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Our aim is to combine two modern lines of enquiry. The first line is generalised Burnside
rings which were recently introduced by Hartmann and Yalçin [10]. The second line is
the study of tensor categories attached to cells in affine Weyl groups by Bezrukavnikov,
Finkelberg and Ostrik [3, 1]. We show how one can use generalised Burnside rings to carry
through explicit calculations with module categories.

The note is organised as follows. In section 1 we introduce generalised Burnside rings.
Our generalised Burnside ring is slightly more general than the one of Hartmann and Yalçin.
We define it for a general functor rather than the cohomology functor. For our applications,
the most crucial functor is the Schur multiplier µ(G), so we describe the table of marks
for the Schur multiplier for the symmetric groups S4 and S5. In section 2 we discuss the
connection between µ-decorated sets and G-algebras. In section 3 we discuss the connection
between µ-decorated sets and groupoids. In section 4 we study module categories in the
spirit of Bezrukavnikov and Ostrik [3]. In section 5 we investigate base sets of Kazhdan-
Lusztig cells [13]. We use a computer calculation with Kazhdan-Lusztig polynomials and a
pen-and-paper calculation in the Burnside ring of S4 to determine the base set of the largest
finite double cell in the affine Weyl group of type F4. In the final section 6 we explain an
application to representation theory of the reduced enveloping algebra Uχ(g) where g is of
the type F4 and χ is of the type F4(a3).
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1. Generalised Burnside ring

Let G be a finite group and S(G) its category of subgroups. The objects of S(G) are
subgroups of G. The morphisms S(A,B) are conjugations γx : A → B, γx(a) = xax−1,
x ∈ G whenever xAx−1 ⊆ B, restricted to A. Thus, γx and γy define the same morphism
in S(A,B) whenever y−1x is in the centraliser of A. The composition of morphisms is the
composition of homomorphisms.

A generalised Burnside ring BΦ
R(G) depends on a contravariant functor Φ from S(G) to

the category of semigroups and a commutative ring of coefficients R. As an R-module it is
generated by disjoint union of all Φ(A), A ∈ S(G). We write 〈a,A〉 for an element of the
semigroup a ∈ Φ(A). The R-module generators satisfy the relations

〈a,A〉 = 〈Φ(γg)(a), g−1Ag〉

for all g ∈ G, A ∈ S(G), a ∈ Φ(A). Notice that 〈a,A〉 + 〈b, A〉 6= 〈ab, A〉 in general (we
think of semigroups as multiplicative semigroups). The multiplication is R-bilinear, defined
on the R-module generators by the formula

〈a,A〉·〈b, B〉 =
∑

AxB∈A\G/B

〈Φ(γ1 : A∩xBx−1 → A)(a)Φ(γx−1 : A∩xBx−1 → B)(b), A∩xBx−1〉.

Lemma 1.1. Defined as above, BΦ
R(G) is an associative R-algebra. If Φ is a functor to

monoids then BΦ
R(G) is unitary.

Proof. A sleek way to prove this is to interpret BΦ
R(G) as a Grothendieck group of Φ-decorated

G-sets. By definition, a Φ-decorated G-set is a finite set X with a G-action and a frill
πx ∈ Φ(Gx) attached to each point x ∈ X. Here Gx is the stabiliser of x in G. The frills πx
must be equivariant, in the sense that πgx = Φ(γg)(πx).

The element 〈a,A〉 represents a homogeneous set G/A with frills πgA = Φ(γg)(a). The ad-
dition corresponds to disjoint union [X] + [Y ] = [X

∐
Y ] and the multiplication corresponds

to the direct product [X] · [Y ] = [X × Y ], where the frills multiplied in the corresponding
semigroup (note that G(x,y) = Gx ∩Gy):

π(x,y) = Φ(γ1 : G(x,y) → Gx)(πx)Φ(γ1 : G(x,y) → Gy)(πy).

If Φ is a functor to monoids, then 〈1, G〉 is the identity of BΦ
R(G) as can be easily verified.

The subgroup category S(G) is an example of a fusion system. Burnside rings of fusion
systems were constructed by Diaz and Libman [6]. Generalised Burnside rings can be ex-
tended to fusion systems as well. An interested reader is invited to follow this lead, especially
if the reader can think of useful applications.

The notion of a mark homomorphism can be extended to generalised Burnside rings (cf.
[10, §6]). Let S be an associative R-algebra, α : Φ(A)→ S× a semigroup homomorphism for
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some A ∈ S(G). The corresponding mark is an R-linear map fαA : BΦ
R(G)→ S given by the

formula

fαA(〈b, B〉) =
1

|B|
∑
g∈X

α(Φ(γg : A→ B)(b)), (1)

where X = {g ∈ G | gAg−1 ⊆ B}.

Lemma 1.2. The mark fαA is an R-algebra homomorphism. It is unitary if Φ is a functor
to monoids and α is unitary.

Proof. Let us reinterpret the mark using Φ-decorated sets. The condition gAg−1 ⊆ B means
that Ag−1B = g−1B, i.e., A lies in the stabiliser of g−1B. The frill of X with [X] = 〈b, B〉
at g−1B is Φ(γg)(b). Thus, on the level of decorated sets,

fαA([X, πx]) =
∑
x∈XA

α(Φ(γ1 : A→ Gx)(πx)) (2)

and, consequently,

fαA([(X, πx)× (Y, ψy)]) =
∑

(x,y)∈(X×Y )A

α
(

Φ(γ1 : A→ Gx)(πx)Φ(γ1 : A→ Gy)(ψy)
)

=

∑
x∈XA

∑
y∈Y A

(
α(Φ(γ1 : A→ Gx)(πx))

)(
α(Φ(γ1 : A→ Gy)(ψy))

)
= fαA(X, πx)f

α
A(Y, ψy)

In the unitary case, the identity of BΦ
R(G) is 〈1, G〉 and fαA(〈1, G〉) = α(Φ(γ1)(1)) =

α(1Φ(A)) = 1S.

Note that if Φ(A) is a finite abelian group there is an isomorphism between the group of
linear characters of Φ(A) and the group Φ(A). If all Φ(A) are finite abelian groups then the
number of distinct marks is equal to the rank of BΦ

R(G) over R. Let us formulate this as a
corollary:

Corollary 1.3. Suppose all Φ(A) are finite abelian groups and N is the least common mul-
tiple of all the orders of elements in all Φ(A). If R is a field containing a primitive N-th
root of unity, then the mark homomorphisms define an isomorphism BΦ

R(G)→ ⊕R.

Before formulating the next property, let us introduce the notion of the dual set. Let Y
be a Φ-decorated set such that each frill πm ∈ Φ(Gm) is invertible. The dual set Y ∨ has the
same underlying G-set Y but the frills are inverted: each πm ∈ Φ(Gm) is replaced with π−1

m .

