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Abstract. Let C be a one- or two-sided Kazhdan–Lusztig cell in a Coxeter group
(W,S), and let Reduced(C) be the set of reduced expressions of all w ∈ C, regarded
as a language over the alphabet S. Casselman has conjectured that Reduced(C) is
regular. In this paper we give a conjectural description of the cells when W is the
group corresponding to a hyperbolic polygon, and show that our conjectures imply
Casselman’s.

1. Introduction

Let W be a Coxeter group with generating set S. In their study of representations
of Coxeter groups and Hecke algebras, Kazhdan and Lusztig introduced the decom-
position of W into cells [16]. The cells are equivalence classes in W determined by
the left and right descent sets of elements of W and the degrees of the Kazhdan–
Lusztig polynomials Px,y (§2). Today cells are known to have many applications in
representation theory; for some references, see the bibliography of [13].

The paper addresses the computability of the cells, in the following sense. Given
a cell C, one can ask for an efficient way to encode its elements. Since elements of
W are easily represented by reduced expressions in the generators S, it is natural to
ask for a solution in terms of such expressions. However, since the definition of the
cells involves a complicated equivalence relation, it is certainly not clear that this is
possible.

Despite this, W. Casselman has conjectured that cells can be efficiently encoded.
To state his conjecture, we need some terminology from the theory of formal lan-
guages; for more information see [1].

Let A be a finite alphabet of characters. By a language L over A we mean a
collection of finite-length ordered words built from elements of A. A finite state
automaton A with alphabet A is a finite directed graph on a vertex set S , called
states, with edges labeled by elements of A ∪ {ε}. Different edges leaving a given
vertex are assumed to have different labels. One vertex is defined to be the initial
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state; a subset of S is chosen and defined to be the accepting states. A finite state
automaton encodes certain words built from A through path traversal: one starts
at the initial state and follows a directed path of any length that terminates at an
accepting state. As the path is traversed the vertex labels are concatenated into a
word (the symbol ε represents a “null-transition;” the word is unaltered if ε is read).
The collection of words that can be so constructed forms the language recognized by
A . A language is called regular if it can be recognized by a finite state automaton.

Regular languages are the simplest infinite languages one encounters in the hier-
archy of formal languages. Many languages in algebra are regular. For instance, via
an earlier paper of Davis–Shapiro [10], work of Brink–Howlett implies that the lan-
guage Reduced(W ) of all reduced expressions in the generators S is regular [8]. Any
cell C induces a sub language Reduced(C) ⊂ Reduced(W ), namely all the reduced
expressions of elements in C. We can now state Casselman’s conjecture:

1.1. Conjecture. For any Coxeter group W and any (two- or one-sided) cell C ⊂ W ,
the language Reduced(C) is regular.

Casselman’s conjecture is known to be true for affine Weyl groups from earlier
work of one of us (PG) [14]. In this paper we investigate the case that (W,S) is
a Coxeter group corresponding to a hyperbolic polygon. In other words, W can be
realized as the discrete subgroup of isometries of the hyperbolic plane H generated by
the reflections through the side of a geodesic polygon. The cells of such groups have
been considered earlier by Bédard [2,3] and one of us (MB) [4]. We state conjectures
due to two of us (MB and PG) that describes the Kazhdan–Lusztig cells of W in
terms of reduced expressions. Then we prove (assuming the conjectures) that for any
left, right, or 2-sided Kazhdan–Lusztig cell C, the language Reduced(C) is regular.
Moreover, when combined with previous work of two of us (MB and PG), the results
in this paper prove the regularity of cells for certain Coxeter groups (cf. Remark 5.5).
We note that the proofs in this paper use word-hyperbolicity of W in an essential
way, and in particular do not apply to affine Weyl groups.

We now give an overview of the paper. In §2 we give background on Coxeter groups
and recall the definition of Kazhdan–Lusztig cells. Section 3 states conjectures for
cells in Coxeter groups attached to tessellations of the hyperbolic plane by polygons.
In §4 we give background on word hyperbolic groups and state the results we need
from geometric group theory. Finally §5 gives our main results.

2. Definitions and basic examples

In this section we recall the basics of Coxeter groups and define Kazhdan–Lusztig
cells. For more details we refer to [6, 15, 16].

