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TEACHER'S CORNER 
In this department The Amer-ican Statistician publishes articles, reviews, under the section heading. Articles and notes for the department, but not 

and notes of interest to teachers of the first mathematical statistics course intended specifically for the section, should be useful to a substantial number 
and of applied statistics courses. The department includes the Accent on of teachers of the indicated types of courses or should have the potential for 
Teaching Materials section; suitable contents for the section are described fundamentally affecting the way in which a course is taught. 

Teaching About Approximate Confidence Regions Based 
on Maximum Likelihood Estimation 

William Q. MEEKER and Luis A. ESCOBAR 

Maximum likelihood (ML) provides a powerful and ex- 
tremely general method for making inferences over a wide 
range of data/model combinations. The likelihood func- 
tion and likelihood ratios have clear intuitive meanings that 
make it easy for students to grasp the important concepts. 
Modern computing technology has made it possible to use 
these methods over a wide range of practical applications. 
However, many mathematical statistics textbooks, partic- 
ularly those at the Senior/Masters level, do not give this 
important topic coverage commensurate with its place in 
the world of modern applications. Similarly, in nonlin- 
ear estimation problems, standard practice (as reflected 
by procedures available in the popular commercial statis- 
tical packages) has been slow to recognize the advantages 
of likelihood-based confidence regions/intervals over the 
commonly use "normal-theory" regions/intervals based on 
the asymptotic distribution of the "Wald statistic." In this 
note we outline our approach for presenting, to students, 
confidence regions/intervals based on ML estimation. 

KEY WORDS: Asymptotic approximation; Confidence 
interval; Large sample approximation; Profile likelihood. 

1. INTRODUCTION 
Because of its versatility and favorable large sample 

asymptotic properties, the method of maximum likelihood 
(ML) is probably the most widely used method of estima- 
tion for parametric statistical models. Applications extend 
to important areas like time series, survival analysis, cat- 
egorical data analysis, variance components, spatial data 
analysis, errors in variables, and so on. Also, linear and 
nonlinear least squares estimators are equivalent to ML 
estimators based on an assumed normal distribution for 
the residual term. The standard textbooks in these ar- 
eas (e.g., Agresti 1990; Bates and Watts 1988; Box and 

Jenkins 1976; Cox and Oakes 1984; Cressie 1991; Fuller 
1987; Lawless 1982; Nelson 1990; Searle, Casella, and 
McCulloch 1992; Seber and Wild 1989) usually discuss 
ML estimation and, in some cases, related methods of 
computing confidence regions/intervals for the parameters 
or functions of the parameters. 

Most textbooks on the theory of mathematical statistics 
(e.g., Bain and Engelhardt 1987; Casella and Berger 1990; 
Cox and Hinkley 1974; Rao 1973; Stuart and Ord 1991) 
describe ML estimation and go on to describe related con- 
fidence regions/intervals. For some models (e.g., linear 
regression with normally distributed residuals and no cen- 
soring) there are useful results based on exact distribution 
theory. In general, however, we have to rely on asymptotic 
theory. 

Many mathematical statistics textbooks do not give a 
sense of the wide range of areas where ML methods are 
used. Also, because students at this level are only ex- 
posed to first-order asymptotic results, they leave their 
theory courses with the incorrect impression that there 
is little difference between the asymptotically equivalent 
Wald and likelihood-based methods of setting confidence 
regions/intervals. It is clear, however, that the likelihood- 
based methods have important advantages. We suggest an 
approach for teaching this material that we feel is more 
interesting, more useful, and more in line with today's 
computational capabilities. 