Lemma 1.4. If Φ(A) is abelian for each A ≤ G then BΦ
R(G) is a commutative ring. If Φ(A)

is a group for each A ≤ G then BΦ
R(G) is a ring with involution.

Proof. The involution is defined by [Y ]∨ := [Y ∨]. Now both statements follow from the
definition of BΦ

R(G).
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If R = Z, we write BΦ(G) for BΦ
R(G). Several functors Φ are interesting for applica-

tions. First of all, the trivial functor Φ(H) = {1} gives the classical Burnside ring B(G), the
Grothendieck ring of finite G-sets. Another interesting functor is Φ(H) = Rep+(H), the ef-
fective part of the representation ring of H over Z. It has two different semigroup structures,
corresponding to tensor products or direct sums of representations. The corresponding Burn-
side ring BΦ(G) is the Grothendieck ring of pairs (X, V ), a finite G-set and a G-equivariant
vector bundle on it. Another interesting functor is the effective part of Burnside ring itself
Φ(H) = B+(H). Again it has two different semigroup structures, corresponding to products
or unions. The corresponding Burnside ring BΦ(G) is the Grothendieck ring of fibred G-sets
Y → X, i.e. surjective maps of G-sets, where one considers Y as an equivariant fibration
over X. Hartmann and Yalçin have studied Φ(H) = H∗(H,M) and Φ(H) = Hn(H,M),
where M is a G-module [10]. They have called the corresponding BΦ(G) a cohomological
Burnside ring.

The second cohomological Burnside ring is of particular interest to us. It will be studied
for the rest of the paper. Namely, if K is a field, we need the functor µK(H) = H2(H,K×),
where H acts trivially on the multiplicative group K× of the field. As soon as K× has enough
torsion, say K admits a |G|-th primitive root of 1 (for instance, if K is algebraically closed of
characteristic p not dividing |G|), then µK(H) is the Schur multiplier of H [12]. In particular,
it is independent of K and will be denoted simply by µ(H), with the corresponding Burnside
ring denoted Bµ(G).

We present the tables of marks for Bµ(G) for the symmetric groups S4 and S5 in Tables 1
and 2. We use the notation 〈K〉 = 〈1, K〉 and 〈K ′〉 = 〈x,K〉, where x is a generator
of C2, the only possible nontrivial µ(H), and f ′H is a mark with nontrivial character of
C2. In these tables D8 and D10 denote the standard dihedral group of orders 8 and 10,
K1 = 〈(12), (34)〉 and K2 = 〈(12)(34), (13)(24)〉 denote nonconjugate Klein four groups, and
Cn denotes a cyclic subgroup of order n generated by a single cycle. The notation Hn is
reserved for various non-standard subgroups of order n: H2 is generated by (1, 2)(3, 4), H20

is the normaliser of C5 in S5, and H6 := 〈(123), (12)(45)〉 is a nonstandard S3. The columns
of the tables correspond to values of the marks fH or f ′H ordered as for the rows. Appended
to the tables are the values of the equivariant Euler characteristic M : Bµ(G) → Z. It will
be defined in Section 4. Notice that BµK over any field K of characteristic not 2 will have
the same table of marks.

The tables were computed by lifting data from the ordinary table of marks and the
following lemma:

Lemma 1.5. Let H ≤ K ≤ G, K a field of characteristic not 2. Suppose that |µ(K)| =
|µ(H)| = 2 and 2 does not divide the index |K : H|. Then f ′H(〈K ′〉) = −fH(〈K〉).

Proof. Let τ ∈ µ(K) and ν ∈ µ(H) be non-trivial cocycles. The corestriction map on
cocycles satisfies resK,H(corH,K(ν)) = |K : H|ν [12, Ch. 1]. Thus, resK,H(corH,K(ν)) = ν.
Therefore ν corestricts to the nontrivial cocycle τ and resK,H(τ) 6= 1. The lemma now follows
from Equation (1).
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2. G-algebras and µK-decorated sets

A G-algebra is an associative algebra A with a (left) action of G. As a default option, an
action is always a left action. However, right actions often appear naturally. For instance,
the group G acts (on the right) on the abelian category A−Mod of left A-modules.

We say that G has a right action on a category C if for every g ∈ G, we have an
autoequivalence [g] : C → C, together with natural isomorphisms γg,h : [g] ◦ [h] → [hg], such
that [1] is the identity functor. In this case, we call C a G-category.

Sometimes in the literature such actions are called “weak” as opposed to “strong” actions,
which satisfy commutativity of the associativity constraint diagrams

[f ] ◦ [g] ◦ [h]
γf,g−−−→ [gf ] ◦ [h]

γg,h

y yγgf,h
[f ] ◦ [hg]

γf,hg−−−→ [hgf ]

for all f, g, h ∈ G. Here we are not interested in associativity constraints.
Let us describe [g] and γg,h for C = A − Mod in detail. On objects, M [g] = M with

the new action of A given by a ·[g] m = g(a)m. On morphisms, f [g] = f . Finally, for each
object M , the map γg,h(M) : (M [h])[g] → M [hg] is the identity map. Notice that a ·[h][g] m =
g(a) ·[h] m = h(g(a))m = a ·[hg] m. Notice further that this action is strong.

Going back to a general G-category, we say that an object X is equivariant if all its twists
X [g] are isomorphic to X and if there exists a system of isomorphisms αg : X → X [g] such
that the diagrams

X
αh−−−→ X [h]

αgh

y y(αg)[h]

X [gh] γg,h(X)
←−−−− X [g][h]

are commutative for all g, h ∈ G. This notion allows us to characterise A∗G-modules among
A-modules where A ∗ G is the skew group algebra, i.e. a free left A-module with a basis G
and a multiplication coming from those of A and G with an additional rule ga = g(a)g for
all a ∈ A, g ∈ G.

Lemma 2.1. An A-module M is an equivariant object of A−Mod if and only if it admits
a structure of an A ∗G-module.

Proof. The connection between the equivariant structure and the action of G is given by
αg(m) = g ·m. One can verify that the two sets of axioms are equivalent.

A functor Φ: C → D between G-categories is a G-functor if it is equipped with a system
of natural isomorphisms

βg : Φ ◦ [g]C → [g]D ◦ Φ , g ∈ G
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such that the square

Φ(X [g])
βg(X)−−−→ Φ(X)[g]

Φ(t[g])

y yΦ(t)[g]

Φ(Y [g])
βg(Y )−−−→ Φ(Y )[g]

is commutative for all t ∈ C(X, Y ), g ∈ G and the pentagon

Φ(X [gh]) Φ(X [g][h]) Φ(X [g])[h]� -Φ(γg,h(X)) Φ(βh(X [g]))

Φ(X)[gh] Φ(X)[g][h]
? ?