A Coxeter group W is a group generated by a finite subset S ⊂ W where the
defining relations have the form (st)m(s,t) = 1 for pairs of generators s, t ∈ S. The
exponents m(s, t) are taken from N ∪ {∞}, and we require m(s, s) = 1, so that each
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generator s is an involution. Let I ⊂ S be a subset of the generators. The subgroup
of W generated by I is called a parabolic subgroup and is denoted WI .

Any representation of w ∈ W as a product of generators is called an expression.
An expression is called reduced if it cannot be made shorter by applying the defining
relations of W . The length of a shortest expression for w is denoted l(w). For any
w ∈ W , we define the left descent set L (w) ⊂ S to consist of those s ∈ S such that
l(sw) < l(w). We similarly define the right descent set R(w) to be those s such that
l(ws) < l(w).

Given an expression s1 · · · sN , a subexpression is a (possibly empty) expression of
the form si1 · · · siM , where 1 ≤ i1 < · · · < iM ≤ N . The Chevalley–Bruhat order is
the partial order on W defined by putting v ≤ w if an expression for v appears as a
subexpression of a reduced expression for w. Given any v, w ∈ W , let [v, w] be the
interval between v and w, that is [v, w] = {x ∈ W | v ≤ x ≤ w}.

The Kazhdan–Lusztig polynomials are most easily defined in terms of an auxiliary
family of polynomials, the R-polynomials. This family {Rv,w(q) ∈ Z[q] | v, w ∈ W} is
defined to be the unique collection of polynomials satisfying the following properties
(cf. [6, Theorem 5.1.1]): (i) Rv,w(q) = 0 if v 6≤ w; (ii) Rv,w(q) = 1 if v = w; and (iii)
if s ∈ R(w), then Rv,w(q) = Rvs,ws(q) if s ∈ R(v), and is qRvs,ws(q) + (q− 1)Rv,ws(q)
otherwise. Given the R-polynomials, the Kazhdan–Lusztig polynomials Pv,w(q) can
be described as the unique family of polynomials satisfying (cf. [6, Theorem 5.1.4]) (i)
Pv,w(q) = 0 if v 6≤ w; (ii) Pv,w(q) = 1 if v = w; (iii) degPv,w(q) ≤ (l(w)− l(v)− 1)/2
if v < w; and (iv) ql(w)−l(v)Pv,w(q−1) =

∑
x∈[v,w]Rv,x(q)Px,w(q) if v ≤ w. If v < w,

we write µ(v, w) for the coefficient of q(l(w)−l(v)−1)/2 in Pv,w(q). We write v−−w and
w−−v if µ(v, w) 6= 0.

We are finally ready to define cells. The left W -graph ΓL of W is the directed
graph with vertex set W , and with an arrow from v to w if and only if v−−w and
L (v) 6⊂ L (w). The left cells are extracted from ΓL as follows. Given any directed
graph, we say two vertices are in the same strong connected component if there exist
directed paths from each vertex to the other. Then the left cells of W are exactly the
strong connected components of the graph ΓL . The right cells are defined using the
analogously constructed right W -graph ΓR . We say v, w are in the same two-sided
cell if we can find a sequence v = w1, w2, . . . , wk = w such that wi, wi+1 lie in either
the same left or right cell.

We need one final ingredient to state our conjecture in the next section: the a-
function.

Let H denote the Hecke algebra of W over the ring A = Z[q1/2, q−1/2] of Laurent
polynomials in q1/2. This algebra is a free A -module with a basis T = {Tw | w ∈ W}
and with multiplication determined by TwTw′ = Tww′ if l(ww′) = l(w) + l(w′), and
T 2
s = q+(q−1)Ts for s ∈ S. Together with the basis T , we can define in H another

basis C = {Cw | w ∈ W}. The element Cw ∈ C can be expressed in terms of T and
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the Kazhdan–Lusztig polynomials by

Cw =
∑
y≤w

(−1)l(w)−l(y)ql(w)/2−l(y)Py,w(q−1)Ty.

Now consider the multiplication of the C -basis elements in H . We can write

CxCy =
∑
z

hx,y,zCz, hx,y,z ∈ A .

