conjectured (see [11, Conjecture 1.3.2]) that thisntimg coincides with the pure
part of the mixed Hodge polynomial of the moduli spaceChflocal systems oiP! \
{ai, ..., a} with local monodromy in semisimple conjugacy clas€gs. .., Cy of GL,(C)
with (Cq, ..., Cy) genericsemisimple of type:.

1.2. Torus orbits on homogeneous varietiesThere is another geometric counting prob-
lem that also arises in this setup. Jet- GL, be the maximal torus of diagonal matrices.
We can consider the enumeration oWgrof the T-orbits in¥. In general this is a very
subtle problem, even for the simplest case of a single mayarabolic subgroup of GL
where we would be counting torus orbits on Grassmannianis.problem is connected to
matroids, configuration spaces of points in projective spageneralizations of the dilog-
arithm, hypergeometric functions, and moduli spaces ofigénpointed curve$ [5H7,116].
In this paper we show (Theordm 3115) that the counting fond&" () of the T-orbits
of ¥ whose stabilizer is equal @6 coincides withAr, the Kac polynomial of a certain
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quiverT for a certain dimension vectar (see§2.2 for the definitions and a picture bj.
As a consequencé& (qg) is a monic polynomial irg with non-negative integer céicients
whose degree is given by an explicit formula. Moreover, wisknecessary and ficient
condition forET (q) to be non-zero (Theoreim 3]15).

The quiverl” belongs to a class of quivers knownsagernova quiverg§he name is due
to Boalch). The corresponding generic quiver varieliggv) have the following explicit
interpretation. Given a tupl€y, ..., Cx) of semisimple adjoint orbits aff, (C) of typeu as
above, it follows from Boalch |1, Theorem 9.11 & Theorem 9 théit i (v) is isomorphic
to the moduli space of meromorphic connections on the trigiak r vector bundle over
P! with k simple poles a#, . . ., ax with residues irCy, . .., Cx, and with an extra pole of
order 2 whose cd&cient indz/Z? (in a local trivialization) is a semisimple regular matrix.
Hence using the main result &f [3] (on the connection betw&anpolynomialAr(t) and
Poincaé polynomials ofis(v)), Boalch’s result and the results of this paper, we end up
with an interpretation oE' (g) as the Poincér polynomial of the moduli space of certain
irregular meromorphic connections as above on the trigiakr bundle oveiP?,

1.3. Graph polynomials. The second main result of this paper is a refined analysiseof th
codficients of the polynomial#\,(q) = ET(g). More precisely, we expreds' () as a
sum of the specializatior = 1,y = q of the Tutte polynomiabf certain associated graphs
(see Theore 3.13 arfi.3). We deduce that the dieients ofAr,(q) count spanning
trees in these graphs of a given weight, which accounts &r tfonnegativity.

Recall that Kac conjectured that the dogents of Kac polynomials (for any finite
quiver) are non-negativé [14]. This conjecture was provethe case of an indivisible
dimension vector by Crawley-Boevey and van den Bergh [3f utther case proved by
Mozgovoy [17]; it was proved in full generality by Hauselie#ier-Villegas [12]. The
proofs all give a cohomological interpretation of the fméents of the Kac polynomial.
Our proof of the non-negativity for Kac polynomials of thepsumnova quivers is com-
pletely diferent relying, as mentioned, on Tutte’s interpretationhef todficients of his
polynomial in terms of spanning trees. This proof is puregnbinatorial and opens a new
approach in understanding the Kac polynomials.

We show with examples (s€€l) that the interpretation of the cieients of the Kac
polynomial ET(g) = Ar,(q) in terms of spanning trees provides a nefiiceent way for
computing Kac polynomials. We compare this approach witbvkm ones such as the
generating function for Kac polynomials §& (which is derived from Hua's formula) or the
counting of torus orbits on grassmannians via®@e'fand-MacPherson correspondence
(see¥4.g).

In a continuation to this paper we will discuss how, in faleg tvhole Tutte polynomial
of the associated graphs is related to counfirgrbits of F.

2. SUPERNOVA COMPLETE BI-PARTITE QUIVERS

2.1. Generalities on quivers. Let I" be a finite quiver] its set of vertices an its set
of arrows. We assume th&thas no loops. Foy € Q we denote byh(y) (respectively,
t(y)) the head (resp., tail) of. A dimension vectov of " is a tuple ;)i of non-negative
integers indexed bi,.



4 P. E. GUNNELLS, E. LETELLIER, AND F. RODRIGUEZ VILLEGAS

2.1.1. Roots. We now recall some well known properties of roots in quivefsr more
information, we refer the reader 10 |14].

Fori e I, letg € Z' be the tuple with coordinateequal 1 and all other coordinates 0.
Let C = (Gij)i,j be the Cartan matrix df, namely

2 ifi=]
Gj = .
—-ni;  otherwise

wheren;; is the number of edges joining verteto vertexj. The Cartan matrix determines
a symmetric bilinear form ( ) onZ' by

(e, ) = ¢j.
Fori e I, define the fundamental reflectisn Z' — Z' by
s =1-(&)a, 1eZ.

The Weyl groupW = W of T is defined as the subgroup of automorphisths— Z
generated by the fundamental reflecti¢gg i € |}. A vectorv € Z' is called areal root if
v = w(g) for somew € W andi € |. Let M = M. be the set of vectorng € leo — {0} with
connected support such that for iadl 1, we have

(e,u)<0.