2. OVERVIEW OF STANDARD ASYMPTOTIC 
SAMPLING DISTRIBUTION THEORY 

2.1 Likelihood Ratio and Wald Statistics 

Assume that we have a model with a vector o = (01, 02) 

of unknown parameters, partitioned in order to obtain a 
confidence region for ol with 02 being nuisance param- 
eters, and let L(0) denote the corresponding likelihood. 
We also let k1 = length(ol) and let 0 = (01,02) denote 
the corresponding ML estimators. Also, define the profile 
likelihood for ol as 

[L(o1o 02)1 
R(ol) = max I I 

02 [L(0) 
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Under regularity conditions (e.g., Lehmann 1983, p. 429) 
the ML estimators are unique, and we have, if the true value 
of the parameter vector is ol = olo, the following important 
and well-known asymptotic distributional results. As n -- 

o0, both the "likelihood ratio subset statistic" 

-2 log[R(ojo)] 

and the "Wald subset statistic" 

Io, - -10][Eb,I O- 10] 

follow a chi-square distribution with k1 degrees of free- 
dom. Here we take EH to be the estimate of the variance- 
covariance matrix of ol obtained by taking the first k1 
rows and columns of the inverse of the observed informa- 
tion matrix for o. 

In situations where the number of model parameters 
increases with sample size, ML estimators may not even 
be consistent (the standard regularity conditions assume 
that the number of parameters is fixed). As discussed by 
Kalbfleisch and Sprott (1970), this "incidental parame- 
ters" problem is an indication that asymptotic approxima- 
tions may not be adequate when the number of parameters 
is large relative to the number of observations. 

2.2 Confidence Regions/Intervals Based on 
Asymptotic Sampling Distribution Theory 

The asymptotic distributional results in Section 2.1 
provide approximate tests of hypotheses, and these 
tests can be inverted to obtain (approximate) confidence 
regions/intervals (e.g., Lehmann 1986). These approxi- 
mate confidence regions have the usual frequentist in- 
terpretation: The probability that a random confidence 
region/interval will cover the true value of ol is, in large 
samples, approximately 1 - a. 

The following asymptotic results suggest that the re- 
sulting regions/intervals are asymptotically equivalent: 

* An approximate 100(1 - a)% likelihood-based con- 
fidence region for ol is the set of all values of 01 such that 

-2 log[R(Ojo)] < X2lak) 

. An approximate 100(1 - a)% normal-theory (Wald) 
confidence region for ol is the set of all the Ojo's in the 
ellipsoid 

Io, -io][z [ 1I 0i - Oio] < X(1-ca;k1)) (1) 

where X ;2,) is the 1 - a quantile of the chi-square dis- 
tribution with k, degrees of freedom. Cox and Hinkley 
(1974, p. 321) provided an explicit proof that Wald 
and likelihood-ratio confidence regions are asymptotically 
equivalent. In the Appendix we show that the Wald confi- 
dence region (interval) can be interpreted as a confidence 
region (interval) based using a quadratic approximation to 
the log likelihood. Similar ideas were presented for esti- 
mation problems with a single parameter in Sprott (1973) 
and for estimation problems with nuisance parameters in 
Sprott (1980). In certain special cases (particularly when 
the log likelihood function is quadratic in the unknown 
parameters), the Wald and the likelihood ratio statistics 
are equivalent and there is exact distribution theory. 

A third alternative, the so-called score statistic, also has 
the same asymptotic distribution, and can also be viewed 
as a quadratic approximation to the log likelihood (e.g., 
Sprott 1980). 

2.3 Using Transformations to Improve the Wald 
Approximation 

The accuracy of the Wald approximation depends on 
parameterization. Sprott (1973, 1975) suggested that the 
normality of the relative likelihood (or quadratic shape 
of the log-likelihood) be used as a criterion to judge the 
adequacy of the large sample approximation. Cook and 
Weisberg (1990), in the context of nonlinear regression, 
gave examples and a method of plotting the profile likeli- 
hood that allows assessment of the Wald approximation. 
Anscombe (1964) and Sprott (1973, 1975), for example, 
showed how reparameterization can, to some degree, be 
used to improve the asymptotic approximation. The basic 
idea is to find a parameterization that will, as much as pos- 
sible, make the log-likelihood approximately quadratic. 
Of course, finding a good parameterization may be nearly 
as difficult as using the likelihood ratio method (but once 
determined for a class of problems, an appropriate repa- 
rameterization could save computational time for that class 
of problems). Sprott (1973) also indicated and gave an 
example of a situation where finding such a transformation 
will not be possible (also see Example 3 in Section 4.2). 

Likelihood-based confidence regions/intervals are 
invariant to such transformations, and generally do as well 
or better than the best transformation. This is closely re- 
lated to the "parameter effects" ideas described, for exam- 
ple, in Bates and Watts (1988). 