Let a(z) be the smallest integer such that qa(z)/2hx,y,z ∈ A + for all x, y ∈ W , where
A + = Z[q1/2]. It is a standard conjecture that {a(w) | w ∈ W} ⊂ Z is bounded
for any Coxeter group. The a-function was introduced by Lusztig in [18], where
he proved this conjecture for affine Weyl groups. In [4] it was shown that the a-
function is bounded for right-angled Coxeter groups. N. Xi recently showed that the
a-function is bounded for Coxeter groups with complete Coxeter graphs (i.e. no two
generators commute) [20]; this paper has further ramifications for our current article,
see Theorem 3.2. P. Zhou has recently proved that the a-function is bounded if W
has rank 3 [21].

3. Conjectures about cells of hyperbolic polygon groups

In this paper we take W to be a hyperbolic polygon group. This means the follow-
ing. Let H be the hyperbolic plane, and let ∆ ⊂ H be an n-sided geodesic polygon
with angles αi = π/ai, i = 1, . . . , n. (We omit the conditions the denominators ai
satisfy to make ∆ hyperbolic; we also allow the angles to vanish, in which case the
polygon has ideal vertices.) Label the sides of ∆ by σ1, . . . , σn, such that the angle αi
sits between the sides σi, σi+1, and where the subscripts are taken mod n as necessary.
Then the generating set S of W has n elements s1, . . . sn, corresponding to the sides
σi. We put m(si, sj) = ∞ unless σi and σj meet at the angle αk 6= 0. In the latter
case we put m(si, sj) = ak.

It is not hard to see that W is isomorphic to the discrete subgroup of isometries
of H generated by reflections in the lines through the σi. Thus there is an action of
W on H by reflections, the polygon ∆ is a fundamental domain, and the translates
{w · ∆ | w ∈ W} form a tessellation of H (note our convention that the reflection
action of W on H is a left action). The correspondence w 7→ w · ∆ is a bijection
between W and the tiles in the tessellation. Using this we identify W with the set of
all tiles.

We can also use this identification to define certain subsets of W . Recall that
L (w) denotes the set of left descents of an element w. Given any subset T ⊂ S,
we let W T be the (possibly empty) set of all w ∈ W such that L (w) = T . The
tessellation allows us to identify the sets W T as follows. First, W∅ consists of ∆
itself. Next, any edge of ∆ corresponds to a generator s ∈ S. Extending this edge to
a line divides the plane H into two half-spaces, one containing ∆ and one not. The
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half-space Hs not containing ∆ contains all elements w such that s ∈ L (w). Any
(non-ideal) vertex of ∆ corresponds to an order 2 subset T with W T 6= ∅. Namely
we have W T = Hs ∩ Hs′ , where T = {s, s′} and s, s′ label the edges of ∆ meeting
this vertex. Finally, if T, T ′ have order 2 and T ∩ T ′ = {s} has order 1, then W {s}

consists of Hs rW T ∩W T ′
. These give all subsets T such that W T 6= ∅.

We call a subgroup D ⊂ W finite dihedral if D is the parabolic subgroup for an
order 2 subset T with W T nonempty. Let D be the set of finite dihedral subgroups
and let T be the set of order 2 subsets indexing them. For any D ∈ D , let wD be the
longest element. Assume that the distinct nonzero exponents are e1 < e2 < · · · < em,
where m ≤ n. This means there are m isomorphism classes of dihedral subgroups of
W . We write D = D1 ∪ · · · ∪Dm, where Di is the set of finite dihedral subgroups of
exponent ei. We also let T = T1 ∪ · · · ∪ Tm be the corresponding partition of T .
For i = 1, . . . ,m let Wi = {wD | D ∈ Di} be the sets of longest elements. Hence
wD ∈ Wi if and only if D has exponent ei. Finally let li be the common length of the
elements in Wi.

We are now ready to give a conjectural description of the two-sided cells of W . Let
Cm, . . . , C1 ⊂ W be the sequence of subsets defined by

w ∈ Cm if and only if w = u.wD.v for some wD ∈ Wm,

and if i < m,

w ∈ Ci if and only if w = u.wD.v for some wD ∈ Wi,

and w 6= u.wD.v for any wD ∈ Wk with k > i.