Then a vectov € Z' is said to be afmaginary rootif v = w(s) or v = w(-¢) for some
6 € M andw € W. Elements oM are calledundamental imaginary roots\e denote by
® = ®(I') c Z' the set of all roots of (real and imaginary).
A root is said to bepositiveif its coordinates are all non-negative. One can show that
an imaginary root is positive if and only if it is of the form(s) with 6 € M. In particular
the Weyl groupWV preserves the set of positive imaginary roots.
For any vectou € Z' put

1
A(u) := —=(u,u).
(u) = —5(u.u)
We have the following characterization of the imaginarytsdd@=5, Proposition 5.2]:
Lemma 2.1. Assume that € ®. Thenv is imaginary if and only ifA(v) > 0. O

2.1.2. RepresentationslLet« be afield. Arepresentatiorp of I' overk is a finite-dimensional
gradedk-vector space/? := @iel V¥ and a collectiong, ),<q of linear mapsp, : thy) -
V;‘IP()/)' The vectorv = (dimV,)i¢, is called thedimension vectoof ¢. We denote by
Reg-, (k) thek-vector space of representationdodf dimension vectov over«.

Fory € Reg, (k) and¢’ € Reg-,,(k), we have the obvious notions of morphigm-
¢’ and direct suny @ ¢’ € Rep,,, (). We say that a representation Ibfover « is
indecomposablé it is not isomorphic to a direct sum of two non-zero reprasgions of
" overk. An indecomposable representatiod ajverx that remains indecomposable over
any finite field extension of is called anabsolutely indecomposabtepresentation of
overx.
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Recall [14] that there exists a polynomiat,(t) € Z[t] such that for any finite field,
the evaluatiomr(q) counts the number of isomorphism classes of absolutelgcioih-
posable representationslobf dimensiorv overFgy. We callAr(t) theKac polynomialbf
I" with dimension vector/E

Theorem 2.2. The polynomial A (t) satisfies the following properties [14]:
(i) The polynomial A,(t) does not depend on the orientation of the underlying graph
of T.
(i) The polynomial Ay(t) is non zero if and only i¥ € ®(I"). Moreover A,(t) = 1
if and only ifv is a real root.
(iii) If non-zero, the polynomialA(t) is monic of degred(v) + 1.
(iv) Forallw e W, we have Ayy)(t) = Ary(t).

We have also the following theorem (see Hausel-Letellided§as [12]), which was
conjectured by Kac [14]:

Theorem 2.3. The polynomial A,(t) has non-negative integer cfieients.

Forv = (v)ic) @ dimension vector, put
Gy = ]—[ GLy ().
iel
and identify Rep, (k) with @yeg Maty, , v, (). Under this identification the grou@,
acts on Rep, («) by simultaneous conjugation:

g-¢= (th(y)Qoyg\z(ly))yeQ-
Then two representations are isomorphic if and only if they& -conjugate. Put
Z, ={(A-1dy)iet €Gy | 2 €™}

The groupZ, acts trivially on Rep, (). We have the following characterization of absolute
indecomposibility in terms of, andZ,:

Proposition 2.4. [14, §1.8] A representation ilReg., («) is absolutely indecomposable if
and only if the quotient of its stabilizer in/®y Z, is a unipotent group.

2.2. Complete bipartite supernova quivers. We now introduce the main objects of this
paper. For fixed non-negative integerg, sy, ..., S consider the quiveFr with underly-
ing graph as in Figurel1. The subgraph with vertices.(1) (r), (1;0),...,(k; 0) is the
complete bipartite graph of type, ), i.e. there is an edge between any two vertices of
the form () and (j; 0). We orient all edges toward the vertices (1;0), (k; 0), and de-
note byl the set of vertices of and byQ the set of its arrows. We call paths of the
form (j; s), (j; sj — 1), ..., (j; 0) thelong legsof the graph, and the edges of the complete
bipartice subgraph th&hort legs

Forv e Zl andi = 1,...,k, define

)
6i(v) := —(&o), V) = —2Vi0) + Vi) + ZVm
=1

1in the literature this polynomial is sometimes called #polynomial
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1) (1,0 @11 (1;s1)
2
(2;%)
o |
(r-1)
. ‘
() k0) (k1) (K )

Ficure 1. The complete bipartite supernova graph

Lemma 2.5. Letv € Z! ;. Thenv is in My if and only if the following three conditions are
satisfied )

@) foralli =1,...,kwe haves;(v) > 0,

@iforalll =1,...,r,

k
Z Viio) = 2V(),
=1

(i) foralli =1,...,kandall j=0,...,5 -1,

(2.2.1) Viisj) — Viisj+1) 2 Viisj+1) — V(ij+2)
with the convention thatj.1) = 0.

Consider &-tuple of non-zero partitions = (u", ..., 1), whereu' has partgs; > p >
cee > ﬂlS'Fl with ,u'j possibly equal to 0. This tuple defines a dimension vegtes (i)ic €
Z., as follows. Putgy = 1forl = 1,...,r, vio) = [l and vy = il — ) _ il for
j =1,...,s. Thus the long leg attached to the no@®jJ (i.e., the typeAs.1 graph with
nodes{;0), (i;1),...,(i; 5)) is labelled with a strictly decreasing sequence of nusserd
the tips of the short leg are labelled with 1.

Notice that for alli = 1, ..., k, we have

8i(Vy) =1 = || -y =2 6(u),
and thatv, satisfies already the condition Lemfal2.5 (iii). The condit{ii) is always

satisfied unles& = 1 andv(i;0) = 1, in which casev, is a real root. This implies the
following lemma:

Lemma 2.6. Assume k> 1 or v(1.0) > 1. Thenv, € Mr ifand only if foralli = 1,...,k
we have r> |u'| + .

