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Abstract. In this paper we prove that the counting polynomials of certain torus orbits in
products of partial flag varieties coincides with the Kac polynomials of supernova quivers,
which arise in the study of the moduli spaces of certain irregular meromorphic connec-
tions on trivial bundles over the projective line. We also prove that these polynomials
can be expressed as a specialization of Tutte polynomials of certain graphs providing a
combinatorial proof of the non-negativity of their coefficients and a new way to compute
them.
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1. Introduction

1.1. Quivers and Kac polynomials. Given a fieldκ andk parabolic subgroupsP1, . . . ,Pk

of GLr (κ), we form the cartesian product of partial flag varietiesF := (GLr/P1) × · · · ×
(GLr/Pk) on which GLr acts diagonally by left multiplication. To each parabolicPi cor-
responds a unique partitionµi of r (given by the size of the blocks). From thek-tuple
µ = (µ1, . . . , µk) we define in a natural way (see for instance [10]) a star-shaped quiver
Γ with k legs whose lengths are the lengths of the partitionsµ1, . . . , µk minus 1. We also
define fromµ a dimension vectorv of Γ with coordinater on the central vertex and coor-
dinatesn − µi

1,n − µ
i
1 − µ

i
2, . . . on the nodes of thei-th leg. Denote byZr ⊂ GLr the one

dimensional subgroup of central matrices. The setE(κ) of GLr -orbits ofF whose stabilizer
is, moduloZr , a unipotent group is in bijection with the isomorphism classes of absolutely
indecomposable representations of (Γ, v) over the fieldκ. Hence the size ofE(Fq) coin-
cides with the evaluation atq of the Kac polynomialAΓ,v(t) of (Γ, v), see§2.1.2. Now it is
known from Crawley-Boevey and van den Bergh [3] that when thedimension vectorv is
indivisible(i.e. the gcd of the parts of the partitionsµi , i = 1, . . . , k, is one), the polynomial
AΓ,v(t) coincides (up to a known power ofq) with the Poincaŕe polynomial of some quiver
varietiesMξ(v) attached to (Γ, v). Let us give a concrete description of this quiver variety.
Assume givenk distinct pointsa1, . . . ,ak ∈ C and agenerictuple (C1, . . . ,Ck) of semisim-
ple adjoint orbits ofglr (C) such that the multiplicities of the eigenvalues ofCi is given by
the partitionµi . By Crawley-Boevey [2] we can identify this quiver varietyMξ(v) with the
moduli space of meromorphic connections

∇ = d −
k

∑

i=1

Ai
dz

z− ai

on the trivial rankr vector bundle over the Riemann sphereP1 with residuesAi ∈ Ci for
i = 1, . . . , k and with no further pole at∞, i.e. A1 + · · · + Ak = 0.

In conclusion, when gcd (µi
j)i, j = 1, the counting overFq of the GLr -orbits ofF with

unipotent stabilizer (moduloZr ) gives the Poincaré polynomial of the moduli space of
some regular connections (i.e connections with simple poles at puncturesa1, . . . ,ak) on
the trivial rankr vector bundle overP1. In general (i.e. without assuming gcd (µi

j)i, j = 1),
it is conjectured (see [11, Conjecture 1.3.2]) that this counting coincides with the pure
part of the mixed Hodge polynomial of the moduli space ofCr -local systems onP1 r

{a1, . . . ,ak} with local monodromy in semisimple conjugacy classesC1, . . . ,Ck of GLr (C)
with (C1, . . . ,Ck) genericsemisimple of typeµ.

1.2. Torus orbits on homogeneous varieties.There is another geometric counting prob-
lem that also arises in this setup. LetT ⊂ GLr be the maximal torus of diagonal matrices.
We can consider the enumeration overFq of the T-orbits inF . In general this is a very
subtle problem, even for the simplest case of a single maximal parabolic subgroup of GLr
where we would be counting torus orbits on Grassmannians. This problem is connected to
matroids, configuration spaces of points in projective spaces, generalizations of the dilog-
arithm, hypergeometric functions, and moduli spaces of genus 0 pointed curves [5–7,16].

In this paper we show (Theorem 3.15) that the counting function ET(q) of theT-orbits
of F whose stabilizer is equal toZr coincides withAΓ,v, the Kac polynomial of a certain
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quiverΓ for a certain dimension vectorv (see§2.2 for the definitions and a picture ofΓ).
As a consequence,ET(q) is a monic polynomial inq with non-negative integer coefficients
whose degree is given by an explicit formula. Moreover, we obtain necessary and sufficient
condition forET(q) to be non-zero (Theorem 3.15).

The quiverΓ belongs to a class of quivers known assupernova quivers(the name is due
to Boalch). The corresponding generic quiver varietiesMξ(v) have the following explicit
interpretation. Given a tuple (C1, . . . ,Ck) of semisimple adjoint orbits ofglr (C) of typeµ as
above, it follows from Boalch [1, Theorem 9.11 & Theorem 9.16] thatMξ(v) is isomorphic
to the moduli space of meromorphic connections on the trivial rank r vector bundle over
P1 with k simple poles ata1, . . . ,ak with residues inC1, . . . ,Ck, and with an extra pole of
order 2 whose coefficient indz/z2 (in a local trivialization) is a semisimple regular matrix.
Hence using the main result of [3] (on the connection betweenKac polynomialAΓ,v(t) and
Poincaŕe polynomials ofMξ(v)), Boalch’s result and the results of this paper, we end up
with an interpretation ofET(q) as the Poincaré polynomial of the moduli space of certain
irregular meromorphic connections as above on the trivial rankr bundle overP1.

1.3. Graph polynomials. The second main result of this paper is a refined analysis of the
coefficients of the polynomialsAΓ,v(q) = ET(q). More precisely, we expressET(q) as a
sum of the specializationx = 1, y = q of theTutte polynomialof certain associated graphs
(see Theorem 3.13 and§3.3). We deduce that the coefficients ofAΓ,v(q) count spanning
trees in these graphs of a given weight, which accounts for their nonnegativity.

Recall that Kac conjectured that the coefficients of Kac polynomials (for any finite
quiver) are non-negative [14]. This conjecture was proved in the case of an indivisible
dimension vector by Crawley-Boevey and van den Bergh [3] with further case proved by
Mozgovoy [17]; it was proved in full generality by Hausel-Letellier-Villegas [12]. The
proofs all give a cohomological interpretation of the coefficients of the Kac polynomial.
Our proof of the non-negativity for Kac polynomials of the supernova quivers is com-
pletely different relying, as mentioned, on Tutte’s interpretation of the coefficients of his
polynomial in terms of spanning trees. This proof is purely combinatorial and opens a new
approach in understanding the Kac polynomials.

We show with examples (see§4) that the interpretation of the coefficients of the Kac
polynomialET(q) = AΓ,v(q) in terms of spanning trees provides a new efficient way for
computing Kac polynomials. We compare this approach with known ones such as the
generating function for Kac polynomials in§5 (which is derived from Hua’s formula) or the
counting of torus orbits on grassmannians via theGel’fand-MacPherson correspondence
(see§4.6).