3. CHOOSING BETWEEN LIKELIHOOD AND 
WALD APPROACHES 

Particularly when the focus is on theory, students are 
often left with the mistaken impression that the Wald and 
likelihood approaches provide equally accurate approxi- 
mations (e.g., Rao 1973, p. 418). In fact, most commer- 
cial statistical computer packages use the inferior Wald 
approach (SAS JMP's nonlinear regression procedure is 
a notable exception) with nonlinear estimation. The rea- 
son for this is some combination of (a) lack of knowledge 
among statisticians about the advantages of likelihood- 
based methods, and (b) more complicated computations 
are required for the likelihood-based approach. 

3.1 Advantages of Likelihood-Based Methods 

Especially more recently, a number of authors have 
recognized and reported the advantages of likelihood- 
based inference (e.g., Beale 1960; Cox and Hinkley 1974, 
pp. 342-343; Cox and Oakes 1984, p. 36; Kalbfleisch 
and Prentice 1980, p. 48; Lawless 1982, p. 525). Numer- 
ous simulation studies have shown clear advantages for 
likelihood-based intervals for a number of specific mod- 
els (e.g., Donaldson and Schnabel 1987; Meeker 1987; 
Ostrouchov and Meeker 1988; Vander Wiel and Meeker 
1990). On the theoretical side, in the context of nonlinear 
regression, Bates and Watts (1988) made a strong case on 
the basis of parameter-effects curvature-transformation. 
Also see Cook and Weisberg (1990). 
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3.2 Computational Issues 

Likelihood-based regions/intervals are more difficult to 
compute than the corresponding Wald regions/intervals. 
In a problem with nuisance parameters, finding a likeli- 
hood-based region/interval involves finding the roots of a 
function where each function evaluation requires a con- 
strained maximum likelihood estimation. Venzon and 
Moolgavkar (1988) and Cook and Weisberg (1990) de- 
scribed useful algorithms for the process. With improve- 
ments in computing technology, this is less of a problem 
today than in the past, and the direction for the future is 
clear; lack of appropriate easy-to-use software is the main 
problem. 

4. EDUCATIONAL ISSUES 

4.1 Outline of Lecture Material 

When teaching this material, we suggest, instead of the 
traditional approach, something similar to the following 
outline for the presentation of these important results. Em- 
phasis given to the different points will depend on whether 
the presentation is for a theory or for a methods course. 

. Present asymptotic distributional results and appli- 
cations to hypothesis testing for both the Wald and the 
likelihood ratio methods. 

. Show how to invert the hypothesis tests to construct 
confidence regions/intervals for both methods. Indicate 
computational differences, noting that, in general, the in- 
version of the likelihood ratio test must be done numeri- 
cally. 

e Use the simple proof in the Appendix to show that the 
region/interval given by the Wald approach is based on a 
quadratic approximation to the log-likelihood. 

. Show, by example, that the quadratic approximation 
for the log-likelihood could give inaccurate and, in ex- 
treme cases, nonsensical intervals (e.g., negative lower 
limits for scale parameters or limits for probabilities that 
are outside of the range of [0-1]) in situations where the 
likelihood is far from quadratic. 

* As discussed in Section 2.3, show that the accuracy 
of the Wald approach depends on parameterization, and 
describe and illustrate how transformations of parameters 
can, to some degree, be used to improve the adequacy of 
the Wald approach. 

. Describe the close relationship between likelihood- 
based confidence intervals and Bayesian highest posterior 
density (HPD) intervals (e.g., Casella and Berger 1990, 
p. 424; Severini 1991). 

An important point of the discussion, made frequently 
by others in the past (e.g., Box and Jenkins 1976, pp. 224- 
226), but not sufficiently in standard textbooks, is that 
one should, in unfamiliar nonlinear estimation problems, 
examine a plot of the likelihood and profile likelihoods 
r ather than just computing summary test statistics. 

4.2 Examples 

Examples like the following are useful for illustrating 
the points in Section 4.1. 