Recall [11, Lemma 3.2.1] that if = (f,),q is an indecomposable representation (over
an algebraically closed field) df of dimension vectow and if vii.0) > O then the linear
mapsf,, wherey runs over the arrows of the long leg attached to the ngd® are all
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injective. Recall also (se§2.1.2) that a dimension vectere Z! , \ {0} is a root ofl" if and
only if there exists an indecomposable representatidn with dimension vector. We
deduce the following fact:

Lemma 2.7. Letv € ZL,. If v e ®(I') and i) > 0then \io) > Viiz) > Vi) = -+ = Vi)
Corollary 2.8. Assume that, is an imaginary root. Theng |u'|foralli = 1,...,k.

Proof. Sincev = v, is a positive imaginary root;’ = s;.0)(v) is also a positive imaginary
root. In particula, = r - ﬂ‘l > 0 and so by Lemm@a 2.7 we must have uil =Vy 2
iy = Viy = W' — py,iear > ). O
Remark2.9. Corollary[Z.8 is false for real roots. For instance assumel, u = (3,1) and
r = 3. Then clearlys.0)(v,) is a real root with coordinate O at the vertex (1;0) and with

coordinate 1 at the edge vertices. Thyss also a real root, but note thak |u|.

3. KAC POLYNOMIAL OF COMPLETE BIPARTITE SUPERNOVA QUIVERS
3.1. Preliminaries.

3.1.1. Row echelon formsRecall thatk denotes an arbitrary field. Denote Bythe sub-
group of Gly(x) of lower triangular matrices. Let > n be an integer. Given a sequence
of non-negative integers= (s1, S, . .., &) such thaty; s = nwe denote by the unique
parabolic subgroup of GlcontainingB and having-s = GLg, x---xGLg, as a Levi factor.
Consider a matriA € Mat, (k) and decompose its set of rows imtdlocks; the first block
consists of the firsty rows of A, the second block consists of the followigg ; rows, and
so on.

Definition 3.1. We say thatAis in row echelon fornwith respect teif the following hold:

(i) The rightmost non-zero entry in each row (callegizot) equals 1.
(i) All entries beneath any pivot vanish.
(iii) If a block contains two pivots with coordinates () and {’, j’), theni < i’ if and
onlyif j < j.

We have the following easy proposition, whose proof we ldavbe reader:

Proposition 3.2. For any matrix Aec Maty, (k) of rank n there exists a uniqueggPs such
that gA is in row echelon form with respectdo

3.1.2. Bruhat decompositionWe identify the symmetric grou$, with permutation ma-

trices in Gl (if w € S;, the corresponding permutation matrax(\);;); ; is defined by

a(w)ij = diwg))- ThenS, acts on the maximal torus =~ («x*)" of diagonal matrices as
W (tg, ..., %) = (tyrqy, - ... twrg)). Consider a paraboliBs of GL, for some sequence
s=(s,...,S) with 3; 5§ = r and denote by, s the subset 08, of permutation matrices
which are in row echelon form with respectgoEquivalently, if we form the partition

(3.1.1) {L....r}={1,..., g} U{g+1,...,8-1}U---U{r=s1+1,...,r}

corresponding to our partition of the rows, then we hav(i) < w™(j) for anyi < jin the
same block. Then we have the following generalized versidheoBruhat decomposition:

GL, = ]_[ PwWB.

WeS; s
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Denote byR the root system of GLwith respect tdl . Recall that it is the sty j | 1 <
i # j <r}of group homomorphisms; j: T — «* given by
a’|,j(tla e ,tr) = t|/t]
We havee; j = fl,_.l for alli # j. The symmetric grou®; acts onRbyw - a: T — «*,
(ta, ..., t) > altw), - - . twr))- In particularw - a; j = awiywj) for alli # j. Let
Ri={ajll<j<i<r}

be the set of positive roots with respectBpand letR™ = R\ R".

Fora € R, denote byJ,, the unique closed one dimensional unipotent subgroup ef GL
such that for alt € T andg € U,, we have(g— 1)t = a(t)- (- 1). Explicitly, if « = a; j,
then the groupJ, consists of matrices of the forin+ xE j, wherex € « andE; ; is the
matrix whose only non-zero entry is 1 in positianjj. We denote byRs c R the set of
rootsa such thal, is contained in the Levi factdts. Forw € S, g, put

Uw i= [T v
{aeR"|W(@)eR \Rs}
One can show thdt,, is a subgroup of GL(see for instance [20, 10.1.4]). We have the
following lemma, whose proof we omit:
Lemma 3.3.

(i) Any element g in the cell§®B can be written uniquely as pwu withepPs and
ue Uy.
(i) Any element of the form wu withauU,, is in its row echelon form.

For anyu € Uy, let u, be its image under the projectidh, — U,. The groupHs :=
Ps x T acts onwU,, via (p,t) - wu = pwutt. For any grougH acting on a seX and any
pointx € X, letCy(X) c H denote the stabilizer of.

Lemma 3.4. For u € U,, we have
Ch,(Wu) =~ Cr(u) = ﬂ Kera.
{aeR W-aeR \Rs, U, #1}
Proof. Let (p,t) € Hs such thatpwut = wu. Then
(pwttw ) w(tut™) = wu.

By Lemmd3.B this identity is equivalent o= wtw* andtut™? = uasT normalizedJ,,.
Buttut™! = u holds if and only if for alle we havetu,t™! = u, which identity is equivalent
tot € Kera whenu, # 1. O

Lemma 3.5. For any we S; s we have

[eeR" |W-aeR\RyJ={eeR" |w-a R}

={aij | j <i, w(j) >w(i)}.