In a continuation to this paper we will discuss how, in fact, the whole Tutte polynomial
of the associated graphs is related to countingT-orbits ofF .

2. Supernova complete bi-partite quivers

2.1. Generalities on quivers. Let Γ be a finite quiver,I its set of vertices andΩ its set
of arrows. We assume thatΓ has no loops. Forγ ∈ Ω we denote byh(γ) (respectively,
t(γ)) the head (resp., tail) ofγ. A dimension vectorv of Γ is a tuple (vi)i∈I of non-negative
integers indexed byI .
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2.1.1. Roots.We now recall some well known properties of roots in quivers.For more
information, we refer the reader to [14].

For i ∈ I , let ei ∈ Z
I be the tuple with coordinatei equal 1 and all other coordinates 0.

Let C = (ci j )i, j be the Cartan matrix ofΓ, namely

ci j =















2 if i = j

−ni j otherwise,

whereni j is the number of edges joining vertexi to vertex j. The Cartan matrix determines
a symmetric bilinear form (, ) onZI by

(ei ,ej) = ci j .

For i ∈ I , define the fundamental reflectionsi : ZI → ZI by

si(λ) = λ − (λ,ei) ei , λ ∈ Z
I .

The Weyl groupW = WΓ of Γ is defined as the subgroup of automorphismsZI → ZI

generated by the fundamental reflections{si | i ∈ I }. A vectorv ∈ ZI is called areal root if
v = w(ei) for somew ∈ W andi ∈ I . Let M = MΓ be the set of vectorsu ∈ ZI

≥0 − {0} with
connected support such that for alli ∈ I , we have

(ei ,u) ≤ 0.

Then a vectorv ∈ ZI is said to be animaginary rootif v = w(δ) or v = w(−δ) for some
δ ∈ M andw ∈ W. Elements ofM are calledfundamental imaginary roots. We denote by
Φ = Φ(Γ) ⊂ ZI the set of all roots ofΓ (real and imaginary).

A root is said to bepositiveif its coordinates are all non-negative. One can show that
an imaginary root is positive if and only if it is of the formw(δ) with δ ∈ M. In particular
the Weyl groupW preserves the set of positive imaginary roots.

For any vectoru ∈ ZI put

∆(u) := −
1
2

(u,u).

We have the following characterization of the imaginary roots [15, Proposition 5.2]:

Lemma 2.1. Assume thatv ∈ Φ. Thenv is imaginary if and only if∆(v) ≥ 0. �

2.1.2. Representations.Let κ be a field. Arepresentationϕ of Γ overκ is a finite-dimensional
gradedκ-vector spaceVϕ :=

⊕

i∈I Vϕi and a collection (ϕγ)γ∈Ω of linear mapsϕγ : Vϕt(γ) →

Vϕh(γ). The vectorv = (dimVi)i∈I is called thedimension vectorof ϕ. We denote by
Rep

Γ,v(κ) theκ-vector space of representations ofΓ of dimension vectorv overκ.
Forϕ ∈ Rep

Γ,v(κ) andϕ′ ∈ Rep
Γ,v′(κ), we have the obvious notions of morphismϕ →

ϕ
′ and direct sumϕ ⊕ ϕ′ ∈ Rep

Γ,v+v′ (κ). We say that a representation ofΓ over κ is
indecomposableif it is not isomorphic to a direct sum of two non-zero representations of
Γ overκ. An indecomposable representation ofΓ overκ that remains indecomposable over
any finite field extension ofκ is called anabsolutely indecomposablerepresentation ofΓ
overκ.
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Recall [14] that there exists a polynomialAΓ,v(t) ∈ Z[t] such that for any finite fieldFq,
the evaluationAΓ,v(q) counts the number of isomorphism classes of absolutely indecom-
posable representations ofΓ of dimensionv overFq. We callAΓ,v(t) theKac polynomialof
Γ with dimension vectorv.1

Theorem 2.2. The polynomial AΓ,v(t) satisfies the following properties [14]:

(i) The polynomial AΓ,v(t) does not depend on the orientation of the underlying graph
of Γ.

(ii) The polynomial AΓ,v(t) is non zero if and only ifv ∈ Φ(Γ). Moreover AΓ,v(t) = 1
if and only ifv is a real root.

(iii) If non-zero, the polynomial AΓ,v(t) is monic of degree∆(v) + 1.
(iv) For all w ∈W, we have AΓ,w(v)(t) = AΓ,v(t).

We have also the following theorem (see Hausel-Letellier-Villegas [12]), which was
conjectured by Kac [14]:

Theorem 2.3. The polynomial AΓ,v(t) has non-negative integer coefficients.

For v = (vi)i∈I a dimension vector, put

Gv :=
∏

i∈I

GLvi (κ),

and identify Rep
Γ,v(κ) with

⊕

γ∈Ω
Matvh(γ),vt(γ) (κ). Under this identification the groupGv

acts on Rep
Γ,v(κ) by simultaneous conjugation:

g · ϕ = (gvh(γ)ϕγg
−1
vt(γ)

)γ∈Ω.

Then two representations are isomorphic if and only if they areGv-conjugate. Put

Zv = {(λ · Idvi )i∈I ∈ Gv | λ ∈ κ
×}.

The groupZv acts trivially on Rep
Γ,v(κ). We have the following characterization of absolute

indecomposibility in terms ofGv andZv:

Proposition 2.4. [14, §1.8] A representation inRep
Γ,v(κ) is absolutely indecomposable if

and only if the quotient of its stabilizer in Gv by Zv is a unipotent group.

2.2. Complete bipartite supernova quivers. We now introduce the main objects of this
paper. For fixed non-negative integersr, k, s1, . . . , sk consider the quiverΓ with underly-
ing graph as in Figure 1. The subgraph with vertices (1), . . . , (r), (1; 0), . . . , (k; 0) is the
complete bipartite graph of type (r, k), i.e. there is an edge between any two vertices of
the form (i) and (j; 0). We orient all edges toward the vertices (1; 0), . . . , (k; 0), and de-
note by I the set of vertices ofΓ and byΩ the set of its arrows. We call paths of the
form ( j; sj), ( j; sj − 1), . . . , ( j; 0) thelong legsof the graph, and the edges of the complete
bipartice subgraph theshort legs.

For v ∈ ZI
≥0 andi = 1, . . . , k, define

δi(v) := −(e(i;0), v) = −2v(i;0) + v(i;1) +

r
∑

j=1

v( j).