Here we write z = x.y in W if z = xy and l(z) = l(x) + l(y). We also define subsets
Cid = {id} and

C0 = {w | w has a unique reduced expression}.
Let C be the collection {Cid, C0, . . . , Cm}.
3.1. Conjecture. (1) The decomposition C gives the partition of W into two-

sided cells.
(2) The a-function equals li on the two-sided cell Ci.

Figure 1 shows an example of the partition C for the triangle group

W237 = 〈r, s, t | r2 = s2 = t2 = (rs)3 = (rt)2 = (st)7 = 1〉.
There are three finite dihedral subgroups, of orders 4, 6, 14, corresponding to the
exponents 2, 3, 7. The subsets C3, C2, C1 are (respectively) the red, blue, and green
triangles. Finally the grey triangle is Cid and the yellow triangles are C0.

We remark that both Cid and C0 are known to be two-sided cells, the former for
trivial reasons and the latter from work of Lusztig [17, §§3.7–3.8]. We also have the
following theorem of Xi, which gives confirmation of Conjecture 3.1 for certain W ,
not necessarily hyperbolic:



6 M. V. BELOLIPETSKY, P. E. GUNNELLS, AND R. SCOTT

Figure 1. The triangle group W237

3.2. Theorem. [20] Suppose W is crystallographic and that no exponent of W is 2.
Then C gives the partition of W into two-sided cells.

Next we turn to the one-sided cells. Given any T ∈ Ti, define

(1) UT = W T r
⋃
j>i

Cj.

In particular if i = m, we have UT = W T . Let Ωi = {w−1 | w ∈ Ci}. The one-sided
cells will be built from the sets w · UT , where w ∈ Ωi and T ranges over Ti. We put
a partial order on Ωi by w � y if l(w) ≤ l(y) and there exists T, T ′ ∈ Ti such that
(w ·UT )∩ (y ·UT ′

) 6= ∅. We define Ω◦i to be the minimal elements in Ωi with respect
to this partial order.

3.3. Conjecture. The subsets {w · UT | w ∈ Ω◦i , T ∈ Ti} are the right cells in Ci.

Figures 2(a)–2(b) illustrate Conjecture 3.3 for W237 and the two-sided cell C3. The
red region in Figure 2(a), together with the purple triangles inside it, is the subset
UT = U23, where T = 〈s2, s3〉. This is a one-sided cell in C3. The purple triangles
are the elements in Ω3. In Figure 2(b) we see the translates w ·U23 as w ranges over
Ω3. Note that some regions meet others; indeed, if this happens then one translate
of U23 is entirely contained in another. The elements of Ω◦3 correspond to the purple
triangles in Figure 2(a) that lie at the ends of the orange regions. The orange regions,
together with the purple triangles in them, are the other one-sided cells in C3.

Conjectures 3.3 and 3.1 should be considered as a special case of conjectures from [5]
applied to hyperbolic polygon groups.

4. Word hyperbolic groups and automata

In this section we prove that certain languages in word hyperbolic groups are
regular. We will then apply these results to the languages Reduced(C) where C is a
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(a) U23 and Ω3 (b) The translates U23 · Ω3

Kazhdan–Lusztig cell in a hyperbolic polygon group. First we define word hyperbolic
groups and recall some of the standard facts we shall need. Details and additional
properties can be found, for example, in [7, 12].

Let (X, d) be a geodesic metric space. A geodesic triangle consists of 3 points in
X together with geodesics joining each pair of points. A geodesic triangle is called
δ-thin (δ ∈ R>0) if every side is in a δ-neighborhood of the other two sides. The
metric space X is called δ-hyperbolic if every geodesic triangle is δ-thin.

Given a group W and a generating set S, we let Cay(W,S) denote the correspond-
ing Cayley graph, which we regard as a geodesic metric space by identifying each
edge with a unit length interval. Note that the metric restricts to the word metric
dS : W ×W → Z≥0 on the vertices of the Cayley graph; that is, for any u, v ∈ W
the distance dS(u, v) is the minimal length of a geodesic from u to v in Cay(W,S).
We define the length of an element w ∈ W by l(w) = dS(1, w).

4.1. Definition. A finitely generated group W is word hyperbolic if for some (equiv-
alently, any) finite generating set S, there exists a δ such that Cay(W,S) is δ-
hyperbolic.