βgh(X) βg(X)[h]

�
γg,h(Φ(X))

is commutative for all objects X ∈ C and g, h ∈ G. A G-equivalence is a G-functor which is
an equivalence.

Lemma 2.2. Let Φ: C → D be a G-equivalence between G-categories. If X is a G-
equivariant object in C then Φ(X) is a G-equivariant object in D.

Proof. Let X = (X,αg) be an equivariant object. The equivariant structure on Φ(X) is
given by the compositions βg(X) ◦ Φ(αg) : Φ(X)→ Φ(X [g])→ Φ(X)[g]. To verify the axiom
we analyse the following diagram:

Φ(X) Φ(X [h]) Φ(X)[h]- -Φ(αh) βh(X)

? ? ?

Φ(αgh) Φ(α
[h]
g ) Φ(αg)

[h]

Φ(X [gh]) Φ(X [g][h]) Φ(X [g])[h]� -Φ(γg,h(X)) βh(X [g])

Φ(X)[gh] Φ(X)[g][h]
? ?

βgh(X) βg(X)[h]

�
γg,h(Φ(X))

The top left square is commutative because X is equivariant. The top right square and
the bottom pentagon are commutative because Φ is a G-functor. Thus, the whole diagram
is commutative for all g, h ∈ G. It remains to notice that the outer edges of the diagram
read off the equivariance condition for Φ(X).
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We say that two G-algebras A and B are G-Morita equivalent if there exists a G-
equivalence Φ: A−Mod→ B−Mod. We say that a Morita context (A,B, AMB, BNA, φ, ψ)
is nondegenerate if φ and ψ are isomorphisms. We say it is G-equivariant if

(1) both M and N are G-modules,
(2) g · (amb) = (g · a)(g ·m)(g · b) for all a ∈ A, b ∈ B, g ∈ G, m ∈M ,
(3) g · (bna) = (g · b)(g · n)(g · a) for all a ∈ A, b ∈ B, g ∈ G, n ∈ N ,
(4) the bimodule maps φ : M ⊗B N → A and ψ : N ⊗A M → B are homomorphisms of

G-modules.

The following theorem characterises G-Morita equivalences within the context of Morita
theory:

Theorem 2.3. The associative G-algebras A and B are G-Morita equivalent if and only if
there exists a nondegenerate G-equivariant Morita context (A,B, AMB, BNA, φ, ψ).

Proof. A nondegenerate G-equivariant context gives a G-equivalence Φ: A−Mod→ B−Mod
by Φ(P ) = N ⊗A P with an inverse equivalence T 7→M ⊗B T . The equivariant structure on
Φ is given by

N ⊗A P [g] → (N ⊗A P )[g] , n⊗ p 7→ g · n⊗ p.
Commutativity of the squares and the pentagons is obvious.

In the opposite direction, let Φ: A −Mod → B −Mod be a G-equivalence and Ψ: B −
Mod→ A−Mod its inverse G-equivalence. Out of this one derives a standard nondegenerate
Morita context: N = Φ(A), M = Ψ(B). As A and B are progenerators, the functor Φ is
naturally isomorphic to N⊗A and Ψ is naturally isomorphic to M⊗B. The isomorphisms
φ : M ⊗B N ∼= Ψ(Φ(A)) → A and ψ : N ⊗A M ∼= Φ(Ψ(B)) → B come from the natural
isomorphisms.

It remains to check the G-action. The object N = Φ(A) is G-equivariant by Lemma 2.2,
i.e., it is naturally a B ∗G-module by Lemma 2.1. Thus, g · (bn) = (g · b)(g ·n) for all b ∈ B,

g ∈ G, n ∈ N . Since Φ is an equivalence of categories, EndB(N)
Φ∼= EndA(A) ∼= A, and

N is a B-A-bimodule. Finally, the property g · (na) = (g · n)(g · a) for all a ∈ A, g ∈ G,
n ∈ N follows from the same property for A. To prove this, observe that if Ra is a right
multiplication by a then the property for A manifests in the diagram

A
αg−−−→ A

Ra

y yRg(a)

A
αg−−−→ A

being commutative (N.B., A[g] = A). Applying Φ gives commutativity of the left square in
the diagram

N
Φ(αa)−−−→ N

βg(N)−−−→ N

Ra

y Rg(a)

y yRg(a)

N
Φ(αg(a))−−−−−→ N

βg(a)(N)
−−−−−→ N
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(N.B., Φ(Ra) = Ra = R
[g]
a ). The right square is commutative by the definition of a G-functor.

Thus, the whole diagram is commutative that manifests in g · (na) = (g · n)(g · a) for all
a ∈ A, g ∈ G, n ∈ N .

Similarly, M = Ψ(B) is an A-B-module with a compatible action of G. The bimodule
isomorphisms φ : M⊗BN → A and ψ : N⊗AM → B come from the isomorphisms Ψ(Φ(A)) ∼=
A and Φ(Ψ(B)) ∼= B. The latter are isomorphisms of G-modules. Hence so are φ and ψ.

Every G-algebra A over K admits a canonical µK-decorated set Irr(A) of isomorphism
classes of absolutely simple A-modules. Recall that a simple A-module M is absolutely
simple if EndA(M) = K. The (left) action of G on Irr(A) comes from the (right) action on
the category A−Mod: g · [M ] = [M [g−1]].

Let us observe the cocycle. Let GM be the stabiliser of [M ] ∈ Irr(A), a ∈ HomK(A ⊗
M,M) the A-action on M . Since GM does not change the isomorphism class of the module,
GMa ⊆ GL(M)a. The stabiliser of a in GL(M) is the group of module automorphisms of
M , which is K× since M is absolutely irreducible. Hence, X 7→ X · a is a bijection from
the group PGL(M) to the orbit GL(M)a. Thus, g 7→ g−1 · a defines a natural function
φM : GM → PGL(M). This function is a group homomorphism because the actions of GM

and PGL(M) commute. Indeed, the action of GM factors through GL(A), while GL(A) and
PGL(M) act on the different tensor components of HomK(A⊗M,M). Hence,

φ(gh) · a = (gh)−1 · a = h−1 · (g−1 · a) = h−1 · (φ(g) · a) = φ(g) · (h−1 · a) = φ(g)φ(h) · a.

The obstruction to lifting of φM to a homomorphism GM → GL(M) is a cocycle θM ∈
Z2(GM ,K×), well defined up to a coboundary. Thus, the frill πM := [θM ] ∈ µK(GM) and
Irr(A) is a µK-decorated G-set, although it does not have to be finite for an arbitrary A.

Theorem 2.4. The function Υ([A]) = [Irr(A)] is a bijection from the set of G-Morita
equivalence classes of semisimple split G-algebras to the set of isomorphism classes of finite
µK-decorated G-sets. Moreover, using the multiplication in Bµ(G), we have

Υ([A⊗B]) = Υ([A])Υ([B]), Υ([A⊕B]) = Υ([A]) + Υ([B]) and Υ([Aop]) = Υ([A])∨.

for all semisimple split G-algebras A and B.