1In the literature this polynomial is sometimes called theA-polynomial.
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(1)

(2)

(r − 1)

(r)

(1; 0)

(2; 0)

(k; 0)

(1; 1)

(2; 1)

(k; 1)

(1; s1)

(2; s2)

(k; sk)

Figure 1. The complete bipartite supernova graph

Lemma 2.5. Let v ∈ ZI
≥0. Thenv is in MΓ if and only if the following three conditions are

satisfied
(i) for all i = 1, . . . , k we haveδi(v) ≥ 0,
(ii) for all l = 1, . . . , r,

k
∑

j=1

v(i;0) ≥ 2v(l),

(iii) for all i = 1, . . . , k and all j= 0, . . . , si − 1,

v(i; j) − v(i; j+1) ≥ v(i; j+1) − v(i; j+2)(2.2.1)

with the convention that v(i;si+1) = 0.

Consider ak-tuple of non-zero partitionsµ = (µ1, . . . , µk), whereµi has partsµi
1 ≥ µ

i
2 ≥

· · · ≥ µi
si+1 with µi

j possibly equal to 0. This tuple defines a dimension vectorvµ = (vi)i∈I ∈

ZI
≥0 as follows. Putv(l) = 1 for l = 1, . . . , r, v(i;0) = |µ

i | andv(i; j) = |µ
i | −

∑ j
f=1 µ

i
f for

j = 1, . . . , si . Thus the long leg attached to the node (i; 0) (i.e., the typeAsi+1 graph with
nodes (i; 0), (i; 1), . . . , (i; si)) is labelled with a strictly decreasing sequence of numbers, and
the tips of the short leg are labelled with 1.

Notice that for alli = 1, . . . , k, we have

δi(vµ) = r − |µi | − µi
1 =: δ(µi),

and thatvµ satisfies already the condition Lemma 2.5 (iii). The condition (ii) is always
satisfied unlessk = 1 andv(1;0) = 1, in which casevµ is a real root. This implies the
following lemma:

Lemma 2.6. Assume k> 1 or v(1;0) > 1. Thenvµ ∈ MΓ if and only if for all i = 1, . . . , k
we have r≥ |µi | + µi

1.

Recall [11, Lemma 3.2.1] that iff = ( fγ)γ∈Ω is an indecomposable representation (over
an algebraically closed field) ofΓ of dimension vectorv and if v(i;0) > 0 then the linear
maps fγ, whereγ runs over the arrows of the long leg attached to the node (i; 0) are all
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injective. Recall also (see§2.1.2) that a dimension vectorv ∈ ZI
≥0r {0} is a root ofΓ if and

only if there exists an indecomposable representation ofΓ with dimension vectorv. We
deduce the following fact:

Lemma 2.7. Letv ∈ ZI
≥0. If v ∈ Φ(Γ) and v(i;0) > 0 then v(i;0) ≥ v(i;1) ≥ v(i;2) ≥ · · · ≥ v(i;si ).

Corollary 2.8. Assume thatvµ is an imaginary root. Then r≥ |µi | for all i = 1, . . . , k.

Proof. Sincev = vµ is a positive imaginary root,v′ = s(i;0)(v) is also a positive imaginary
root. In particularv′(i;0) = r − µi

1 > 0 and so by Lemma 2.7 we must haver − µi
1 = v′0 ≥

v′(i;1) = v(i;1) = |µ
i | − µi

1, i.e. r ≥ |µi |. �

Remark2.9. Corollary 2.8 is false for real roots. For instance assumek = 1,µ = (3,1) and
r = 3. Then clearlys(1;0)(vµ) is a real root with coordinate 0 at the vertex (1; 0) and with
coordinate 1 at the edge vertices. Thusvµ is also a real root, but note thatr < |µ|.

3. Kac polynomial of complete bipartite supernova quivers

3.1. Preliminaries.

3.1.1. Row echelon forms.Recall thatκ denotes an arbitrary field. Denote byB the sub-
group of GLn(κ) of lower triangular matrices. Letr ≥ n be an integer. Given a sequence
of non-negative integerss= (s1, s2, . . . , sd) such that

∑

i si = n we denote byPs the unique
parabolic subgroup of GLn containingB and havingLs = GLsd×· · ·×GLs1 as a Levi factor.
Consider a matrixA ∈ Matn,r (κ) and decompose its set of rows intod blocks; the first block
consists of the firstsd rows ofA, the second block consists of the followingsd−1 rows, and
so on.

Definition 3.1. We say thatA is in row echelon formwith respect tos if the following hold:

(i) The rightmost non-zero entry in each row (called apivot) equals 1.
(ii) All entries beneath any pivot vanish.
(iii) If a block contains two pivots with coordinates (i, j) and (i′, j′), theni < i′ if and

only if j < j′.

We have the following easy proposition, whose proof we leaveto the reader:

Proposition 3.2. For any matrix A∈ Matn,r (κ) of rank n there exists a unique g∈ Ps such
that gA is in row echelon form with respect tos.

3.1.2. Bruhat decomposition.We identify the symmetric groupSr with permutation ma-
trices in GLr (if w ∈ Sr , the corresponding permutation matrix (a(w)i j )i, j is defined by
a(w)i j = δi,w( j)). ThenSr acts on the maximal torusT ≃ (κ×)r of diagonal matrices as
w · (t1, . . . , tr ) = (tw−1(1), . . . , tw−1(r)). Consider a parabolicPs of GLr for some sequence
s = (s1, . . . , sd) with

∑

i si = r and denote bySr,s the subset ofSr of permutation matrices
which are in row echelon form with respect tos. Equivalently, if we form the partition

(3.1.1) {1, . . . , r} = {1, . . . , sd} ∪ {sd + 1, . . . , sd−1} ∪ · · · ∪ {r − s1 + 1, . . . , r}

corresponding to our partition of the rows, then we havew−1(i) < w−1( j) for anyi < j in the
same block. Then we have the following generalized version of the Bruhat decomposition:

GLr =

∐

w∈Sr,s

PswB.
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Denote byR the root system of GLr with respect toT. Recall that it is the set{αi, j | 1 ≤
i , j ≤ r} of group homomorphismsαi, j : T → κ× given by

αi, j(t1, . . . , tr ) = ti/t j .

We haveαi, j = α
−1
j,i for all i , j. The symmetric groupSr acts onR by w · α : T → κ×,

(t1, . . . , tr ) 7→ α(tw(1), . . . , tw(r)). In particularw · αi, j = αw(i),w( j) for all i , j. Let

R+ := {αi, j | 1 ≤ j < i ≤ r}

be the set of positive roots with respect toB, and letR− = Rr R+.
Forα ∈ R, denote byUα the unique closed one dimensional unipotent subgroup of GLr

such that for allt ∈ T andg ∈ Uα, we havet(g−1)t−1
= α(t) · (g−1). Explicitly, if α = αi, j ,

then the groupUα consists of matrices of the formI + xEi, j , wherex ∈ κ andEi, j is the
matrix whose only non-zero entry is 1 in position (i, j). We denote byRs ⊂ R the set of
rootsα such thatUα is contained in the Levi factorLs. Forw ∈ Sr,s, put

Uw :=
∏

{α∈R+ |w(α)∈R−rRs}

Uα.