Example 1. This example addresses inferences on 
lognormal distribution parameters and quantiles. It pro- 
vides illustrative analytical formulas for the approximate 
likelihood-based methods and has an exact solution (based 
on the noncentral t distribution) with which to compare. 
Also, the example is similar to practical problems where 
exact results are not available and where asymptotic ap- 
proximations are commonly used: problems with cen- 
sored data and nonnormal distributions, like the Weibull 
and Gamma. 

The lognormal density is 

= C exp{-22 [log(t) - ]2 } 

exp(y) exp {-2 [ + log(J2)]} 

where C = 1/ 27F and y = log(t). The likelihood for n 
independent observations from a lognormal distribution is 
L(,u, o) = HlfT(ti; A, a). Setting the first partial deriva- 
tives of log[L(,, c)] with respect to ,u and a equal to 
0 and solving, one gets the ML estimates, ,u = y and 

a j=- / 1(y,-y)2/n where y is the sample mean of 
the yi's. 

Expressing the likelihood as 

L(At, O)=epni)exp{ [& t2+ log(J2] 
exp(n-l) {2 [ 2]} 

shows that (,u, cr) are sufficient statistics for ,u and o. Then 
the relative likelihood takes the simple form 

R(,u, a) = L(E, a) 
L(-P cr) 

= exp{ _n[& c 2 + )2 + log ( 2)]} (2) 

For fixed a, the value of At that maximizes R(At, a) is ,u = ,u. 
Substituting this for At in (2) gives a simple expression for 
R(cr). For fixed ,u, the value of a that maximizes R(A, a) 
iS of = &02 + (i- At)2. Substituting this for a in (2) gives 
a simple expression for R(A). 

We now consider the lognormal P quantile Tp = exp(,u 
+ Zpr) where Zp is the standard normal P quantile. To do 
this, we reparameterize in terms of Tp and a by substituting 
log(Tp) - Zpcr for At on the right-hand side of (2), giving 
the relative likelihood 

- 
f2 _ 

2 + (V _ (7Zp)2 
R(Tp, cr) = exp{-2 [ 2 

+ log ('2] (3) 

for fixed values of Tp. Setting a9 log[R(Tp, c7)] /i9c = O and 
simplifying gives a2 + vZpr -a(c2 + v2) = 0. One of the 
roots of this quadratic is always positive and the other is 
always negative. It can be shown that the positive root 

cr= 2 [-VZP+ /v2Zp + 4r2 +4v2] 

is a maximum. Then substituting cr for cr in (3) gives 
R(Tp), the profile likelihood for Tps. 
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Figure 1. Relative Likelihood R(T.1, ) for the Lognormal Distri- 
bution With n = 10, y = 1, and =2. 

We now specialize to the .1 quantile and use for data 
n = 10, and the sufficient statistics ,I = 1 and &' = 2. 
Figure l is a contour plot of R(Tp, a). Because X(1-ct;2) = 

-21og(c), the ae contour of a two-dimensional relative 
likelihood corresponds to an approximate 100(1 - )% 
joint confidence region for Tp, a. 

Figure 2 compares plots of R(T.1) as well as the corre- 
sponding Wald quadratic approximnations exp[(-1 /2)W1] 
and exp[(-1/2)Wo] in the scale of T.1 and log(T1), re- 
spectively. These special cases of (1) are computed as 

WI [P)=TP T ]2 

var[Tp] 

Wo(T)- = [log(Tp) - log(Tp)]2 
OP ~~v?[log(TP)] 

where var[1og(Tp)] = (12/n)[1 + Zp/2] is obtained by 
evaluating the second derivatives of the log-likelihood at 
the ML estimates and, using the delta method, var[Tp] = 

Tpvar[log(Tp)]. Corresponding numerical values of the 
confidence interval endpoints can be read from the graph, 
but are also shown in Table 1. These show that the 
likelihood-based intervals provide the best approximation 
to the exact-theory interval (obtained by using Table A. 12 
in Hahn and Meeker 1991). The quadratic approximation 

o. 0.50 

o 0.60 F 

7a56 ~~~~~~~~~~~~~~~~~~~~~~0.70 

0~~~~~~~~~~~~~~~~~~~ ~~~~~~~~0.80 I 
0 C=)~~~~~~~~~~~~ 

0.90 

0.95 

Figure 2. Profile Likelihood FR(Ti1) (solid curve) for the Lognormal 
Distribution With n = 10, y' = 1, and a = 2 with Corresponding Quadra- 
tic Approximations Th Ti1 (dashed curve) and log(T 1 ) (dotted curve). 