It is known that a word hyperbolic group cannot contain a subgroup isomorphic
to Z× Z. For Coxeter groups, this condition is also sufficient.

4.2. Proposition. [9, Corollary 12.6.3] A Coxeter group W is word hyperbolic if and
only if it contains no subgroup isomorphic to Z× Z.

In particular, if a Coxeter group W is a lattice in the isometry group of H (for
example, a hyperbolic polygon group), then W is word hyperbolic.

The key property of hyperbolic groups that we shall need is the fellow-traveler
property. For a group W with generating set S, we let S∗ denote the language of all
words over the alphabet S. Any word α ∈ S∗ determines a path in Cay(W,S) that
starts at the identity vertex 1 ∈ W . We let |α| denote the length of this path and
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α ∈ W denote the terminal vertex. Keeping the terminology for Coxeter groups, we
say that a word α ∈ S∗ is an expression for w ∈ W if α = w. (Note that S = S−1, so
that every element of W is represented by some α ∈ S∗, i.e. so that the map α 7→ α
from S∗ to W is surjective.) An expression α for w is a reduced expression for w if
the corresponding path in Cay(W,S) is a minimal length geodesic between 1 and w.
In other words, α satisfies |α| = dS(1, w) = l(w) and α = w.

A subset L ⊆ S∗ is called a normal form for W if the map α 7→ α from L to W is
surjective. The normal form we are interested in most is the geodesic normal form,
denoted by Reduced(W ), consisting of all reduced expressions for all elements in W .
More generally, for any subset X ⊆ W , we define Reduced(X) to be the set of all
reduced expressions for elements of X.

Two words α, β ∈ S∗ with |α| ≤ |β|, can be written uniquely as α = s1s2 · · · sn and
β = t1t2 · · · tn+p where si, tj ∈ S. We say that α and β are (synchronous) k-fellow-
travelers if dS(s1 · · · si, t1 · · · ti) ≤ k for all i = 1, . . . , n and dS(s1 · · · sn, t1 · · · tn+i) ≤ k
for i = 1, . . . , p. In other words, the corresponding paths for α and β in the Cayley
graph are never more than k-apart.

4.3. Definition. Given a group W with generating set S, a normal form L ⊆ S∗ is said
to have the fellow-traveler property (respectively, two-sided fellow-traveler property)
if there exists a k > 0 such that for any α, β ∈ L with α = βt for some t ∈ S ∪ {1}
(resp., α = sαt for some s, t ∈ S ∪ {1}), the words α and β are k-fellow-travelers.

4.4. Remark. The (two-sided) fellow-traveler property for a normal form L is known to
be equivalent to W having an automatic structure (resp., biautomatic structure) with
respect to L in the sense of [11]. In particular, such a normal form must be recognized
by a finite-state automaton, hence is a regular language. Obviously, biautomatic
implies automatic.

The key fact we shall need is that word hyperbolic groups are biautomatic with
respect to the geodesic normal form.

4.5. Proposition. If W is word hyperbolic, and S is any finite generating set, then
Reduced(W ) has the two-sided fellow-traveler property.

Proof. The two-sided fellow-traveler property is equivalent to both the normal form
and its inverse language having the (one-sided) fellow-traveler property [11, Defini-
tion 2.5.4 and Lemma 2.5.5]. Since the geodesic language is closed under taking
inverses, it is enough to show that Reduced(W ) satisfies the fellow-traveler property,
and this is well-known [11, Theorem 3.4.5]. �

5. Hyperbolic polygon cells and regular languages

In this final section we prove our main results, Theorems 5.1 and 5.3. The first
uses only the one-sided fellow traveler property, but the second requires the stronger
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two-sided property. We then combine them with Conjectures 3.1 and 3.3 to deduce
the regularity of certain Kazhdan–Lusztig cells.

Given a group W and finite generating set S, let µ be any reduced word in S∗. As
above, we write w = u.v in W if w = uv and l(w) = l(u) + l(v). We then define the
subset Xµ of W by

Xµ = {w ∈ W | w = u.µ.v for some u, v ∈ W}.
In other words, Xµ consists of all elements of W that have some reduced expression
containing µ as a (consecutive) subword. The language Reduced(Xµ) therefore con-
sists of all reduced expressions that are equivalent to a reduced expression containing
µ as a subword.