One can show thatUw is a subgroup of GLr (see for instance [20, 10.1.4]). We have the
following lemma, whose proof we omit:

Lemma 3.3.

(i) Any element g in the cell PswB can be written uniquely as pwu with p∈ Ps and
u ∈ Uw.

(ii) Any element of the form wu with u∈ Uw is in its row echelon form.

For anyu ∈ Uw let uα be its image under the projectionUw → Uα. The groupHs :=
Ps × T acts onwUw via (p, t) · wu = pwut−1. For any groupH acting on a setX and any
point x ∈ X, let CH(x) ⊂ H denote the stabilizer ofx.

Lemma 3.4. For u ∈ Uw we have

CHs(wu) ≃ CT(u) =
⋂

{α∈R+ |w·α∈R−rRs, uα,1}

Kerα.

Proof. Let (p, t) ∈ Hs such thatpwut−1
= wu. Then

(pwt−1w−1) w (tut−1) = wu.

By Lemma 3.3 this identity is equivalent top = wtw−1 andtut−1
= u asT normalizesUw.

But tut−1
= u holds if and only if for allα we havetuαt−1

= uα which identity is equivalent
to t ∈ Kerα whenuα , 1. �

Lemma 3.5. For any w∈ Sr,s we have

{α ∈ R+ | w · α ∈ R− r Rs} = {α ∈ R+ | w · α ∈ R−}

= {αi, j | j < i, w( j) > w(i)}.
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Proof. Only the first equality requires proof. Ifαi, j ∈ R+ andw · αi, j ∈ R−, i.e., j < i and
w(i) < w( j), then by definition ofSr,s we cannot havew(i) andw( j) in the same block of
the partition (3.1.1), i.e.,Uw·αi, j = wUαi, j w

−1 is not contained inLs. We have thus proved
that the right hand side of the first equality is contained in the left hand side. The reverse
inclusion is easy. �

To simplify notation, we putUi, j = Uαi, j , so that

Uw =

∏

j<i,w(i)<w( j)

Ui, j .

Definition 3.6. For anyk-tuplew = (w1, . . . ,wk) ∈ (Sr )k, we denote byKw the inversion
graphof w. Namely, the vertices ofKw are labelled by 1,2, . . . , r and for any two verticesi
and j such thatj < i, put an edge fromi to j for eachwt in w such thatwt(i) < wt( j). Thus
Kw can have multiple edges. We can think of each edge as having one ofk possible colors.

For u = (u1, . . . ,uk) ∈ Uw := Uw1 × · · · × Uwk, we denote byKw,u the subgraph ofKw

that for any pairi, j includes the edge coloredt between verticesi and j if (ut)i, j , 1.

Denote byZr the center of GLr and letT act diagonally by conjugation onUw.

Proposition 3.7. For u ∈ Uw we have CT(u) = Zr if and only if the graph Kw,u is con-
nected.

Proof. This is clear since Kerαi, j is the subtorus of elements (t1, . . . , tr ) such thatti =
t j . �

3.2. Computing the Kac polynomials. Now Γ is as in§2.2. We want to investigate
the polynomialAΓ,v(t). Recall (see Theorem 2.2) thatAΓ,v(t) = 1 if v is a real root and
AΓ,v(t) = 0 if v is not a root. MoroeverAΓ,v(t) is invariant under the Weyl group action. We
are reduced to study the polynomialsAΓ,v(t) with v is in the fundamental domainMΓ. Here
we restrict our study to the case wherev ∈ MΓ is of the formv = vµ for some partition
µ. The important thing for our approach is that the coordinates of vµ at the vertices (j),
j = 1, . . . , r, equal 1.

Fix once for all a multi-partitionµ = (µ1, . . . , µk) as in§2.2, and to alleviate the notation
put ni := |µi |. We assume thatvµ is in MΓ, and so thatr ≥ ni + µ

i
1 for all i = 1, . . . , k (see

Lemma 2.6).

For a partitionµ = (µ1, . . . , µs), we denote byPµ the parabolic subgroup of GL|µ| as
defined in§3.1.1 and we denote simply bySµ the subsetS|µ|,µ of the symmetric groupS|µ|
as defined in§3.1.2.

Proposition 3.8. Assumeϕ ∈ Rep
Γ,vµ (κ) is indecomposable. Then

(i) the mapsϕγ, whereγ runs over the arrows on the k long legs, are all injective,
and

(ii) for each i= 1, . . . , k, the images ofϕ( j)→(i;0), with j = 1, . . . , r, span Vϕ(i;0).

Proof. Let us prove (ii). LetW(i;0) be the subspace generated by the images of the maps
ϕ( j)→(i;0) with j = 1, . . . , r. If W(i;0) ( Vϕ(i;0) we define subspacesU(i;1),U(i;2), . . . ,U(i;si ) by
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U(i;1) := ϕ−1
(i;1)→(i;0)(W(i;0)), U(i;p) := ϕ−1

(i;p)→(i;p−1)(U(i;p−1)). Letϕ′ be the restriction ofϕ to

W(i;0) ⊕

r
⊕

j=1

Vϕ( j) ⊕

si
⊕

p=1

U(i;p) ⊕
⊕

f,i

sf
⊕

j=1

Wϕ( f ; j).

Let W′(i;0) be any subspace such thatVϕ(i;0) =W(i;0)⊕W′(i;0) and define subspacesU′(i; j) ⊂ Vϕ(i; j)

by taking the inverse images ofW′(i;0). Then defineϕ′′ as the restriction ofϕ to

W′(i;0) ⊕

si
⊕

p=1

U′(i;p).

Clearlyϕ = ϕ′ ⊕ ϕ′′. Hence we must haveW(i;0) = Vϕ(i;0). �

We denote byXµ = Xµ(κ) the subset of representationsϕ = (ϕγ)γ∈Ω ∈ Rep
Γ,vµ (κ) that

satisfy the conditions (i) and (ii) in Proposition 3.8. As in§2.1.2 we identify Rep
Γ,vµ (κ)

with spaces of matrices and so for eachi = 1, . . . , k, the coordinatesϕ(1)→(i;0), . . . , ϕ(r)→(i;0)

of anyϕ ∈ Xµ are identified with non-zero vectors inκni which form the columns of a
matrix in Matni ,r of rankni . For a partitionµ = (µ1, . . . , µs) of n, denote byGµ the group
GLn×GLn−µ1 ×GLn−µ1−µ2 ×· · ·×GLµs. LetGµ be the subgroup

∏k
i=1 Gµi of Gvµ and denote

by T ther-dimensional torus (GL1)r . Note thatGvµ ≃ Gµ × T.
Denote byXµ/Gµ the set ofGµ-orbits ofXµ. Since the actions ofGµ andT on Rep

Γ,vµ
commute, we have an action ofT onXµ/Gµ.