Proof. To prove bijectivity we describe the inverse function Υ−1. Let X be a finite µK-
decorated G-set, X0 ⊆ X a set of representatives of G-orbits. For each point m ∈ X0 let us
choose an irreducible projective representation Vm of Gm that affords the frill πm. Let Tm be
the right transversal of Gm in G. Now, for each x ∈ X there exist unique m ∈ X0, g ∈ Tm
such that x = g ·m. We define a projective representation Vx of Gx by

Vx = Vm, h · v := (g−1hg) · v, ∀h ∈ Gx, v ∈ Vx = Vm.

The collection V = (Vx, x ∈ X) of vector spaces is a G-equivariant vector bundle on X [3].
In plain terms, it means that there are linear maps Θx(g) : Vx → Vg·x for all g ∈ G, x ∈ X
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such that Θgx(h)Θx(g) = Θx(hg) and Θx(1) = IVx . To see them, observe a bijection between
V and the fibre product ∐

m∈X0

G×Gm Vm :=
∐
m∈X0

G× Vm
/
∼

∼=−→ V

where (g, v) ∼ (g′, v′) if and only if they are in the same G × Vm and there exists h ∈ Gm

such that g′ = gh, v′ = h−1v. Now Θx(g)([h, v]) = [gh, v]. Using this, we can construct a
semisimple split G-algebra

A := ⊕x∈XEndK(Mx), g · (αx) = (Θx(g)αxΘgx(g
−1))

with Irr(A) isomorphic to X as µK-decorated G-sets. Notice that the different choice of X0

or one of Tm will lead to an isomorphic algebra, while a different choice of one of Vm will
lead to a G-Morita equivalent algebra. Thus Υ is a bijection.

The first two properties of Υ are immediate. The last property follows from the fact
that the simple Aop-modules are the dual spaces M∗ of simple A-modules M . The cocycle
of GM -action on M∗ is π−1

M .

Theorem 2.4 gives a new presentation of the Burnside ring BµR(G). As a left R-module
it is generated by G-Morita equivalence classes of semisimple split G-algebras subject to
relations

[A⊕B] = [A] + [B]

while the multiplication is given by the rule

[A] · [B] = [A⊗B].

We finish this section outlining the role of generalised Burnside rings in number the-
ory. A similar construction for the usual Burnside rings has recently been used by T. and
V. Dokchitser to prove a partial case of the parity conjectures [7].

Let F ≤ K be a G-Galois extension of algebraic number fields. Let us consider a cen-
tral simple n2-dimensional algebra S over KH , split over K, where H is a subgroup of
G. The algebra S is uniquely determined up to an isomorphism by its system of factors
αS ∈ H1(H,PGLn(K)). The long exact sequence in nonabelian cohomology gives an embed-
ding H1(H,PGLn(K)) ↪→ H2(H,K×). Thus, we can think that αS ∈ H2(H,K×). Then non-
isomorphic algebras S can have the same αS. By Artin-Wedderburn’s theorem, S ∼= Mk(DS)
where Ds is a simple central division algebra. Then αS = αT if and only if DS

∼= DT .
Now we can interpret 〈a,H〉 ∈ Bµ(G) as a Morita equivalence class [A] of a simple KH-

algebra A split over K with αA = a. This class contains a unique (up to an isomorphism)
division algebra D, so 〈a,H〉 ∈ Bµ(G) can also be interpreted as an isomorphism class [D]
of division KH-algebras, split over K with αD = a

Now the extended Burnside ring will play the same role for the study of central simple
algebras as the usual Burnside ring plays for the study of fields: various number theoretic
concepts become group homomorphisms from Bµ(G) to abelian groups [7]. For instance,
a zeta function ζD(z) of a division algebra D extends to a group homomorphism to the
meromorphic functions ζ : Bµ(G) → M(z): on basis elements ζ(〈a,H〉) = ζD(z) where D is
the division central KH-algebra, split over K with αD = a.

10



3. Groupoids and µK-decorated sets

Over a field K, there is a bijection between elements of µK(G) and isomorphism classes
of central extensions

1→ K× → G̃→ G→ 1.

The goal of this section is to observe that µK-decorated sets admit a similar interpretation
via groupoids. Any G-set X defines the action groupoid GX = G×X over the base X. The
maps π1, π2 : GX → X are π1(g, x) = g ·x and π2(g, x) = x. The product (g, x)(h, y) = (gh, y)
is defined whenever π2(g, x) = π1(h, y). A central extension of GX by K× is an exact sequence
of groupoids

1→ K× ×∆X → G̃X → GX → 1

where K××∆X is a trivial groupoid on the diagonal ∆X ⊆ X×X [15], i.e., π1, π2 : K××∆X →
∆X are both π1(g, x, x) = π2(g, x, x) = (x, x) and (g, x, x)(h, x, x) = (gh, x, x).

Lemma 3.1. There are natural bijections between the following sets:

(1) isomorphism classes of finite µK-decorated G-sets, and
(2) isomorphism classes of central extensions by K× of G-action groupoids on finite sets.

Proof. Such central extensions are defined by central extensions of the diagonal groups Gx,x =
π−1

1 (x) ∩ π−1
2 (x). These diagonal groups are point stabilisers Gx and their extensions are

defined by πx ∈ µK(Gx).
The equivariance assumption on frills is necessary for the existence of the central exten-

sion: each g ∈ G defines an automorphism of G̃ by (h, x) 7→ (ghg−1, gx). This automorphism
gives an isomorphism between central extensions of Gx and Gg·x. We leave it to the reader

to check that the equivariance is sufficient for G̃ to be well defined.
Thus, central extensions of action groupoids and µK-decorated sets are defined by the

same data, so there is an obvious natural isomorphism between the sets of isomorphism
classes of both.

Furthermore, it is possible to write a presentation of Bµ(G) in the language of central
extension groupoids. We leave the details to an interested reader.

4. Module categories and µK-decorated sets

To explain the final (in this paper) interpretation of the generalised Burnside ring Bµ(G),
we need to contemplate the relation between a G-algebra A and the skew group ring A ∗G.
We have already seen that A − Mod is a G-category. What is about A ∗ G − Mod? It
is a (right) module category over G −Mod. This means there is an exact tensor product
bifunctor

� : A ∗G−Mod × G−Mod→ A ∗G−Mod

with associativity and unity natural transformations

(M � V ) � V ′
∼=−→M � (V ⊗ V ′), M �K

∼=−→M
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where K is the trivial G-module subject to the commutativity of the pentagon and triangle
diagrams [8, 16]. Both citations are comprehensive sources on module categories. We will
use their terminology and results freely in this section.