TORUS ORBITS AND KAC POLYNOMIALS 9

Proof. Only the first equality requires proof. & ; € R andw-«¢;j € R, i.e.,j <iand
w(i) < w(j), then by definition ofS; s we cannot havev(i) andw(j) in the same block of
the partition[[3.111), i.e Uw.,, = WUC,LJ.W’:L is not contained irLs. We have thus proved
that the right hand side of the first equality is containechimleft hand side. The reverse
inclusion is easy. O

To simplify notation, we put; j = U, ;, so that

U= [] Ui
j<i,w(i)<w(j)
Definition 3.6. For anyk-tuplew = (wi, ..., W) € (S;)¥, we denote by, theinversion
graphof w. Namely, the vertices df,, are labelled by 12, ..., r and for any two vertices
andj such thatj < i, put an edge fromto j for eachw; in w such thaiw(i) < wi(j). Thus
Kw can have multiple edges. We can think of each edge as havingférpossible colors.
Foru = (u,...,U) € Uy := Uy, x--- x Uy, we denote byK,, the subgraph oKy
that for any pait, j includes the edge colorédetween verticesand j if (uy); j # 1.

Denote byZz, the center of GLand letT act diagonally by conjugation dd,,.

Proposition 3.7. For u € U,, we have G(u) = Z if and only if the graph Ik, is con-
nected.

Proof. This is clear since Ket; ; is the subtorus of elements, (..., t;) such thatt; =
tj. [}

3.2. Computing the Kac polynomials. Now T is as in§2.2. We want to investigate
the polynomialAr,(t). Recall (see Theorem 2.2) that,(t) = 1 if v is a real root and
Ary(t) = 0if vis not a root. MoroeveAr (1) is invariant under the Weyl group action. We
are reduced to study the polynomidls, (t) with v is in the fundamental domaMr. Here
we restrict our study to the case where Mr is of the formv = v, for some partition
p. The important thing for our approach is that the coordinatev, at the vertices j),
j=1,...,r,equal 1.

Fix once for all a multi-partitiop = (i, . . ., 1) as in§2.2, and to alleviate the notation
putn := |u'|. We assume that, is in Mr, and so that > n + 4 foralli = 1,...,k (see
LemmdZ.b).

For a partitionu = (u1,...,us), we denote byP, the parabolic subgroup of Gi as
defined in§3.1.1 and we denote simply I8y, the subse§,,, of the symmetric grouf$,
as defined if3.1.2.

Proposition 3.8. Assumep € Rep.,, (k) is indecomposable. Then

(i) the mapsp,, wherey runs over the arrows on the k long legs, are all injective,
and
(i) foreachi=1,...,k, the images af()- o), With j=1,....r, span\f,,.

Proof. Let us prove (ii). LetW;) be the subspace generated by the images of the maps
e(i)-a:0) With j = 1,....r. If W) © V(i) We define subspacés, U2, - - -, Ugis) by
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Uiy = Spa;ll)ﬁ(i;O)(W(i;O))' Uicp) = ‘pa'lp)a(i‘p—l)(u(im‘l))' Lety’ be the restriction op to

W(.o)ea@v 6@%;@@@ (f:)

f# =1

Let W(’I 0)

by taking the inverse images &f.,,.

be any subspace such thl%‘to) = Wi.0)®W;.0) and define subspaces., c V(f;j)
Then defingy” as the restriction op to

S
(i) ® EB Uliip)-
p=1

Clearlyp = ¢’ ® ¢”". Hence we must hawd/;.o) = V(“i’;o).

We denote by, = X,(«) the subset of representatiops= (¢,),c0 € Reg,VH(K) that
satisfy the conditions (i) and (ii) in Proposition B.8. As§a.1.2 we identify Repvu(K)
with spaces of matrices and so for eachl, ..., k, the coordinate o). - - - » ©(r)—(i:0)
of any ¢ € X, are identified with non-zero vectors it which form the columns of a
matrix in Mat, , of rankn;. For a partitioru = (u1, ..., us) of n, denote byG, the group
GLn X Glinyy X GLny;—y, X - - X GL,,. LetG, be the subgroupl¥ ; G, of G, and denote
by T ther-dimensional torus (G)'. Note thalG,, ~ G, x T.

Denote byX, /G, the set 0fG,-orbits ofX,,. Since the actions db, andT on Rep,,,
commute, we have an action 6fonX, /G,.

]

Fori = 1,...,k, putu := r — nj. Note thaty" := (uf, i, ..., 1) is a partition ofr, i.e.,
pb > . Consider
Si = S X -+ X S € (Sp)K,
whereS, is defined as in the paragraph preceding Propoditidn 3.8.
Proposition 3.9. We have a T -equivariant bijection

(3.2.1) X, /Gy — ]_[ WUy,

WES[,
where T acts owU,, as t- (Wyly, ..., WU) = (Witugt™, ... wictuet ™).

Remark3.10 By Lemma3.B the right hand side 6f{3.2.1) is isomorphi§ o, GL, /Py
on whichT-acts diagonally by left multiplication.

Proof. We first explain how to construct the bijectidn (3]2.1). Faclei = 1,...,k, denote
by 7,: the set of partial flags of-vector spaces

{O)cESc---cEYcEC=«"

such that dinE/ = n — }_, ul. Let G, C Gy be the subgroup Gl;, x -+ x GL,; |
and putG,, = H}‘Zl G,’Ji. Let Mat, , c Mat, ; be the subset of matrices of rank Then we
have a natural Gi, x - - - x GL,, -equivariant bijection

k
(3.2.2) X,/G), = ]—[ (Fou x Mat, ;)
i=1
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that takes a representatipne X, to (Fl,. ©1)-(:0). - - - - )~ (i:0)); hereF, is the partial flag
obtained by taking the images of the compositions oftghevherey runs over the arrows
of thei-th long leg.