Table 1. Comparison of Confidence Intervals For Example 1 

Confidence Interval Endpoints 

Method Lower Upper 

Exact .014 .793 
Likelihood .020 .812 

Wald in log(T1) .039 1.116 
Wald in T., -.141 .560 

in T results in a nonsensical negative lower confidence 
interval endpoint. The commonly used quadratic approx- 
imation in log(T. ) corrects this problem but still does rel- 
atively poorly for the upper endpoint of the confidence 
interval. 

Example 2. Figure 3, computed from the model used 
in Arnold, Beaver, Groeneveld, and Meeker (1993), pro- 
vides another, quite different example where the quadratic 
approximation to the log-likelihood profile is also inade- 
quate. In their model and this particular set of data, the 
matrix of second partial derivatives of the log-likelihood 
with respect to the model parameters, evaluated at the 
maximum likelihood estimates of the parameters, is nearly 
singular. This gives an indication that one cannot obtain a 
Wald-based confidence interval for A. The log-likelihood 
profile, however, gives a more accurate picture of the in- 
formation that the data provide about A. 

Example 3. Figure 4, computed from the model 
used in Meeker (1987), provides an example where the 
quadratic approximation provided by the Wald statistic 
would be seriously inadequate. Nor is there a transfor- 
mation that will make the log-likelihood approximately 
quadratic. Because the log-likelihood profile for "propor- 
tion defective" p flattens out at a high level, it is quite 
plausible that the data could have come from a model in 
which the proportion defective was as high as 1. The 
Wald-based confidence interval for the proportion defec- 
tive is, however, [.0034, .0200] which, in this case, would 
be seriously misleading. 

This exanmple illustrates a further advantage of the pro- 
file likelihood approach: the theory can be generalized 
to handle situations in which the parameter vector is near 