The tensor product M � V of an A ∗ G-module M and a G-module V is just the usual
tensor productM⊗V ofG-modules with A acting on the first component. In fact, A∗G−Mod
is naturally equivalent (as a module category) to the module category A−ModG [8, 16]. To
construct the latter, A is considered as an algebra in G−Mod and A−ModG is the category
of A-modules in G−Mod.

Now we indulge in a philosophical digression: the precise relation between A−Mod and
A ∗ G −Mod is of duality. Lemma 2.1 gives an equivalence between A ∗ G −Mod and the
category of equivariant objects in A −Mod with fixed equivariant structures. The Cohen-
Montgomery duality for actions tells us that (A ∗G)#(KG)∗ ∼= Mn(A) where n is the order
of G [5]. Thus, A −Mod is equivalent to (A ∗ G)#(KG)∗ −Mod which is the category of
G-graded A ∗G-modules.

Lemma 4.1. Let A and B be associative G-algebras. The categories A ∗ G − Mod and
B ∗G−Mod are equivalent as module categories over G−Mod if and only if there exists a
nondegenerate G-equivariant Morita context (A,B, AMB, BNA, φ, ψ).

Proof. The category A ∗G−Mod is naturally equivalent to A−ModG, the category of A-
modules in G−Mod. A nondegenerate G-equivariant Morita context is just a nondegenerate
Morita context in G−Mod. Thus, the lemma is just a standard Morita theorem stated inside
the category G −Mod. For instance, our proof of Theorem 2.3 set in G −Mod instead of
vector space but with the trivial group will do the job.

It is useful to introduce a more intuitive geometric language [3, 1]. We can think of a
µK-decorated G-set X as a G-Morita equivalence class [A] of split semisimple G-algebras over
K. By Lemma 4.1, the category A ∗ G−Mod is canonically attached to X, i.e. if X = [A]
and X = [B] for different G-algebras gives equivalent categories. We call it the category of
G-equivariant coherent sheaves on X and denote CohG(X). The rank of the Grothendieck
group K(CohG(X)), equal to the number of irreducible objects in A ∗ G − Mod, is an
equivariant Euler characteristic M(X) of the µK-decorated G-set. This linearly extends to
a function M : Bµ(G)→ Z, whose values are appended to tables 1 and 2.

Some of the considerations can be repeated if G is no longer finite but an algebraic group
acting on a finite set X. As the stabilisers of points are open, the finite component group
G/G0 acts on X. We define a µK-decorated G-set to be just a µK-decorated G/G0-set. Now
the category A∗G−Mod consists only of those A∗G-modules that are rational as G-modules.
Now Lemma 4.1 can be repeated in G-modules and the category CohG(X) is canonically
attached to X.

A point x = [N ] ∈ X determines a minimal central idempotents ex ∈ A such that
exN = N . Using it, we define a stalk Mx := exM and the support {x ∈ X | exM 6= 0} of a
sheaf M . This will be used in the next section.

Now we would like to discuss the relation of CohG(X) to the module categories H−Modη.
If η ∈ µK(H) and H is a subgroup of a finite group G, the category H−Modη is the category

12



of projective representations of H, affording the cocycle η [8, 16].

Lemma 4.2. Let X be a finite µK-decorated G-set, G a finite group, X0 ⊆ X a set of
representatives of G-orbits. Then the category CohG(X) is equivalent to ⊕x∈X0Gx−Modπ−1

x

as a module category.

Proof. The functor Φ: ⊕x∈X0 Gx −Modπ−1
x
→ CohG(X) is constructed in two steps. First,

we can associate a conjugate projective representation Vx ∈ Gx−Modπ−1
x

, x ∈ X to a formal
sum ⊕x∈X0Vx. It is done exactly as in the proof of Theorem 2.4. Now let Mx be the simple
A-module that corresponds to the point x ∈ X. We define

Ψ(⊕x∈X0Vx) = ⊕x∈XMx ⊗K Vx

with A acting on the first components. Gx acting on the tensor product Mx ⊗K Vx (N.B.,
the cocycles cancel, so Hx acts linearly) and elements of the transversal Tx permuting the
components in the orbit.

Its quasiinverse functor Ψ: CohG(X) → ⊕x∈X0Gx − Modπ−1
x

is based on the canonical
decomposition

L = ⊕x∈XMx ⊗ HomA(Mx, L)

of an A ∗G-module L (N.B., A is semisimple). Observe that L is a linear representation of
G, Mx a projective representation of Gx with the cocycle πx, so HomA(Mx, L) is a projective
representation of Gx with the cocycle π−1

x . Thus,

Ψ(L) = ⊕x∈X0HomA(Mx, L)

is the quasiinverse functor. All the verifications are straightforward.

It is interesting that Lemma 4.2 holds without any assumption on characteristic p of the
field K. If p does not divide |G| then every indecomposable semisimple module category
over G−Mod is equivalent to H −Modη for some H, η [16, Th 3.2]. Thus, CohG(X) are all
possible semisimple module categories.

Now if p divides |G| then A ∗ G can be semisimple or not semisimple. However, it is
relatively semisimple over G −Mod. It would be interesting whether CohG(X) constitute
all possible relatively semisimple module categories in this case. We avoid this difficulty by
declaring a module category special if it is equivalent to a direct sum of H − Modη as a
module category.

Theorem 4.3. For a finite group G there are natural bijections between the following
sets:

(1) isomorphism classes of finite µK-decorated G-sets,
(2) isomorphism classes of central extensions by K× of G-action groupoids of finite sets,
(3) G-Morita equivalence classes of semisimple split G-algebras,
(4) equivalence classes of special module categories over G−Mod.
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Proof. After Theorem 2.4 and Lemmas 3.1, 4.1 and 4.2, the only thing left to prove is that
if H − Modη is equivalent to H ′ − Modη′ as a module category then (H, η) is conjugate
to (H, η′). Let X = G/H, X = G/H ′ with frills πgH = gη−1g−1, πgH′ = gη′−1g−1. Since
H −Modη is equivalent to CohG(X), CohG(X) is equivalent to CohG(X ′). So X must be
isomorphic to X ′ as decorated sets. If ϕ : X ′ → X is an isomorphism and ϕ(H ′) = g then
g(H, η)q−1 = (H ′, η′).

Using Theorem 4.3, one can write a presentation of Bµ(G) in the language of module
categories. We leave it to an interested reader, and only make one relevant observation. Let
[M] ∈ Bµ(G) be the equivalence class of a special module category M. Observe that if M
and N are special module categories as in Theorem 4.3 then the category of module functors
Fun(M,N ) is a special module category and we have

[Fun(M,N )] = [M]∨ · [N ].

The remaining sections of the paper are devoted to applications of Burnside rings. An
interesting group for the applications is the component group Aχ of a centraliser of a nilpotent
element (in a simple Lie algebra) [3, 1]. The groups that occur as Aχ are symmetric groups
S3, S4, S5 and elementary abelian 2-groups Cn

2 . A feature of these groups is that the Schur
multipliers µ(A) of their subgroups are elementary abelian 2-groups. This implies that
[X] = [X]∨, simplifying the calculations.