Now fix an elemenp € X,,, and denote byH,,, M,) its image in

[ [

via (3.2.2). Since we are only interested in tBg-orbit of ¢, after taking &5,-conjugate
of ¢ if necessary we may assume that the stabilizé?jpi’s the parabolic subgroup, of
GL,. By Lemmd3.2 we may further assume that foriaf 1,...,k, thei-th coordinate
M, of M, is in its row echelon form with respect tRi( b, ..., 4 ), this time taking a
conjugatep - M, with p € P, if necessary. Itis easy to see that there is a unique way to
complete the matriMjo toa matrixl\7IL, € GL, that is in row echelon form with respect to
(ks 15 - - - ,y'sﬂ). (cf. Exampld3.111).

Now the pivots ofM!, form a permutation matrin/, € Sz andM, e w,U,; . We thus
defined a mag, /G, — I_Iikzl(uwesﬁi wU,). The inverse map is obtained by truncating

the Iast,u‘0 rows in each coordinate. The fact that the inverse mapésgjuivariant is easy
to see from the relatiowtut* = (wtw?1) - wu- t2. O

Example3.11 For example, suppose= (1,1) and

* % 1 0
A_(*loo

o O
~—

Then

p- 2!

1l
O = % %
O O B %
oo o
~ O O O
» O o OO

0 00O
is the completion ofA to the corresponding echelon form with respect td.(3).

Proposition 3.12. Letyp € X, and letw € S;, u € Uy, such that the image @ under
@.Z.1) iswu. Then the following assertions are equivalent.

(i) ¢ is absolutely indecomposable,

(i) Ca,, (#) = Zy,,

(iii) the graph K, is connected.

By Propositiori 3.B, the absolutely indecomposable reptasiens of [, v,) overx are
allin X,,.

Proof of Propositiod 3.712 First assume is absolutely indecomposable. TI”@@F (p)/2y,
is unipotent, see Propositibn P.4. Theref@sgu) must reduce t@;. Indeed ift € Cr(u),
then there existg € G, such thatg,t) € Cg,, (¢) and so we must havec Z; for (g, t) to
be unipotent moduld,,. By Propositiori 3.7, the grapgh,, is connected.

Now assume that the graphy,, is connected. By Propositién 2.4 the representagion
is absolutely indecomposable if and only if the grdiy«r(¢)/Z,, is unipotent. Taking a
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conjugate ofp if necessary we may assume that the imdgg ¥,) under [3.Z.R) is such
that the stabilizer of

F,=(E'c---cE'cE) ="

in GLy, is the parabolic subgrouB, and Mjp is in its row echelon form with respect to

Ka1oHso - Hy)- Let (@, 1) € G, x T be such that

(3.2.3) 0.1) - ¢ =¢.

Theng = (g'")i; € G, must satisfyg™® e P, andg®™ = g9l foralli = 1,...,kand
t =1,...,5. Taking the image ofdt) - ¢ = ¢ by (3.2.1) we find that - (wu) = wu.
Thereforet € C+(u).

Since (by assumptiorfy,, is connected, Propositidn 3.7 impli€s(u) = Z.. Thus
B:2.3) reduces to

-1, 40 i _ o\
(at-gl )).M:D_M"p

foralli = 1,...,k, witht = 1.1, € Z for somed € «. By Propositior 32, we find
thatg®® = A1, i.e., @t) € Z,. HenceCg, () = Z,, and thereforep is absolutely
indecomposable. This completes the proof. O

Forw € S; we put

(3.2.4) Ru(@) = ) (a— 1",

KcKy
where the sum is over the connected subgraptg,ohereb; (K) = e(K) —r + 1 is the first
Betti number ana(K) is the number of edges . If the graphK,, is not connected then
we putRy(qg) = 0.
Denote byX)/ c X, the subset of representations correspondinvgug, in the bijection

B2.1).

Theorem 3.13. The polynomial R(q) counts the number of isomorphism classes of abso-
lutely indecomposable representationsii(Fy).

Proof. The T-equivariant bijection[(3.2]1) induces an isomorphismwaein the isomor-
phism classes oK)} with the T-orbits of wU,,. By Propositior 3.12 the isomorphism
classes of absolutely indecomposable representatickiy gorresponds to th€-orbits of

C = {wu € wUy | Ky, is connected. Now for a given subgrapK of K, the number
of elementa € Uy (Fy) such thaK = Ky, equals § — 1)*X). Moroever by Proposition
[3.4, the groupl /Z; acts trivially onC and so the number df-orbits of C overFy equals

Rw(0). O

We can now state the main result of our paper:

Theorem 3.14. We have
Ary, (@) = D" Ru(0.

weSy;
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3.3. Tutte polynomial of graphs. The above polynomialR,(q) are related to classical
graph polynomials. Recall (cf.[[8,18]) that the Tutte paymal Tx(x,y) € Z[x,y] for a
graphK with edge sekE and vertex se¥ can be defined by

Tk(xy) = ) (x = OOy - 1@V,
ACE
wherek(A) is the number of connected components of the subgraph dijb setA. Tutte
proved that for a connected graghwe also have

Tr(xy) = Y XOyED,
T

where the sum is over all spanning trdesf K andi(T), &(T) are respectively theinternal
andexternal activity(for some fixed but arbitrary ordering of the edgegf In particular,
the codficients ofT (X, y) are non-negative integers.
In this paper we will only be concerned with the special@affor K a connected graph)
Re(0) := Tk(L,0) = ) g7,
T

which we will call theexternal activity polynomiabf K. Up to a variable change and
renormalizationRg (q) coincides with the reliability polynomial

(1 pVHOpEVIOT (1,1/p),

which computes the probability that a connected grptemains connected when each
edge is independently deleted with fixed probabifity

A result of Hausel and Sturmfels [13] implies that the Kacypoimial of a quiver with
dimension vector consisting of all 1's equals the externtViy polynomial of the under-
lying graph.