CR 0.50 

o 0.60 L 

-O -X I I -9 

(36 0.70 

0 ~~~~~~~~~~~~~~~~~~~~~~~0.8 
0.90 

6 11 
~~~~~~~~~~~~~~~~~~~~~~0.99 

-3 -2 -1 0 1 2 3 

lambda 

Figure 3. Profile Likellhood R(A) With Approximate 95% 
Likelihood-Based Confidence Interval for A, Based on Model and 
Data From Arnold, Beaver, Groeneveld, and Meeker (1993). 
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Figure 4. Profile Likelihood R(p) With Approximate 95% 
Likelihood-Based Confidence Interval for Proportion Defective p, 
Based on Model and Data From Meeker (1987). 

or on the boundary of the parameter space (see Chemoff 
1954 and Feder 1968). 

5. DISCUSSION 

We have attempted to build a case for the use of 
likelihood-based confidence intervals and regions and for 
giving these methods a more prominent place in the 
statistics curricula. We would, however, like to reiter- 
ate an important point made by Casella and Berger (1990, 
p. 416), among others. In general, there is no guarantee 
that likelihood-based methods are optimum, although they 
will seldom be too bad. Also, for some problems, even 
today, the computational effort will be substantial and, for 
specific problems, there may be other, simpler methods 
that one can or should use. 

APPENDIX: WALD CONFIDENCE REGIONS 
APPROXIMATE PROFILE LIKELIHOOD 

CONFIDENCE REGIONS 

In this Appendix we show that the Wald con- 
fidence region can be viewed as an approximation 
to the likelihood-based region. The approxima- 
tion is based on quadratic approximation to the log- 
likelihood profile. We again use the partition o = (ol, 02) 
in order to obtain a confidence region for ol and 02 denotes 
the nuisance parameters. Minus 2 times the log likelihood 
profile for 0o is 

A(o1) = -2[o(01, 02) - LA1 02)] 

where X,(-) is the log-likelihood, 0 = (01, 02) is the MLE 
estimator of the parameters 0 = (01, 02), and 02 = 02(01) is 

the MLE of 02 with ol fixed. 

Result. The confidence region for ol obtained by in- 
verting the Wald test is equivalent to the confidence region 
obtained by using a quadratic approximation to the log- 
likelihood profile. 

Proof: In what follows, we assume the following mild 
regularity conditions: (a) the MLE of o exist and it is 
unique, and (b) the observed information matrix of 6 eval- 
uated at 0 is positive definite. 

Expanding A(01) in a Taylor series about 01 gives the 
desired quadratic approximation for the log-likelihood 
profile: 

Q(oi) = A(01) + (01 - I)8 a(ol) 

+ (2 )(Oi - )/ ao, aol (01 - ) 

where the derivatives are evaluated at ol = 01 and 02 = 

02(01). Because A(o1) and 2(01,O2) are maximized at 

01 = 01, we have that A(_1) = 0 and IA(O,) = 0. Thus 
the quadratic approximation simplifies to 

Q(01) = (2)(01 - 01) aojaj (Oi - 

The Wald subset statistic has the form 

MOO1 = (01-0 )' [II I- IIJ22Il 0- ) 

where 

- [a2L(0Ai 02) D2Z(O1 02) 

[I2 122 - 92 - 2(ol 0102) a0 1 02) j 

0001 0 200 

is the observed information matrix [the derivatives here 
are evaluated at (01, 02) = (01, 02) 
Using Theorem 2.2 (p. 39) in Seber and Wild (1989), it 
follows that 

(1) 92A(ol) =11 -I12I2I2 I21 

Thus W(01) = Q(01) and exp[-(1/2) W(01)] - R(01). 

[Received June 1993. Revised June 1994.] 
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Graphical Interpretation of Variance Inflation Factors 
Robert A. STINE 

A dynamic graphical display is proposed for uniting par- 
tial regression and partial residual plots. This animated 
display helps students understand multicollinearity and in- 
terpret the variance inflation factor. The variance inflation 
factor is presented as the square of the ratio of t-statistics 
associated with the partial regression and partial residual 
plots. Examples using two small data sets illustrate this 
approach. 

KEY WORDS: Collinearity; Interactive plots; Regression 
diagnostics 

1. INTRODUCTION 
This article focuses on the connection between the vari- 

ance inflation factor (VIF) and two diagnostic plots for 
least squares regression, partial regression plots, and par- 
tial residual plots (added-variable plots and component- 
plus-residual plots). To help students master regression 
diagnostics, I have found it useful to point out explicitly 
the connections among them. Introductions to regression 
diagnostics at the level of Chatterjee and Price (1991) or 
Fox (1991) offer the student a variety of numerical and 
graphical diagnostics for judging the adequacy of a regres- 
sion model. There are diagnostics for specification error, 
outliers, multicollinearity, nonlinearity, heteroscedastic- 
ity, and other faults. Rather than present each diagnostic 
individually, I find it useful to describe the connections 

among them, much as one needs to do in presenting the var- 
ious types of random variables in an introductory course. 

The presentation offered here is relatively elementary. 
The level is appropriate for students who do not know lin- 
ear algebra, and I have found it useful in more advanced 
courses as well. The presentation relies upon imbedding 
the three diagnostics in a single dynamic plot. At one 
extreme of a slider control, this plot is the partial resid- 
ual plot, which shows none of the effects of collinearity. 
As the control moves to the other extreme, it becomes 
the partial regression plot, which conveys the effects of 
multicollinearity. The plot dynamically updates its co- 
ordinates to suggest the effects of intermediate levels of 
multicollinearity. 

2. THE DIAGNOSTICS 

The VIF measures how much multicollinearity has in- 
creased the variance of a slope estimate. Suppose that we 
write the full-rank regression model for n independent ob- 
servations as 

Yi = /o + /lxil + + /3kXik + Ei, i=,...,n, 

where var(c1) = o2. In vector form, the model is Y = 

Xf + e where X is the n x (k + 1) matrix with columns 
X0, X1,. . ., Xk and X0 is a column vector of Is. The name 
of this diagnostic arises from writing the variance of the 
least squares estimator /3 (j = 1, ... . k) as (e.g., Belsley 
1991, sec. 2.3) 

var(/3) =7 

- VIF ssj 
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