For i = 1, . . . , k, putµi
0 := r − ni . Note that ˜µi := (µi

0, µ
i
1, . . . , µ

i
si
) is a partition ofr, i.e.,

µi
0 ≥ µ

i
1. Consider

Sµ̃ := Sµ̃1 × · · · × Sµ̃k ⊂ (Sr )
k,

whereSµ is defined as in the paragraph preceding Proposition 3.8.

Proposition 3.9. We have a T-equivariant bijection

(3.2.1) Xµ/Gµ
∼
−→

∐

w∈Sµ̃

wUw,

where T acts onwUw as t· (w1u1, . . . ,wkuk) = (w1tu1t−1, . . . ,wktukt−1).

Remark3.10. By Lemma 3.3 the right hand side of (3.2.1) is isomorphic to
∏k

i=1 GLr/Pµ̃i

on whichT-acts diagonally by left multiplication.

Proof. We first explain how to construct the bijection (3.2.1). For eachi = 1, . . . , k, denote
byFµi the set of partial flags ofκ-vector spaces

{0} ⊂ Esi ⊂ · · · ⊂ E1 ⊂ E0
= κni

such that dimE j
= ni −

∑ j
f=1 µ

i
f . Let G′

µi ⊂ Gµi be the subgroup GLni−µ
i
1
× · · · × GLµi

si+1

and putG′
µ
=

∏k
i=1 G′

µi . Let Mat′ni ,r ⊂ Matni ,r be the subset of matrices of rankni . Then we
have a natural GLn1 × · · · ×GLnk-equivariant bijection

(3.2.2) Xµ/G
′
µ
≃

k
∏

i=1

(

Fµi ×Mat′ni ,r

)



TORUS ORBITS AND KAC POLYNOMIALS 11

that takes a representationϕ ∈ Xµ to (F i
ϕ
, ϕ(1)→(i;0), . . . , ϕ(r)→(i;0)); hereF i

ϕ
is the partial flag

obtained by taking the images of the compositions of theϕγ, whereγ runs over the arrows
of the i-th long leg.

Now fix an elementϕ ∈ Xµ, and denote by (Fϕ,Mϕ) its image in















∏

i

Fµi















×















∏

i

Mat′ni ,r















via (3.2.2). Since we are only interested in theGµ-orbit of ϕ, after taking aGµ-conjugate
of ϕ if necessary we may assume that the stabilizer ofF i

ϕ
is the parabolic subgroupPµi of

GLni . By Lemma 3.2 we may further assume that for alli = 1, . . . , k, the i-th coordinate
Mi
ϕ

of Mϕ is in its row echelon form with respect to (µi
1, µ

i
2, . . . , µ

i
si+1), this time taking a

conjugatep · Mi
ϕ

with p ∈ Pµi if necessary. It is easy to see that there is a unique way to
complete the matrixMi

ϕ
to a matrixM̃i

ϕ
∈ GLr that is in row echelon form with respect to

(µi
0, µ

i
1, . . . , µ

i
si+1). (cf. Example 3.11).

Now the pivots ofM̃i
ϕ

form a permutation matrixwi
ϕ
∈ Sµ̃i andM̃i

ϕ
∈ wi

ϕ
Uwi

ϕ
. We thus

defined a mapXµ/Gµ →
∏k

i=1

(

∐

w∈S
µ̃i

wUw

)

. The inverse map is obtained by truncating

the lastµi
0 rows in each coordinate. The fact that the inverse map isT-equivariant is easy

to see from the relationwtut−1
= (wtw−1) · wu · t−1. �

Example3.11. For example, supposes= (1,1) and

A =

(

∗ ∗ 1 0 0
∗ 1 0 0 0

)

.

Then

Ã =













































∗ ∗ 1 0 0
∗ 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1













































is the completion ofA to the corresponding echelon form with respect to (3,1,1).

Proposition 3.12. Let ϕ ∈ Xµ and letw ∈ Sµ̃, u ∈ Uw such that the image ofϕ under
(3.2.1) iswu. Then the following assertions are equivalent.

(i) ϕ is absolutely indecomposable,
(ii) CGvµ

(ϕ) = Zvµ ,
(iii) the graph Kw,u is connected.

By Proposition 3.8, the absolutely indecomposable representations of (Γ, vµ) overκ are
all in Xµ.

Proof of Proposition 3.12.First assumeϕ is absolutely indecomposable. ThenCGvµ
(ϕ)/Zvµ

is unipotent, see Proposition 2.4. ThereforeCT(u) must reduce toZr . Indeed ift ∈ CT(u),
then there existsg ∈ Gµ such that (g, t) ∈ CGvµ

(ϕ) and so we must havet ∈ Zr for (g, t) to
be unipotent moduloZvµ . By Proposition 3.7, the graphKw,u is connected.

Now assume that the graphKw,u is connected. By Proposition 2.4 the representationϕ
is absolutely indecomposable if and only if the groupCGµ×T(ϕ)/Zvµ is unipotent. Taking a
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conjugate ofϕ if necessary we may assume that the image (Fϕ,Mϕ) under (3.2.2) is such
that the stabilizer of

F i
ϕ
= (Esi

i ⊂ · · · ⊂ E1
i ⊂ E0

i = κ
ni )

in GLni is the parabolic subgroupPµi and Mi
ϕ

is in its row echelon form with respect to
(µi

si+1, µ
i
si
, . . . , µi

1). Let (g, t) ∈ Gµ × T be such that

(3.2.3) (g, t) · ϕ = ϕ.

Theng = (g(i;t))i,t ∈ Gµ must satisfyg(i;0) ∈ Pµi andg(i;t)
= g(i;0)|Et

i
for all i = 1, . . . , k and

t = 1, . . . , si . Taking the image of (g, t) · ϕ = ϕ by (3.2.1) we find thatt · (wu) = wu.
Thereforet ∈ CT(u).

Since (by assumption)Kw,u is connected, Proposition 3.7 impliesCT(u) = Zr . Thus
(3.2.3) reduces to

(λ−1 · g(i;0)) · Mi
ϕ
= Mi

ϕ

for all i = 1, . . . , k, with t = λ · Ir ∈ Zr for someλ ∈ κ. By Proposition 3.2, we find
that g(i;0)

= λ · In, i.e., (g, t) ∈ Zvµ . HenceCGµ×T(ϕ) = Zvµ and thereforeϕ is absolutely
indecomposable. This completes the proof. �

For w ∈ Sµ̃ we put

(3.2.4) Rw(q) :=
∑

K⊂Kw

(q− 1)b1(K),

where the sum is over the connected subgraphs ofKw; hereb1(K) = e(K)− r +1 is the first
Betti number ande(K) is the number of edges ofK. If the graphKw is not connected then
we putRw(q) = 0.

Denote byXw
µ
⊂ Xµ the subset of representations corresponding towUw in the bijection

(3.2.1).

Theorem 3.13. The polynomial Rw(q) counts the number of isomorphism classes of abso-
lutely indecomposable representations inXw

µ
(Fq).