Itis clear that ifK = K, is connected then

Rw(0) = R,

Hence Theorer 3.14 together with Tutte’s result provideltraative proof of the non-
negativity of the cofficients of the Kac polynomiald., (q) (see Theorerin 2.3).

3.4. Counting T-orbits on flag varieties. Let Py, ..., P be parabolic subgroups of GL
containing the lower triangular matrices (this is only faneenience). Recall that de-
notes the maximal torus of Glof diagonal matrices. To each parabdiccorresponds
a unique partition” = (i, 15, . .. ) given by the size of the blocks. Denote Bj(q) the
number oveffy of T-orbits in 1‘[!‘21 GL,/P; whose stabilizers equd}. Fori = 1,...,k, put
ni 1= r—f, and denote by' the partition (&, ii,, .. .) of . From the tuplee = (i, ..., u¥)
andr we consider the associated quiveequipped with dimension vectey, as in§2.2.

In view of RemarK:3.710, we deduce from Proposifion 8.12 thieviong result, which
relates Kac polynomials of complete bipartite supernoveegs to countingr -orbits:

Theorem 3.15. We have
E;(d) = Ary, (0).

In particular, Eg(q) is non zero if and only i, € ®(I'). Moreover E;(q) = 1if and only
if v, is a real root.
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Remark3.16 According to Theorerh 3.15, Theordm 3.14 &3 we can count certain
T-orbits on homogeneous varieties offgiin terms of specializations of Tutte polynomials
of certain graphs. Work of Fink and Speyelri[4], 19] providegangetric interpretation of
the Tutte polynomial of realizable matroids and Thequivariant-theory of torus orbits.

It would be interesting to understand the relationship leetwour work and theirs.

4. EXAMPLES

4.1. Notation. In this section we present examples to illustrate Theofei® &nd 3.15.
We first consider the special case whethe number of long legs of the supernova, equals
1. We call such quiverdandelion quivergcf. Figure[2). In these examples the tuple of
permutationsv consists of a single elemewt so we lighten notation and writg,, for K,

etc. We represent permutations S; by giving the sequence of their values, using square
brackets to avoid conflict with cycle notation. Thus234, 1] € S4 means the permutation
taking 1+ 3,2 > 2,3 — 4,4 — 1. When possible we omit brackets and commas and
write e.g. 3241 for [32, 4, 1].

® (-2)
@ o (r-1)

@

(1;0)

(1)

(Lis1-1)
(1,51)

Ficure 2. The dandelion quiver

4.2. Projective space.Consider the dandelion quiver with no long leg, and with cant
node labelled witn. In this example we consider the two casesnandr = n+ 1. ltis
not hard to see that the corresponding root is real. Indggady a reflection at the central
node. Ifr = n we get all leaf nodes labelled with 1 and with the central niadhelled
with 0. If r = n+ 1, the central node is labelled with 1. We can further appliections
along the leaves to make every leaf have label 0. Thus in teeses the root is real and
we should havé\ = 1.

If r = n, then the homogeneous variety is thatngblanes ink", i.e. is a single point.
There is one inversion graph, which is itself a point, andorem[3.14 implies that the
Kac polynomial equals 1.

On the other hand, if = n+ 1, then our homogeneous variety is thahgflanes inc™?*,
i.e. is a projective space. This time the only connectedréiwa graph corresponds to the
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permutationw = [n+ 1,1,2,...,n], which indexes the open Schubert cell. The gr&ph
is a tree, and again the Kac polynomial equals 1.

4.3. A grassmannian. Now we consider a more complicated example.ILbée the quiver
in Figure[3, with the indicated dimension vectgr One can check using LemrpaR.5 that
this vector gives an imaginary root. The homogeneous yee&r(2, 5), the grassmannian
of 2-planes ink®. This variety is 6-dimensional and can be paved by 10 Schuwleds
Uy = PswB, wherew ranges over the minimal length elements in the 10 cose$s &fS3
in Ss. Hence there are 10 grapKg, of order 5 that we need fdk,, (g). Of these graphs,
only 4 are connected. In fact, the number of edge&pfequals the dimension of the
Schubert cell,,, and since we must have at least four edges for a graph of bridebe
connected, only the cells of dimensiong! need to be considered. These are labelled by
the permutations 31452, 34125, 34152, and 34512.

Figured 1155 show these four graphs. We consider each in turn

e The graphKzsai25is not connected, SB34125= 0.

e The graphKsi452is a connected tree, which impli€gy45, = 1.

e The graphKs41s; is a 4-cycle with an extra edge. There are 4 spanning trees
contributing 1 each, and the full graph contributes 1. ThusRz415, = g + 3.

e The last graptKass12is a complete bipartite graph of type, @. There are 12
spanning trees; each contributes 1Rfs;,. Deleting any single edge yields a
graph isomorphic tdK3415, each of which contributeg — 1. Finally, the full
graph itself has betti number 2 and thus contributgs 1)>. Altogether we find
Rassi2= 7 +4q+ 7.

Thus
(4.3.1) Ary,(0) = Ra1452+ Raa1s2+ Rass12= o +5q+ 11
1
1 1
1 1
2
FiGure 3.