For instance, the number of simple objects in the module category Fun(M,N ) over
Aχ − Mod is M([M][N ]). In the course of a proof [1, Th. 3], the authors show that
for [M], [N ] ∈ Bµ(S4) such that M([M][M]) = M([N ][N ]) = 5 and M([M][N ]) = 3,
either [M][M] = 〈S4〉 or [N ][N ] = 〈S4〉. This follows immediately from Table 1 since
M([M][M]) = 5 implies [M] ∈ {〈S3〉, 〈S4〉, 〈S ′4〉}.

5. Application: Kazhdan-Lusztig cells

A Coxeter group W admits three equivalence relations ∼L, ∼R and ∼LR. The equivalence
classes of these relations are called left cells, right cells, and double cells respectively [13]. The
definition of ∼L involves chains of elements, whose lengths may grow. Although no explicit
bound on the lengths of elements is known, it is expected that x ∼L y can be decided by an
efficient algorithm (cf. Casselman’s Conjecture [4]).

If W is an affine Weyl group of a simple algebraic group G∨, cells admit a particularly
revealing description. To a double cell C ⊆ W Lusztig’s bijection associates a particular
nilpotent coadjoint orbit G · χ of the Langlands dual group G (over C or any algebraically
closed field of good characteristic). Let Gχ be the reductive part of the stabiliser of χ,
Aχ = Gχ/G

0
χ its component group. By Bezrukavnikov-Ostrik’s theorem, the cell admits a

base µ-decorated Aχ-set YC [3].
We refer an interested reader to Lusztig’s original paper [13, Conj 10.5] for a full definition

of the base set, but one should be warned the sets there are not decorated and the term “base
set” is not used. Here we list some of its properties, crucial for our exposition:
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(1) The permutation representation CYC is isomorphic to the representation of Aχ on
H∗(Bχ,C), the total cohomology of the Springer fibre.

(2) There is a bijection between C and the set of isomorphism classes of irreducible objects
in CohGχ(YC × YC).

(3) If YC =
∐

i Yi where Yi are Aχ-orbits, then the left cells correspond to sheaves supported
on various YC × Yi, while the right cells correspond to sheaves on Yi × YC .

This information allows us to determine YC uniquely if Aχ is cyclic. In particular, all
Schur multipliers vanish in this case and all the decorations on the set YC must be trivial.
If Aχ = S3 then it is not clear how to determine YC explicitly but the decorations must be
trivial as all Schur multipliers vanish. The remaining component possible component groups
are S4, S5 and elementary abelian 2-groups. The aim of this section is to compute YC in the
case of Aχ = S4.

This component group appears only for type F4 in the orbit F4(a3). The corresponding
double cell is

C = {x ∈ W | x ∼LR s2s3s2s3} = {x ∈ W | a(x) = 4}

where W is the affine Weyl group of the type F4, a is Lusztig’s a-function, s2, s3 are the two
simple reflections connected by the double arrow. The Green function [17] of F4(a3) is

(χ12q
4 + (χ8,3 + χ8,1)q3 + χ9,1q

2 + χ4,1q + 1)Σ4 + (χ9,3q
4 + χ8,3q

3 + χ2,3q
2)Σ3,1

+ (χ6,2q
4 + χ4,1q

3)Σ2,2 + χ1,3q
4Σ2,1,1,

where Σπ denotes the irreducible character of S4 corresponding to a partition π, χn,m is an
irreducible n-dimensional character of the finite Weyl group W0.of degree m, and qk signifies
that this component appears in degree 2k cohomology. Essentially, the Green function
records H∗(Bχ,C) as a graded Aχ ×W0-module.

Let Ω: B(S4) → Rep(S4) be the natural homomorphism that assigns its permutation
representation to an S4-set. Let B+(S4) be the effective part of the Burnside ring, i.e.,
the elements [X] for actual S4-sets. The following lemma is checked by a straightforward
calculation and left to the reader.

Lemma 5.1. The equation

Ω([X]) = 42Σ4 + 19Σ3,1 + 10Σ2,2 + Σ2,1,1

has 20 solutions in B+(S4):

Yε = (15 + ε)〈S4〉+ (17− ε)〈S3〉+ (9− ε)〈D8〉+ 〈C2〉+ ε〈K1〉,

Xε = (13 + ε)〈S4〉+ (19− ε)〈S3〉+ (9− ε)〈D8〉+ 〈C4〉+ ε〈K1〉

for various 0 ≤ ε ≤ 9.

These are 20 candidates for the base set YC . Points in the orbits with stabilisers S4, D8

and K1 may have non-trivial decorations, so the total number of candidate µ-decorated sets
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is much bigger. To advance further we need to know some explicit information about the cell
itself. More precisely, we need to know some elements in the 42 left cells contained in C. At
present, no publicly available software can compute cells in an affine Weyl group. However,
we have managed to verify the following facts (stated as a proposition) on a computer.

Proposition 5.2. The following facts about the double cell C = {x ∈ W (F̃4) | a(x) = 4}
are true:

(1) all left cells in C contain at least 151 elements,
(2) at least 30 cells in C contain at least 175 elements,
(3) the double cell C contains at least 7400 elements.

Proposition 5.2 can be verified on a computer by other research groups if they wish.
Hopefully, it could be done using some standard packages in future. It allows us to pinpoint
the base set of C further:

Theorem 5.3. If Proposition 5.2 holds, then the base set YC is one of the 8 sets listed in
upper half of Table 3.

Proof. Let YC be the underlying set of the decorated set YC . It must be one of the twenty
sets listed in Lemma 5.1.

Using (1) of Proposition 5.2, we can rule out the case of [YC ] = Xε because one the
left cells will contain M([YC ] · 〈C4〉) = M(Xε · 〈C4〉) = M(24〈C4〉 + 9〈H2〉 + 20〈1〉) =
24× 4 + 9× 2 + 20 = 134 < 151 elements. Hence, [YC ] = Yε with 0 ≤ ε ≤ 9.

Notice that M([YC ] · 〈C4〉) = M(Yε · 〈C2〉) = M(60〈H2〉+ 31〈1〉) = 60× 2 + 31 = 151, so
one of the left cells contains exactly 151 elements. Moreover, (17−ε) further left cells contain
exactly M([YC ] · 〈S3〉) = M(Yε · 〈S3〉) = M(32〈S3〉+28〈C2〉+〈1〉) = 32×3+28×2+1 = 153.
By (2) of Proposition 5.2, at most 12 left cells may have such a small number of elements.
So, 12 ≥ 18− ε and 9 ≥ ε ≥ 6.