Proof. The T-equivariant bijection (3.2.1) induces an isomorphism between the isomor-
phism classes ofXw

µ
with the T-orbits of wUw. By Proposition 3.12 the isomorphism

classes of absolutely indecomposable representations inXw
µ

corresponds to theT-orbits of
C = {wu ∈ wUw |Kw,u is connected}. Now for a given subgraphK of Kw, the number
of elementsu ∈ Uw(Fq) such thatK = Kw,u equals (q − 1)e(K). Moroever by Proposition
3.7, the groupT/Zr acts trivially onC and so the number ofT-orbits ofC overFq equals
Rw(q). �

We can now state the main result of our paper:

Theorem 3.14. We have

AΓ,vµ (q) =
∑

w∈Sµ̃

Rw(q).
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3.3. Tutte polynomial of graphs. The above polynomialsRw(q) are related to classical
graph polynomials. Recall (cf. [8, 18]) that the Tutte polynomial TK(x, y) ∈ Z[x, y] for a
graphK with edge setE and vertex setV can be defined by

TK(x, y) =
∑

A⊆E

(x− 1)k(A)−k(E)(y− 1)k(A)+|A|−|V|,

wherek(A) is the number of connected components of the subgraph with edge setA. Tutte
proved that for a connected graphK we also have

TK(x, y) =
∑

T

xi(T)ye(T),

where the sum is over all spanning treesT of K andi(T),e(T) are respectively theirinternal
andexternal activity(for some fixed but arbitrary ordering of the edges ofK). In particular,
the coefficients ofT(x, y) are non-negative integers.

In this paper we will only be concerned with the specialization (forK a connected graph)

RK(q) := TK(1,q) =
∑

T

qe(T),

which we will call theexternal activity polynomialof K. Up to a variable change and
renormalization,RK(q) coincides with the reliability polynomial

(1− p)|V|−k(K) p|E|−|V|+k(K)TK(1,1/p),

which computes the probability that a connected graphK remains connected when each
edge is independently deleted with fixed probabilityp.

A result of Hausel and Sturmfels [13] implies that the Kac polynomial of a quiver with
dimension vector consisting of all 1’s equals the external activity polynomial of the under-
lying graph.

It is clear that ifK = Kw is connected then

Rw(q) = RKw .

Hence Theorem 3.14 together with Tutte’s result provide an alternative proof of the non-
negativity of the coefficients of the Kac polynomialsAΓ,vµ(q) (see Theorem 2.3).

3.4. Counting T-orbits on flag varieties. Let P1, . . . ,Pk be parabolic subgroups of GLr

containing the lower triangular matrices (this is only for convenience). Recall thatT de-
notes the maximal torus of GLr of diagonal matrices. To each parabolicPi corresponds
a unique partition ˜µi

= (µ̃i
1, µ̃

i
2, . . . ) given by the size of the blocks. Denote byET

µ̃
(q) the

number overFq of T-orbits in
∏k

i=1 GLr/Pi whose stabilizers equalZr . For i = 1, . . . , k, put
ni := r−µ̃i

1, and denote byµi the partition (µ̃i
2, µ̃

i
3, . . . ) of ni . From the tupleµ = (µ1, . . . , µk)

andr we consider the associated quiverΓ equipped with dimension vectorvµ as in§2.2.
In view of Remark 3.10, we deduce from Proposition 3.12 the following result, which

relates Kac polynomials of complete bipartite supernova quivers to countingT-orbits:

Theorem 3.15. We have

ET
µ̃
(q) = AΓ,vµ(q).

In particular, ET
µ̃
(q) is non zero if and only ifvµ ∈ Φ(Γ). Moreover ET

µ̃
(q) = 1 if and only

if vµ is a real root.
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Remark3.16. According to Theorem 3.15, Theorem 3.14 and§3.3 we can count certain
T-orbits on homogeneous varieties overFq in terms of specializations of Tutte polynomials
of certain graphs. Work of Fink and Speyer [4, 19] provides a geometric interpretation of
the Tutte polynomial of realizable matroids and theT-equivariantK-theory of torus orbits.
It would be interesting to understand the relationship between our work and theirs.

4. Examples

4.1. Notation. In this section we present examples to illustrate Theorems 3.14 and 3.15.
We first consider the special case whenk, the number of long legs of the supernova, equals
1. We call such quiversdandelion quivers(cf. Figure 2). In these examples the tuple of
permutationsw consists of a single elementw, so we lighten notation and writeKw for Kw,
etc. We represent permutationsw ∈ Sr by giving the sequence of their values, using square
brackets to avoid conflict with cycle notation. Thus [3,2,4,1] ∈ S4 means the permutation
taking 1 7→ 3,2 7→ 2,3 7→ 4,4 7→ 1. When possible we omit brackets and commas and
write e.g. 3241 for [3,2,4,1].

...

. . .

(1;0)
(1)

(2)

(3) (r−2)

(r−1)

(r)

(1;1)

(1;s1−1)

(1,s1)

Figure 2. The dandelion quiver

4.2. Projective space.Consider the dandelion quiver with no long leg, and with central
node labelled withn. In this example we consider the two casesr = n andr = n+ 1. It is
not hard to see that the corresponding root is real. Indeed, apply a reflection at the central
node. If r = n we get all leaf nodes labelled with 1 and with the central nodelabelled
with 0. If r = n + 1, the central node is labelled with 1. We can further apply reflections
along the leaves to make every leaf have label 0. Thus in thesecases the root is real and
we should haveA = 1.

If r = n, then the homogeneous variety is that ofn-planes inκn, i.e. is a single point.
There is one inversion graph, which is itself a point, and Theorem 3.14 implies that the
Kac polynomial equals 1.

On the other hand, ifr = n+1, then our homogeneous variety is that ofn-planes inκn+1,
i.e. is a projective space. This time the only connected inversion graph corresponds to the
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permutationw = [n+ 1,1,2, . . . ,n], which indexes the open Schubert cell. The graphKw

is a tree, and again the Kac polynomial equals 1.

4.3. A grassmannian. Now we consider a more complicated example. LetΓ be the quiver
in Figure 3, with the indicated dimension vectorvµ. One can check using Lemma 2.5 that
this vector gives an imaginary root. The homogeneous variety isGr(2,5), the grassmannian
of 2-planes inκ5. This variety is 6-dimensional and can be paved by 10 Schubert cells
Uw = PswB, wherew ranges over the minimal length elements in the 10 cosets ofS2 × S3

in S5. Hence there are 10 graphsKw of order 5 that we need forAΓ,vµ (q). Of these graphs,
only 4 are connected. In fact, the number of edges ofKw equals the dimension of the
Schubert cellUw, and since we must have at least four edges for a graph of order5 to be
connected, only the cells of dimensions≥ 4 need to be considered. These are labelled by
the permutations 31452, 34125, 34152, and 34512.