4.4. A two-step flag variety. Now consider the dandelion quiver in Figure 6, with the
indicated dimension vector. This is of course the same el@ampjust treated, except that
now we regard one of the short legs as being the long leg. Tinesmonding homogeneous
variety is no longer a a grassmannian; instead we have thialdtrg variety of two-step
flagsE® c E? in «*. This time the inversion graphs have 4 vertices, so we netzhst

3 edges in anK,, for it be connected, and there are 6 permutations with at tbase
inversions. The graphs are show in Figures]7-9. We leavethidaeader to check the
following:
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2 2
3 3
1 1
4 4 °
5 5
(a) w = 31452 (b) w = 34125
FiGure 4.
2 2
3 3
1 1
4 4
5 5
(a) w = 34152 (b) w= 34512
FiGure 5.
e Raep=1
® R3214=0
e Ryyo=0+3
e Rozp=1
® Rapg1=0+2
e Ruzi=q° +3q+4
Thus
(4.4.1) Ary,(9) = ¢ +5q + 11,
which agrees witH{4.311).
1 1
1 1
2
1

FiGure 6.
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2 2

3 1 3Al

e

(@) w= 3142 (b) w= 3214

FiGure 7.

(a) w= 3412 (b) w= 2341

FiGure 8.

4 4

(a) w= 3241 (b) w = 3421
Ficure 9.

4.5. A product of projective planes. Now we consider a more general supernova quiver.
We taker = 3 and 601,n2) = (1,1). Thus the quiver is the complete bipartite graph of
type (32), and the dimension vector assigns 1 to each vertex. Insteffii-orbits, we
are counting the orbits of dimension 2 on a product of two guitdye planes with a 2-
dimensional torus acting diagonally.

The inversion graphs are labelled by pairs of permutationswy) € (Ss)?. There are
five connected inversion graphs; they are characterizedhbipndy at least ongy; equal to
312, the longest permutation for this Bruhat decompositida show the graphs in Figures
1012 (edges curving in correspond to the first permutatiad, those curving out to the
second). We find
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e Ri23310=R312123=1
® Ri32310= R312130 =0+ 2
e Raozio=q% +29+1

Altogether we obtain
(4.5.1) Ary, = OF +4q+7.

We remark thati(4.5]1) is in fact the external activity palymial of the underlying graph
of the quiver thanks to the result of Hausel and Sturmfels §83). Indeed, the Tutte
polynomial of the complete bipartite graph of typeZBis

X+ 28 + 3 + X+ Y2 + 4.

We can also recovef (4.5.1) by counting 2-dimensional torbts in ¥ = P? x P?,
following Theoreni 3.15. Let: ¥ — P? be the projection onto the first factor. The action
of the torusT commutes withr.

e Choose a poinpyg in the image ofr with trivial stabilizer. Any point in the inverse
image ofpy determines a unique 2-dimensional orbit, and thus thiswadsdor
¢? + q + 1 orbits.

e Now choose a poinpg in the image ofr with 1-dimensional stabilizer. We claim
the inverse image gbp determinesy + 1 orbits. Indeed, after we have fixexd,
have one dimension df left. This can move points along the linesTrfixed
point not contained in the closure of the orbitmf There areq + 1 such lines,
and hencey + 1 orbits. Since there are 3 choices foy (corresponding to the
three 1-dimensiondl orbits inP? we obtain 8 + 3 orbits altogether.

¢ Finally we can choose a poipt fixed by T. There is one 2-dimension@torbit
in the inverse image gby. Since there are 3 choices p§ we get 3 orbits this
way.

Hence altogether we fing? + 4q + 7 torus orbits of dimension 2, which coincides with

@51).

(a) (123312) (b) (312123)

Ficure 10.

4.6. Counting T-orbits. We conclude by illustrating Theordm 3115 for the grassnemni
Gr(2,5) from sectio 413. The main tool we use is tAeffand—MacPherson correspon-
dence which we state in Theoreim 4.1. We refer[to[[6=1, 16, ] for nueils.
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2 2
1 1
3
(a) (132312) (b) (312132)
Ficure 11.
2
1
3

Ficure 12. (312312)

Let E c C' be a subspace of dimensién Assume thate does not lie in any of
the coordinate hyperplané$ = {z = 0} c C'. The intersection& N H; determine a
collection ofr hyperplanes ifE and thus a point inR<1)', i.e. a projective configuration.
(Here we think ofP*1 as beingP(E*)). If E’ is aT-translate ofE, then the configuration
corresponding t&’ is equivalent tcE an element of PGLacting diagonally onR<1)".

Hence we can study-orbits onG(k, r) in terms of certain configurations ofoints in
P, The precise statement of this fact is the ‘@eid—MacPherson correspondence. We
will only need to understand what happens when th&tebits have maximal dimension
r—1.

Theorem 4.1. Let G,(k,r) c G(k, r) be the subset of all L such that-T. has dimension
r — 1. Let(P“1) be the subset of configurations=p(p, ..., pr) such thatPGLy - p has
dimension k- 1. Then the assigment & p, where p = E n H;, defines a bijection of
orbit spaces

®: Go(k 1)/T — (P /PGL.
Remark4.2 The bijectiond can be extended to all &(k, r) [5, Proposition 1.5].

In general it is very diicult to determine the configurations in the imag&gobut there
is one case that is easy: the grassmanni@@sr). Whenk = 2 the configurations are
sets of points in the projective line, and the only degemanatthat can occur are multiple
points. To make this precise, let us say that a collectionistfratt pointsps, ..., pm IS
r-labelled if it is equipped with a surjective map,...,r} — {ps,..., pm}. We have the
following characterization of th&-orbits (cf. [16, Section 1.3]).
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Proposition 4.3. Torus orbits in G2,r) of maximal dimension are in bijection with r-
labelled sets of m points iA' up toPGL,-equivalence, wher@ < m<r.