To pinpoint extensions, we introduce 3 more variables to write

YC = (15+ε−α)〈S4〉+α〈S ′4〉+(17−ε)〈S3〉+(9−ε−β)〈D8〉+β〈D′8〉+〈C2〉+(ε−δ)〈K1〉+δ〈K ′1〉.

Since Y ∨C = YC , the number of elements in C is

M(YC ·YC) = 4ε2−4εα−12εγ+30ε+4α2+12αβ+12αγ−114α+12β2+12βγ−198β+12γ2−144γ+7084.

Using Matlab, we find 14 possible extended sets that could give at least 7400 elements in
the double cell. Results are summarised in table 3. The 6 sets in the lower half of the table
contain a cell with less than 151 elements, thus contradicting (1).

Observe that the candidate sets come naturally in pairs, for instance, [X] = 21〈S4〉 +
11〈S3〉+ 3〈D8〉+ 〈C2〉+ 6〈K1〉 and [Y ] = 21〈S ′4〉+ 11〈S3〉+ 3〈D′8〉+ 〈C2〉+ 6〈K ′1〉. In each
pair X ×X∨ ∼= Y × Y ∨. Thus, if one set in a pair is a base set, so is the second set. Since
each pair contains a set with trivial decorations, we have established the following (subject
to computer use in Proposition 5.2):
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Corollary 5.4. The cell C admits an undecorated base set.

Our computer calculation establishes that certain elements are related by one of Kazhdan-
Lusztig equivalences. At present, we do not know that the calculation exhausts all elements
in the cell. However, the calculation indicates strongly that there are 11 cells of 153 elements.
Thus, we can conclude (with a high degree of confidence but not definitively) that the base
sets of the cell C are

〈X〉 = 21〈S4〉+11〈S3〉+3〈D8〉+〈C2〉+6〈K1〉 and 〈Y 〉 = 21〈S ′4〉+11〈S3〉+3〈D′8〉+〈C2〉+6〈K ′1〉.

6. Application: reduced enveloping algebras

Let G be a simple simply-connected algebraic group over an algebraically closed field K of
characteristic p which is larger than the Coxeter number of G. Let g be its Lie algebra, χ ∈ g∗

a nilpotent element, U = Uχ(g) the reduced enveloping algebra. The finite dimensional
algebra U splits into blocks U = ⊕λUλ that are parametrised by the orbits of the dual
extended affine Weyl group W ′ = W0 nΛ on the weight lattice Λ via (w, µ) • λ = w(λ+ ρ+
pµ)− ρ where ρ is the half-sum of simple roots [11]. The reductive part of the stabiliser Gχ

acts on each Uλ [2]. We are interested in determining the µ-decorated Gχ-set Y λ = Irr(Uλ)
for each λ. As before, only the component group Aχ = Gχ

/
G0
χ acts on Y λ, so it is a

µ-decorated Aχ-set.
With our restriction on p, one can associate a parabolic subgroup P = P (λ) (unique

up to its type) to the weight λ so that λ is P -regular and P -unramified [2]. Let W (λ)
be the corresponding parabolic subgroup in the finite Weyl group W0. Let Ω(Y λ) be the
permutation representation of Aχ over C. Then [2, 9],

Ω(Y λ) ∼= H∗(G/P χ,C) ∼= H∗(Bχ,C)W (λ).

In particular, Ω(Y λ) depends only on the type of the parabolic. In fact, Y λ depends only
on the type of the parabolic because the translation functor within the same wall is a Gχ-
equivalence [2, 11].

Hypothesis. If P (ν) ⊆ P (λ) then there exists an Aχ-subset Y λ
0 ⊆ Y λ and a surjective

morphism Y λ
0 → Y ν of Aχ-sets.

This morphism should be performed by the translation to the wall. We are happy to
leave it as a conjecture at this point. It will be explained elsewhere.

Now we specialise the set-up to g of the type F4 and χ of the type F4(a3), i.e., χ belongs
to the only orbit with the component group S4. It corresponds to the cell C of the previous
section under Lusztig’s bijection. The underlying undecorated S4-sets of the sets Y λ are
listed in Table 4. The left column contains the list of the types of parabolic subalgebras.
The middle column describes the representation Ω(Y λ) of S4 by listing the multiplicities of
irreducible constituents.
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Now the right column describes the sets. The first five most degenerate parabolic types
can be computed uniquely without the use of the hypothesis. Indeed,

Ω〈S3〉 = Σ4 + Σ3,1 and Ω〈S4〉 = Σ4

are the only permutation characters of S4 that have only Σ4 and Σ3,1 as constituents.
The second two types can be computed using the hypothesis. Besides 〈S3〉 and 〈S4〉 there

are four S4-sets without Σ1,1,1,1 in the permutation representation:

Ω〈C2〉 = Σ4+2Σ3,1+Σ2,2+Σ2,1,1, Ω〈C4〉 = Σ4+Σ2,2+Σ2,1,1, Ω〈K1〉 = Σ4+Σ3,1+Σ2,2, Ω〈D8〉 = Σ4+Σ2,2

The S4-set for W (1, 2) can be degenerated to the sets for W (1, 2, 4), hence it is at least
3〈S4〉+ 4〈S3〉. The rest of the set has the permutation character 4Σ4 + 5Σ3,1 + Σ2,2 + Σ2,1,1

leaving the only possibility of 〈C2〉+3〈S3〉. Similarly, the set forW (3, 4) degenerates to the set
for W (1, 3, 4), so it is at least 6〈S4〉+ 〈S3〉, leaving the only possibility of 9〈S4〉+ 〈S3〉+ 〈D8〉.

The remaining five sets cannot be uniquely determined by this method. One needs to
know how many times 〈K1〉 appears in the set. We make this multiplicity into a parameter
and list the remaining sets. We expect all the frills on all Y λ to be trivial and ε = 6 in the
light of the following Lusztig’s conjecture [14]:

Conjecture. For each G and χ

(1) the frills of Y λ are trivial,
(2) Y 0 is a base set of the double cell in the dual affine Weyl group of G that corresponds

to the orbit of χ under Lusztig’s bijection.
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Table 1: The extended table of marks of S4.
M

1 24 1
H2 12 4 2
C2 12 0 2 2
C3 8 0 0 2 3
C4 6 2 0 0 2 4
S3 4 0 2 1 0 1 3
K1 6 2 2 0 0 0 2 2 4
K2 6 6 0 0 0 0 0 6 0 6 4
D8 3 3 1 0 1 0 1 3 1 1 3 1 5
A4 2 2 0 2 0 0 0 2 0 2 0 2 0 2 4
S4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5