Figures 11–5 show these four graphs. We consider each in turn:

• The graphK34125 is not connected, soR34125= 0.
• The graphK31452 is a connected tree, which impliesR31452= 1.
• The graphK34152 is a 4-cycle with an extra edge. There are 4 spanning trees

contributing 1 each, and the full graph contributesq− 1. ThusR34152= q+ 3.
• The last graphK34512 is a complete bipartite graph of type (2,3). There are 12

spanning trees; each contributes 1 toR34512. Deleting any single edge yields a
graph isomorphic toK34152, each of which contributesq − 1. Finally, the full
graph itself has betti number 2 and thus contributes (q− 1)2. Altogether we find
R34512= q2

+ 4q+ 7.

Thus

(4.3.1) AΓ,vµ (q) = R31452+ R34152+ R34512= q2
+ 5q+ 11.

2
1

1

1

1

1

Figure 3.

4.4. A two-step flag variety. Now consider the dandelion quiver in Figure 6, with the
indicated dimension vector. This is of course the same example we just treated, except that
now we regard one of the short legs as being the long leg. The corresponding homogeneous
variety is no longer a a grassmannian; instead we have the partial flag variety of two-step
flagsE3 ⊂ E2 in κ4. This time the inversion graphs have 4 vertices, so we need atleast
3 edges in anyKw for it be connected, and there are 6 permutations with at least three
inversions. The graphs are show in Figures 7–9. We leave it tothe reader to check the
following:
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1

2
3

4
5

(a) w = 31452

1

2
3

4
5

(b) w = 34125

Figure 4.

1

2
3

4
5

(a) w = 34152

1

2
3

4
5

(b) w = 34512

Figure 5.

• R3142= 1
• R3214= 0
• R3412= q+ 3
• R2341= 1
• R3241= q+ 2
• R3421= q2

+ 3q+ 4

Thus

(4.4.1) AΓ,vµ (q) = q2
+ 5q+ 11,

which agrees with (4.3.1).

2
1

11

1

1

Figure 6.
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1

2

3

4

(a) w = 3142

1

2

3

4

(b) w = 3214

Figure 7.

1

2

3

4

(a) w = 3412

1

2

3

4

(b) w = 2341

Figure 8.

1

2

3

4

(a) w = 3241

1

2

3

4

(b) w = 3421

Figure 9.

4.5. A product of projective planes. Now we consider a more general supernova quiver.
We taker = 3 and (n1,n2) = (1,1). Thus the quiver is the complete bipartite graph of
type (3,2), and the dimension vector assigns 1 to each vertex. In terms of T-orbits, we
are counting the orbits of dimension 2 on a product of two projective planes with a 2-
dimensional torus acting diagonally.

The inversion graphs are labelled by pairs of permutations (w1,w2) ∈ (S3)2. There are
five connected inversion graphs; they are characterized by having at least onewi equal to
312, the longest permutation for this Bruhat decomposition. We show the graphs in Figures
10–12 (edges curving in correspond to the first permutation,and those curving out to the
second). We find
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• R123,312 = R312,123 = 1
• R132,312 = R312,132 = q+ 2
• R312,312 = q2

+ 2q+ 1

Altogether we obtain

(4.5.1) AΓ,vµ = q2
+ 4q+ 7.

We remark that (4.5.1) is in fact the external activity polynomial of the underlying graph
of the quiver thanks to the result of Hausel and Sturmfels (see §3.3). Indeed, the Tutte
polynomial of the complete bipartite graph of type (3,2) is

x4
+ 2x3

+ 3x2
+ x+ y2

+ 4y.

We can also recover (4.5.1) by counting 2-dimensional torusorbits inF = P2 × P2,
following Theorem 3.15. Letπ : F → P2 be the projection onto the first factor. The action
of the torusT commutes withπ.

• Choose a pointp0 in the image ofπwith trivial stabilizer. Any point in the inverse
image ofp0 determines a unique 2-dimensional orbit, and thus this accounts for
q2
+ q+ 1 orbits.

• Now choose a pointp0 in the image ofπ with 1-dimensional stabilizer. We claim
the inverse image ofp0 determinesq + 1 orbits. Indeed, after we have fixedp0,
have one dimension ofT left. This can move points along the lines inT-fixed
point not contained in the closure of the orbit ofp0. There areq + 1 such lines,
and henceq + 1 orbits. Since there are 3 choices forp0 (corresponding to the
three 1-dimensionalT orbits inP2 we obtain 3q+ 3 orbits altogether.
• Finally we can choose a pointp0 fixed byT. There is one 2-dimensionalT-orbit

in the inverse image ofp0. Since there are 3 choices ofp0 we get 3 orbits this
way.

Hence altogether we findq2
+ 4q + 7 torus orbits of dimension 2, which coincides with

(4.5.1).

1

2

3

(a) (123,312)

1

2

3

(b) (312,123)

Figure 10.

4.6. Counting T-orbits. We conclude by illustrating Theorem 3.15 for the grassmannian
Gr(2,5) from section 4.3. The main tool we use is theGel′fand–MacPherson correspon-
dence, which we state in Theorem 4.1. We refer to [5–7,16, ] for moredetails.
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1

2

3

(a) (132,312)

1

2

3

(b) (312,132)

Figure 11.

1

2

3

Figure 12. (312,312)

Let E ⊂ Cr be a subspace of dimensionk. Assume thatE does not lie in any of
the coordinate hyperplanesHi = {zi = 0} ⊂ Cr . The intersectionsE ∩ Hi determine a
collection ofr hyperplanes inE and thus a point in (Pk−1)r , i.e. a projective configuration.
(Here we think ofPk−1 as beingP(E∗)). If E′ is aT-translate ofE, then the configuration
corresponding toE′ is equivalent toE an element of PGLk acting diagonally on (Pk−1)r .

Hence we can studyT-orbits onG(k, r) in terms of certain configurations ofr points in
Pk−1. The precise statement of this fact is the Gel′fand–MacPherson correspondence. We
will only need to understand what happens when the theT-orbits have maximal dimension
r − 1.

Theorem 4.1. Let G◦(k, r) ⊂ G(k, r) be the subset of all L such that T· L has dimension
r − 1. Let (Pk−1)r

◦ be the subset of configurations p= (p1, . . . , pr ) such thatPGLk · p has
dimension k2 − 1. Then the assigment L7→ p, where pi = E ∩ Hi , defines a bijection of
orbit spaces

Φ : G◦(k, r)/T −→ (Pk−1)r
◦/PGLk.

Remark4.2. The bijectionΦ can be extended to all ofG(k, r) [5, Proposition 1.5].

In general it is very difficult to determine the configurations in the image ofΦ, but there
is one case that is easy: the grassmanniansG(2, r). Whenk = 2 the configurations are
sets of points in the projective line, and the only degenerations that can occur are multiple
points. To make this precise, let us say that a collection of distinct pointsp1, . . . , pm is
r-labelled if it is equipped with a surjective map{1, . . . , r} → {p1, . . . , pm}. We have the
following characterization of theT-orbits (cf. [16, Section 1.3]).
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Proposition 4.3. Torus orbits in G(2, r) of maximal dimension are in bijection with r-
labelled sets of m points inP1 up toPGL2-equivalence, where3 ≤ m≤ r.