Now we consider configurations oveg. Let Cr(q) be the number of configurations of
m distinct points up to equivalence. Fix three pointHfF,) and call them 0, 1, aneb.
Givenm unlabelled points ifP%, we can use PGLto carry three of them t0,Q, co. This
uses up all the automorphisms, which gives the following:

(a-2)@-3)q-(m-2)) ifm>3,
1 if m= 3.

To complete the count we need to incorporate the labelliAgs:.-labelling is determined
by a sujective mapl,...,r} — {p1,...,Pm}, in Other words an equivalence relation on
{1,...,r} with mclasses. These are counted3yy, m), the Stirling number of the second
kind. Letting E[ (q) denote the number df-orbits, we have

Cm(g) = {

E7 (@) = )_ S(r,mC(0).
m=3

For instance, when= 5, we have
EI(@=1-(q-2)(@-3)+10-(q-2)+25=q +5q + 11,

in agreement witH (4.3]1).

Comparing Figures 3 ahd 6, one sees that By¢ine number ofi(—1)-dimensional torus
orbits inGr(2, r) equals the number of ¢ 2)-dimensional torus orbits in the flag variety
of {point c line} in P2 (the tori have dferent dimensions, of course). This suggests that
there should be a bijection between the sets of torus orbitshese two homogeneous
varieties. This is true, and we leave the reader the pleaddireding it.

5. GENERATING FUNCTIONS

We will use the serie$ [10, (1.4)] to obtain a generating fiamcfor the Kac polynomials
of the supernova quivers §2.2. The series [10, (1.4)] in the case where the quiver is the
complete k, r) bipartite graph withk + r vertices is the following

Zi,’(’liwﬂj> . H~ i X; ) H~ R ;
(01 HX.Yiq):=(@- Dlog| Y] T eI H b))
b [Ti ooy (g [1; g% +"b,i(g™1)

wherei=1,....k j=1,....r
m(4)

ba@ =[] J@-d),

i>1 j=1
with my(1) the multiplicity ofi in 2andX = (X1,...,X%); Y = (Y1,...,Yk)-

Since we are interested in a dimension vector wherer thertices have value 1 we
can restrict they variables toy; = (u;,0,...) for some independent variables, ..., u.
Furthermore, we only need to work modulo the ideat (U2, ..., u?).

We haveH,(u,0,...) = u?. It follows that the right hand side df {5.0.1) becomes

o g5 Wey(u) TT; Hau(xi; 0)
-1)L = dl,
(koo Z; @17 [ q Dby (@) |
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wherees(u) = eq(uy, .. ., Ur) is the elementary symmetric function in thés. Interchanging
summations this equals

(@- 1)Log(2ﬂcs() S(l))s] dl,

s=0 i
where .
o COH(x; 0) _
cs(X) := 4 W X = (X1, X2, ...).
Note that ( )
S +---9)!
e (U)---eq(u) = Wesl+...+a(u) mod| .

Therefore we may replaag(u) by a single termJs/s! and letr be arbitrary. Except for
the constant term i) the values of Log and log agree since we are working mod¢lulo
Hence we get

(- 1)|_og[r[ Co(Xi )] +(q-1) IOg(Z H :gu; (U/(qs!— 1))

Define theRogers-Szego symmetric functiass
Rs(x) := Z [/11, /152’ N } m,(x), X = (Xg, X2,. . .),
ll=s
wherem, is the monomial symmetric function and
s . EL
[al,az,m T
is theg-multinomial andg-factorial respectively.

[:=(1-0)-- (-0

Proposition 5.1. The following identity holds

Cs(x; Q)
Co(X; 0))
Let As(Xa, . . -, Xk; ) be defined by the generating function

(5.0.2) Zﬂs(xl,...,xk;q)";—|=(q—1)logZRs(xl) R
s>1 s

= Rs(1, xq, X2, .. .), X = (Xg, X2,.. ).

(u/ (q D

Proof. It follows from the main formula proved in[9]. O

A priori As(X1, . .., Xk ) are symmetric functions with céiecients inQ(q). In fact, the
codficients are irz[q] as we now see. Combining the above discussion with [10fPro
(2.3) (i)] we finally obtain the following.

Theorem 5.2. With the notation of3.2 the Kac polynomial A, of the complete bipartite
supernova quiver is given by

(5.0.3) Ary,(a) = (A, hz),

where h denotes the complete symmetric functign;=a hy - - - hy with i = @, ... 1
and /i is the partition of r defined b{r — |u'|, i}, 1), .. .).
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The right hand side of (5.0.3) gives the @oeent of m; when writing A, in terms of
the monomial symmetric functions. For example, et 1 we obtain the following

A = my

A = MMy

Az = (q+4)mgz + myp

As = (q®+60° + 209+ 33)mys + (g% + 59 + 11)my2p + ( + 4)Mpe + My3

In particular we see the polynomig# + 5q + 11 corresponding to the example discussed
in §4.4. The cofficient of my» on the other hand corresponds to a dandelion quiver with
four short legs and a long leg with dimension vectar2(3) along its vertices correspond-
ing to the full flag variety GL/B. Here is the list of permutations of block structure
(1,1, 1, 1) with connected inversion graphs and their corresponBipglynomials.

w Rw
4321| g®+ 3> + 60+ 6
4312 ¢ +3q+4
4231 @ +3q+4
4213 q+2
4132 q+2
4123 1
3421 P +3q+4
3412 q+3
3241 q+2
3142 1
2431 q+2
2413 1
2341 1

We verify that indeed the sum of these polynomialg®is- 692 + 20q + 33.
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