K′
1 6 2 2 0 0 0 2 −2 1

K′
2 6 6 0 0 0 0 0 6 0 −6 1

D′
8 3 3 1 0 1 0 1 3 1 1 3 −1 2

A′
4 2 2 0 2 0 0 0 2 0 2 0 −2 0 −2 3

S′
4 1 1 1 1 1 1 1 1 1 1 1 1 1 −1 1 −1 3

Table 2: The extended table of marks of S5.
M

1 120 1
H2 60 4 2
C2 60 0 6 2
C3 40 0 0 4 3
C4 30 2 0 0 2 4
C5 24 0 0 0 0 4 5
S3 20 0 6 2 0 0 2 3
H6 20 4 0 2 0 0 0 2 3

C3 × C2 20 0 2 2 0 0 0 0 2 6
D10 12 4 0 0 0 2 0 0 0 2 4
K1 30 2 6 0 0 0 0 0 0 0 2 2 4
K2 30 6 0 0 0 0 0 0 0 0 0 6 0 6 4
H20 6 2 0 0 2 1 0 0 0 1 0 0 1 0 0 5
D8 15 3 3 0 1 0 0 0 0 0 1 3 0 1 1 3 1 5
A4 10 2 0 4 0 0 0 0 0 0 0 2 0 0 2 0 2 0 2 3

S3 × C2 10 2 4 1 0 0 1 1 1 0 2 0 0 0 0 1 2 0 0 0 1 6
S4 5 1 3 2 1 0 2 0 0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 5
A5 2 2 0 2 0 2 0 2 0 2 0 2 0 0 2 0 0 2 0 2 0 2 0 0 2 5
S5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7

K′
1 30 2 6 0 0 0 0 0 0 0 2 −2 1

K′
2 30 6 0 0 0 0 0 0 0 0 0 6 0 −6 1

D′
8 15 3 3 0 1 0 0 0 0 0 1 3 0 1 1 3 −1 2

A′
4 10 2 0 4 0 0 0 0 0 0 0 2 0 0 2 0 −2 0 −2 3

S3 × C2
′ 10 2 4 1 0 0 1 1 1 0 2 0 0 0 0 1 −2 0 0 0 −1 3

S′
4 5 1 3 2 1 0 2 0 0 0 1 1 0 1 1 0 1 1 1 −1 1 0 −1 3

A′
5 2 2 0 2 0 2 0 2 0 2 0 2 0 0 2 0 0 2 0 −2 0 −2 0 0 −2 4

S′
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 −1 1 −1 1 1 −1 5

Table 3: Candidate base S4-sets for cell F4(a3).
ε Set double cell size partition into left cell

6 21〈S4〉 + 11〈S3〉 + 3〈D8〉 + 〈C2〉 + 6〈K1〉 7408 (151, 15311, 17921, 1933, 2066)

6 21〈S′
4〉 + 11〈S3〉 + 3〈D′

8〉 + 〈C2〉 + 6〈K′
1〉 7408 (151, 15311, 17921, 1933, 2066)

7 22〈S4〉 + 10〈S3〉 + 2〈D8〉 + 〈C2〉 + 7〈K1〉 7490 (151, 15310, 18022, 1932, 2097)

7 22〈S′
4〉 + 10〈S3〉 + 2〈D′

8〉 + 〈C2〉 + 7〈K′
1〉 7490 (151, 15310, 18022, 1932, 2097)

8 23〈S4〉 + 9〈S3〉 + 〈D8〉 + 〈C2〉 + 8〈K1〉 7580 (151, 1539, 18123, 193, 2128)

8 23〈S′
4〉 + 9〈S3〉 + 〈D′

8〉 + 〈C2〉 + 8〈K′
1〉 7580 (151, 1539, 18123, 193, 2128)

9 24〈S4〉 + 8〈S3〉 + 〈C2〉 + 9〈K1〉 7678 (151, 1538, 18224, 2159)

9 24〈S′
4〉 + 8〈S3〉 + 〈C2〉 + 9〈K′

1〉 7678 (151, 1538, 18224, 2159)

8 22〈S4〉 + 〈S′
4〉 + 9〈S3〉 + 〈D8〉 + 〈C2〉 + 8〈K1〉 7438 (110, 151, 1539, 17922, 190, 2098)

8 22〈S′
4〉 + 〈S4〉 + 9〈S3〉 + 〈D′

8〉 + 〈C2〉 + 8〈K′
1〉 7438 (110, 151, 1539, 17922, 190, 2098)

9 24〈S4〉 + 8〈S3〉 + 〈C2〉 + 8〈K1〉 + 〈K′
1〉 7438 (95, 151, 1538, 17924, 2098)

9 24〈S′
4〉 + 8〈S3〉 + 〈C2〉 + 8〈K′

1〉 + 〈K1〉 7438 (95, 151, 1538, 17924, 2098)

9 23〈S4〉 + 〈S′
4〉 + 8〈S3〉 + 〈C2〉 + 9〈K1〉 7532 (109, 151, 1538, 18023, 2129)

9 23〈S′
4〉 + 〈S4〉 + 8〈S3〉 + 〈C2〉 + 9〈K′

1〉 7532 (109, 151, 1538, 18023, 2129)
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Table 4: S4-sets from parabolic blocks of Uχ with χ of type F4(a3).
Σ4 Σ3,1 Σ2,2 Σ2,1,1 Σ1,1,1,1

W (1, 2, 3, 4) 1 0 0 0 0 〈S4〉
W (1, 2, 3) 3 2 0 0 0 〈S4〉 + 2〈S3〉
W (1, 2, 4) 7 4 0 0 0 3〈S4〉 + 4〈S3〉
W (2, 3, 4) 3 0 0 0 0 3〈S4〉
W (1, 3, 4) 7 1 0 0 0 6〈S4〉 + 〈S3〉
W (1, 2) 11 9 1 1 0 3〈S4〉 + 7〈S3〉 + 〈C2〉
W (3, 4) 11 1 1 0 0 9〈S4〉 + 〈S3〉 + 〈D8〉
W (1, 3) 15 6 2 0 0 (7 + α)〈S4〉 + (6− α)〈S3〉 + (2− α)〈D8〉 + α〈K1〉, α ≤ 2
W (2, 3) 10 4 2 0 0 (4 + β)〈S4〉 + (4− β)〈S3〉 + (2− β)〈D8〉 + β〈K1〉, β ≤ 2
W (1) 25 14 5 1 0 (8 + γ)〈S4〉 + (12− γ)〈S3〉 + (4− γ)〈D8〉 + 〈C2〉 + γ〈K1〉, max(α, β) ≤ γ ≤ 2
W (3) 25 8 5 0 0 (12 + δ)〈S4〉 + (8− δ)〈S3〉 + (5− δ)〈D8〉 + δ〈K1〉, max(α, β) ≤ δ ≤ 4
W (∅) 42 19 10 1 0 (15 + ε)〈S4〉 + (17− ε)〈S3〉 + (9− ε)〈D8〉 + 〈C2〉 + ε〈K1〉, max(γ, δ) ≤ ε ≤ 8
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