Now we consider configurations overFq. Let Cm(q) be the number of configurations of
m distinct points up to equivalence. Fix three points inP1(Fq) and call them 0, 1, and∞.
Givenm unlabelled points inP1, we can use PGL2 to carry three of them to 0,1,∞. This
uses up all the automorphisms, which gives the following:

Cm(q) =















(q− 2)(q− 3)(q− (m− 2)) if m> 3,

1 if m= 3.

To complete the count we need to incorporate the labellings.An r-labelling is determined
by a sujective map{1, . . . , r} → {p1, . . . , pm}, in other words an equivalence relation on
{1, . . . , r} with m classes. These are counted byS(r,m), the Stirling number of the second
kind. LettingET

r (q) denote the number ofT-orbits, we have

ET
r (q) =

r
∑

m=3

S(r,m)Cm(q).

For instance, whenr = 5, we have

ET
5 (q) = 1 · (q− 2)(q− 3)+ 10 · (q− 2)+ 25= q2

+ 5q+ 11,

in agreement with (4.3.1).
Comparing Figures 3 and 6, one sees that overFq the number of (r−1)-dimensional torus

orbits inGr(2, r) equals the number of (r − 2)-dimensional torus orbits in the flag variety
of {point ⊂ line} in Pr−2 (the tori have different dimensions, of course). This suggests that
there should be a bijection between the sets of torus orbits for these two homogeneous
varieties. This is true, and we leave the reader the pleasureof finding it.

5. Generating Functions

We will use the series [10, (1.4)] to obtain a generating function for the Kac polynomials
of the supernova quivers of§2.2. The series [10, (1.4)] in the case where the quiver is the
complete (k, r) bipartite graph withk+ r vertices is the following

(5.0.1) H(X,Y; q) := (q− 1)Log



















∑

λi ,µ j

q
∑

i, j 〈λ
i ,µ j 〉

∏

i H̃λi (xi ; q)
∏

j H̃µ j (y j ; q)
∏

i q〈λi ,λi 〉bλi (q−1)
∏

j q〈µ j ,µ j 〉bµ j (q−1)



















,

wherei = 1, . . . , k, j = 1, . . . , r

bλ(q) :=
∏

i≥1

mi (λ)
∏

j=1

(1− q j),

with mi(λ) the multiplicity of i in λ andX = (x1, . . . , xr ); Y = (y1, . . . , yk).
Since we are interested in a dimension vector where ther vertices have value 1 we

can restrict they variables toyi = (ui ,0, . . . ) for some independent variablesu1, . . . ,ur .
Furthermore, we only need to work modulo the idealI := 〈u2

1, . . . ,u
2
r 〉.

We haveH̃λ(u,0, . . .) = u|λ|. It follows that the right hand side of (5.0.1) becomes

(q− 1)Log

















∑

λi

r
∑

s=0

qs
∑

i l(λi )es(u)
∏

i H̃λi (xi ; q)

(q− 1)s
∏

i q〈λi ,λi 〉bλi (q−1)

















mod I ,
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wherees(u) = es(u1, . . . ,ur ) is the elementary symmetric function in theui ’s. Interchanging
summations this equals

(q− 1)Log















r
∑

s=0

∏

i

cs(xi)
es(u)

(q− 1)s















mod I ,

where

cs(x) :=
∑

λ

qsl(λ)H̃λ(x; q)
q〈λ,λ〉bλ(q−1)

, x = (x1, x2, . . .).

Note that

es1(u) · · · esl (u) ≡
(s1 + · · · sl)!

s1! · · · sl !
es1+···+sl (u) mod I .

Therefore we may replacees(u) by a single termUs/s! and letr be arbitrary. Except for
the constant term inU the values of Log and log agree since we are working moduloI .
Hence we get

(q− 1)Log















∏

i

c0(xi)















+ (q− 1) log

















∑

s≥0

∏

i

cs(xi)
c0(xi)

(U/(q− 1))s

s!

















Define theRogers-Szëgo symmetric functionsas

Rs(x) :=
∑

|λ|=s

[

s
λ1, λ2, · · ·

]

mλ(x), x := (x1, x2, . . .),

wheremλ is the monomial symmetric function and
[

s
λ1, λ2, · · ·

]

:=
[s]!

[λ1]![ λ2]! · · ·
, [n]! := (1− q) · · · (1− qn),

is theq-multinomial andq-factorial respectively.

Proposition 5.1. The following identity holds

cs(x; q)
c0(x; q)

= Rs(1, x1, x2, . . .), x := (x1, x2, . . .).

LetAs(x1, . . . , xk; q) be defined by the generating function

(5.0.2)
∑

s≥1

As(x1, . . . , xk; q)
Us

s!
= (q− 1) log

∑

s

Rs(x1) · · ·Rs(xk)
(U/(q− 1))s

s!
.

Proof. It follows from the main formula proved in [9]. �

A priori As(x1, . . . , xk; q) are symmetric functions with coefficients inQ(q). In fact, the
coefficients are inZ[q] as we now see. Combining the above discussion with [10][Prop.
(1.3) (i)] we finally obtain the following.

Theorem 5.2. With the notation of§3.2 the Kac polynomial AΓ,vµ of the complete bipartite
supernova quiver is given by

(5.0.3) AΓ,vµ(q) = 〈Ar ,hµ̃〉,

where hµ denotes the complete symmetric function, hµ̃ := hµ̃1 · · · hµ̃k with µ̃ = (µ̃1, . . . , µ̃k)
and µ̃i is the partition of r defined by(r − |µi |, µi

1, µ
i
2, . . .).
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The right hand side of (5.0.3) gives the coefficient ofmµ̃ when writingAr in terms of
the monomial symmetric functions. For example, fork = 1 we obtain the following

A1 = m1

A2 = m12

A3 = (q+ 4)m13 +m12

A4 = (q3
+ 6q2

+ 20q+ 33)m14 + (q2
+ 5q+ 11)m122 + (q+ 4)m22 +m13

In particular we see the polynomialq2
+ 5q+ 11 corresponding to the example discussed

in §4.4. The coefficient ofm14 on the other hand corresponds to a dandelion quiver with
four short legs and a long leg with dimension vector (3,2,1) along its vertices correspond-
ing to the full flag variety GL4/B. Here is the list of permutationsw of block structure
(1,1,1,1) with connected inversion graphs and their correspondingR-polynomials.

w Rw

4321 q3
+ 3q2

+ 6q+ 6
4312 q2

+ 3q+ 4
4231 q2

+ 3q+ 4
4213 q+ 2
4132 q+ 2
4123 1
3421 q2

+ 3q+ 4
3412 q+ 3
3241 q+ 2
3142 1
2431 q+ 2
2413 1
2341 1

We verify that indeed the sum of these polynomials isq3
+ 6q2

+ 20q+ 33.
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