5.1. Theorem. Let W be a word hyperbolic group, let S be any finite generating set
S satisfying S = S−1, and let µ be any word in Reduced(W ). Then Reduced(Xµ) is
a regular language.

Proof. Since W is word hyperbolic, Reduced(W ) is a regular language. The sublan-
guage Reducedµ(W ) consisting of all reduced words that contain µ as a subword (i.e.,
that match the regular expression . ∗ µ.∗) is also a regular language.

Now let A be a finite state automaton accepting Reduced(W ), and let k be a
positive integer such that Reduced(W ) has the k-fellow-traveler property. Let Nk

be the set of all reduced expressions in S∗ with length ≤ k. Then the standard
automaton Mε based on (A,Nk) (see [11, Definition 2.3.3]) accepts the language

L = {(α, β) ∈ Reduced(W )2 | α = β and α and β are k-fellow travelers},
which is therefore regular. But since Reduced(W ) satisfies the k-fellow-traveler prop-
erty, this language consists precisely of pairs of reduced expressions having the same
image in W , i.e.,

L = {(α, β) ∈ ReducedS(W )× ReducedS(W ) | α = β}.
The language Reduced(Xµ) is obtained by intersecting L with the language Reduced(W )×
Reducedµ(W ) and then projecting onto the first factor. By standard predicate calcu-
lus for regular languages (see, e.g., [11, Theorem 1.4.6]), the language Reduced(Xµ)
is therefore regular. �

5.2. Corollary. Let W be a hyperbolic polygon group, and let C be a conjectural two-
sided cell in the decomposition C of Conjecture 3.1. Then the language Reduced(C)
is regular.

Proof. For each finite dihedral subgroup D, let µD be any reduced expression for the
longest element wD. Then

Reduced(Cm) =
⋃

µD∈Wm

Reduced(XµD),
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and for 1 ≤ i < m,

Reduced(Ci) =
⋃

µD∈Wi

Reduced(XµD) \
⋃

i<j≤m

Reduced(Cj).

Since these are all obtained using finite unions, complements, and intersections of
regular languages, they are regular. For Reduced(Cid) and Reduced(C0), we note that
the former is finite, and the latter is the complement of Reduced(Cid)∪Reduced(C1)∪
· · · ∪ Reduced(Cm) in Reduced(W ). It follows that both are regular as well. �

5.3. Theorem. Let W be a word hyperbolic group, and let S be any generating set.
Suppose X ⊆ W is such that Reduced(X) is a regular language. Then for any w ∈ W ,
the language Reduced(w ·X) is also regular.

Proof. In fact, the theorem holds for any normal form on a group that satisfies the
two-sided fellow-traveler property (i.e., is biautomatic). The proof is fairly immediate
from the definitions; a reference is [19, Lemma 1.2]. �

5.4. Corollary. Let W be a hyperbolic polygon group and let w ·UT (for w ∈ Ω◦i and
T ∈ Ti) be one of the conjectured one-sided cells in Ci. Then Reduced(w · UT ) is
regular.

Proof. First, we claim that the language Reduced(W T ) is regular. This is easily seen
using the canonical automaton Acan that accepts Reduced(W ) [6, Theorem 4.8.3].
The states of this automaton, all of which are accepting, are given by the regions
that are the connected components of the complement of the hyperplane arrangement
determined by the small roots [6, §4.7]. Since the simple roots are small, the subset
of the tessellation of H corresponding to W T is given by a union of states of Acan.
Hence we can make an automaton accepting Reduced(W T ) by starting with Acan

and only making certain states accepting. Thus Reduced(W T ) is regular. Since all
of the Reduced(Cj) are regular, it follows that Reduced(UT ) is regular. Hence, by
Theorem 5.3, Reduced(w · UT ) is also regular. �

5.5. Remark. Conjectures 3.3 and 3.1 are true for right-angled polygon groups by [4],
and more generally for polygons with equal angles that satisfy the crystallographic
condition by [5, §4]. Thus we can apply the results of this section to show regularity
of the languages attached to the cells for those groups.
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